Revibrado del hormigón

Figura 1. Vibrado del hormigón con aguja. Fuente: Revista Construir

La revibración del hormigón se emplea en ciertos casos para mejorar la adherencia entre el hormigón y el acero de refuerzo, para liberar el agua atrapada debajo de las barras horizontales y para eliminar posibles bolsas de aire adicionales. Esta práctica no causa ningún daño si el hormigón aún se encuentra maleable. Sin embargo, es crucial evitar el contacto entre la aguja del vibrador y el acero de refuerzo. La vibración transmitida a través de las armaduras al hormigón semiplástico puede resultar en pérdida de adherencia de la barra con el hormigón y fisuras en las armaduras.

La revibración ofrece una serie de beneficios significativos, como mejorar la resistencia a la compresión, de un 15 % hasta un 40 %, sobre todo a cortas edades. También permite aumentar la impermeabilidad, potenciar la adherencia, reducir las bolsas de grava, eliminar el agua atrapada y expulsar el aire y las bolsas de agua. Sin embargo, es importante tener en cuenta que no se debe aplicar el revibrado en mezclas con consistencia seca y granulometría abierta. Es, por tanto, más indicado para consistencias blandas.

El proceso implica la introducción de un vibrador en la masa de hormigón precompactada pasados unos 30 minutos de la primera compactación, pero dentro de las primeras 2 a 4 horas (antes del inicio del fraguado). Una regla práctica indica que se puede llevar a cabo el revibrado siempre que la aguja pueda penetrar en el hormigón por su propio peso y logre fluidificarlo. Además, es posible emplear un aditivo retardador del fraguado para facilitar este proceso.

En diferentes circunstancias, el revibrado puede ser igualmente ventajoso:

  • Al colocar hormigón en capas y vibrar la inferior, lo cual evita la formación de juntas entre ellas.
  • Para perfeccionar el acabado superficial de los pilares y muros superiores, eliminando el aire que suele acumularse en esas áreas.
  • Para cerrar las fisuras producidas por la retracción plástica.

Esta técnica es especialmente útil para hormigones con altos valores de relación agua-cemento, aquellos con baja retención de agua o en situaciones donde la colocación inicial ha sido compleja. Al colmar los vacíos generados durante el asentamiento inicial del hormigón fresco alrededor de la armadura horizontal, se garantiza una mejor calidad estructural.

Es crucial realizar el revibrado en el momento adecuado, cuando el hormigón aún está maleable. El proceso de fraguado generalmente comienza entre una hora y media y cuatro horas después de la vibración previa. Esta operación conlleva ciertos riesgos y es fundamental calcular con precisión la duración de la nueva vibración, ya que un error en cualquiera de estos aspectos puede causar daños irreparables al hormigón.

Dada la complejidad y el riesgo asociado, el revibrado es una tarea que debe ser ejecutada por personal altamente especializado, con un control meticuloso del proceso. Por esta razón, y debido al riesgo inherente, no es una práctica comúnmente empleada. En cualquier caso, es necesario obtener la aprobación previa de la dirección facultativa antes de llevar a cabo el revibrado.

Os dejo a continuación un artículo que estudia la acción del revibrado en morteros, hormigones y prefabricados, que espero os sea de interés.

Descargar (PDF, 2.02MB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curado al vapor del hormigón e índice de madurez

Figura 1. Ejemplo de proceso de curado al vapor

El empleo de vapor es uno de los métodos más eficaces para el curado del hormigón, acelerando considerablemente su endurecimiento. Este tipo de curado se emplea casi exclusivamente en prefabricación. En el proceso de curado al vapor, y en general en cualquier método que involucre calor húmedo, se aplica el concepto de maduración del hormigón. La maduración es el resultado de la temperatura en grados centígrados a la que se expone la pieza, multiplicada por el tiempo de exposición si este es constante. En el caso de una temperatura variable, se calcula la integral de la curva temperatura-tiempo (Figura 2). Se acepta que, para un mismo tipo de hormigón y dentro de ciertos límites, la eficacia del curado es la misma si la maduración también lo es. Es decir, diferentes combinaciones de temperaturas y tiempos producirán resultados similares siempre que el producto de estos, o la suma de los productos, se mantenga constante.

Figura 2. Evolución de la temperatura con el tiempo (Carino y Lew, 2001)

Dependiendo del tipo de elemento, el curado al vapor puede realizarse a baja o alta presión. La variante a baja presión se lleva a cabo típicamente a presión atmosférica y se emplea en estructuras encerradas construidas en el lugar o en grandes unidades prefabricadas de hormigón. Por otro lado, el curado con vapor a alta presión se realiza utilizando autoclaves y se aplica en pequeñas unidades prefabricadas.

El proceso de curado al vapor comienza una vez que ha transcurrido la etapa de prefraguado, elevando gradualmente la temperatura hasta alcanzar un límite establecido. Esta temperatura se mantiene durante un período determinado, después del cual se reduce de manera continua hasta igualar la temperatura ambiente. Es importante evitar que el hormigón experimente choques térmicos durante este proceso.

Cada tipo de cemento presenta una curva de curado ideal, la cual puede determinarse experimentalmente para conocer las velocidades óptimas de variación de temperatura, el valor de la temperatura límite y el tiempo de permanencia en esta última. En términos generales, la duración del prefraguado oscila entre 2 y 5 horas; la velocidad de calentamiento y enfriamiento no debe exceder los 20 °C por hora; y la temperatura límite óptima se sitúa entre 55 °C y 75 °C, sin superar los 80 °C. Es recomendable que el primer período del proceso de curado al vapor no sea inferior a 4 horas cuando la temperatura ambiente es de 20 °C, pudiendo reducirse conforme aumenta dicha temperatura (Figura 1).

Es importante mantener una presión de vapor uniforme a lo largo de la pieza, asegurándose de que el recinto de curado permanezca constantemente saturado de humedad. Además, el curado con vapor requiere un control meticuloso, dado que su aplicación descuidada puede ocasionar cambios volumétricos excesivos que afecten la acumulación de la resistencia inicial del hormigón.

El curado al vapor ofrece diversas ventajas significativas en comparación con otros métodos de curado convencionales. Entre las principales ventajas se encuentran:

  • Endurecimiento rápido en climas fríos: Es especialmente útil en climas fríos, ya que promueve un rápido endurecimiento del hormigón, lo que facilita la construcción en estas condiciones.
  • Alta resistencia inicial: Permite obtener una alta resistencia inicial en el hormigón, aspecto fundamental para la fabricación de unidades prefabricadas y pretensadas.
  • Aumento de la velocidad de construcción: Al acelerar el proceso de endurecimiento del hormigón, el curado al vapor puede incrementar significativamente la velocidad de construcción, lo que se traduce en una mayor eficiencia y productividad.
  • Rapidez en comparación con otros métodos de curado: Es más rápido que los métodos de curado convencionales, lo que acorta los tiempos de construcción y permite una mayor rotación de proyectos.

A pesar de sus ventajas, el curado al vapor también presenta algunas desventajas que deben considerarse:

  • Limitaciones en superficies grandes: Puede no ser eficiente en superficies extensas, lo que podría requerir la implementación de métodos alternativos de curado.
  • Requiere trabajadores calificados: El proceso de curado al vapor demanda la presencia de personal capacitado y experimentado para garantizar resultados óptimos y prevenir problemas como cambios volumétricos excesivos.
  • Costo inicial más elevado: El equipo y los materiales necesarios para el curado al vapor suelen tener un costo inicial más alto en comparación con los métodos de curado convencionales, lo que puede ser una consideración importante en proyectos con limitaciones presupuestarias.

Os dejo algunos vídeos al respecto del curado al vapor y al método de madurez del hormigón.

A continuación os dejo un documento de Hilti donde se explica el método de madurez del hormigón.

Descargar (PDF, 305KB)

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CARINO, N.J.; LEW, H.S. (2001) El método de la madurez: : From Theory to Application. Proceedings of the 2001 Structures Congress & Exposition, Washington, D.C., American Society of Civil Engineers, Reston, Virginia, Peter C. Chang, Editor, 2001, 19 p.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones sobre infraestructuras viarias sostenibles: NSGA-II con operadores de reparación para optimización multiobjetivo

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El trabajo trata sobre la toma de decisiones en infraestructuras viales sostenibles. Para ello se utiliza una variante personalizada de la técnica NSGA-II con operadores de reparación para una optimización multiobjetivo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento propone un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad. El estudio evalúa la eficacia de tres operadores de reparación a la hora de optimizar los objetivos económicos, ambientales y sociales, y utiliza algoritmos personalizados y un análisis del ciclo de vida (LCA) para una evaluación precisa. Los resultados muestran que el operador de reparaciones basado en estadísticas ofrece soluciones con un menor impacto en todas las dimensiones y demuestra una variabilidad mínima, lo que lo convierte en el más adecuado para cumplir con los requisitos de diseño del RCPMF.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento presenta un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad.
  • El estudio evalúa la eficacia de tres operadores de reparación (basados en estadísticas, aleatorios y de proximidad) a la hora de optimizar los objetivos económicos, ambientales y sociales.
  • El artículo presenta una versión personalizada del algoritmo NSGA-II (NSGA-II) de clasificación no dominada, complementada con un análisis detallado del ciclo de vida (LCA), para facilitar la evaluación precisa de las funciones objetivas.
  • El artículo demuestra el uso de dos técnicas de MCDM, a saber, la ponderación aditiva simple (SAW) y (FUCA), para puntuar y clasificar las soluciones MOO.
  • La investigación proporciona una estrategia clara y metódica para integrar el MOO y el MCDM, formando un marco coherente para la implementación práctica en contextos de ingeniería complejos.
  • El estudio destaca la importancia de tener en cuenta los principios de sostenibilidad desde la fase de diseño y de emplear las técnicas de MOO para encontrar soluciones equilibradas y óptimas en la ingeniería civil.

Abstract:

Integrating sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring environmentally responsible, economically feasible, and socially beneficial outcomes. In this study, this challenge is addressed, with the significance of sustainable development in modern engineering practices being underscored. A novel approach, which combines multi-objective optimization (MOO) with multi-criteria decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design requirements is exhibited by the statistical-based repair operator, which offers solutions with lower impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their consistent evaluation capacity despite distinct operational methodologies.

Keywords:

Multi-objective optimization; multi-criteria decision-making; modular structure; life cycle sustainability; NSGA-II; simple additive weighting; fair un choix adéquat.

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1.06MB)

Encofrados flexibles textiles

Figura 1. Casa Pascual de Juan en La Moraleja, (Madrid), obra de Miguel Fisac. Fuente: https://arquitecturaviva.com/obras/casa-pascual-de-juan-en-la-moraleja-madrid

En los encofrados flexibles, el hormigón se confina mediante una combinación de elementos rígidos de soporte y una membrana que únicamente resiste tracciones. Mediante la fijación de un material textil sobre un soporte de madera, el hormigón vertido adopta la forma preestablecida por el material. Así, al recibir el hormigón fresco, la membrana la contiene y adopta una forma gravitacional.

En este contexto, lo particular de esta tecnología radica en el uso de una tela que puede resistir el hormigón hasta que este complete su curado. En la actualidad, en el mercado de la construcción, se encuentran disponibles los geotextiles, los cuales poseen alta resistencia y coste competitivo, convirtiéndolos en una opción para emplearse como encofrados flexibles. Estos textiles se distinguen además por su ligereza y su reducido volumen, lo que los hace adecuados emplearse en proyectos que requieran largos desplazamientos.

Al reemplazar los tradicionales encofrados prismáticos con un material flexible compuesto por láminas textiles de alta resistencia y bajo costo, es posible aprovechar la fluidez del hormigón para construir formas altamente optimizadas y de interés arquitectónico.

A partir de finales de la década de 1960, Miguel Fisac empleó los encofrados flexibles sujetos con elementos que alteran su superficie, moldea el hormigón, el cual al fraguar adquiere una apariencia lisa con una textura singular. Esta técnica encuentra aplicación especialmente en las fachadas de numerosos edificios. El material, que evoluciona en formas y acabados con el tiempo, se convierte desde entonces en un elemento distintivo y destacado que define su identidad arquitectónica. Este tipo de encofrado proporciona al hormigón una apariencia redondeada y suave, evocando la sensación de un material aún fluido.

Los encofrados textiles permiten obtener estructuras que requieren hasta un 40% menos de hormigón que una sección prismática equivalente, lo que representa un ahorro notable en términos de sostenibilidad. Existen áreas prometedoras para futuros desarrollos, tales como modelos informáticos de cálculo, el uso de textiles avanzados como encofrados colaborativos, el pretensado y la implementación de estructuras aligeradas con huecos.

En el vídeo que podéis ver a continuación vemos una forma innovadora de usar este tipo de encofrados.

Os dejo a continuación un par de documentos de interés sobre este tipo de encofrados.

Descargar (PDF, 8.79MB)

Descargar (PDF, 412KB)

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de forjado con prelosas

Figura 1. Prelosa armada empleada en la construcción de forjados de edificación. Fuente: https://weckenmann.com/es/infoteca/productos-prefabricados-de-hormig%C3%B3n/prelosas

La prelosa es un componente prefabricado que consta de una lámina inferior de hormigón con un espesor uniforme y nervios dispuestos longitudinalmente. Su función principal es servir como encofrado para el forjado que posteriormente se hormigonará en obra. Una vez que el hormigón ha fraguado, la prelosa se convierte en una placa compuesta junto con el hormigón vertido. Estos elementos representan una evolución industrializada de la vigueta, ya que tienen una sección prefabricada más grande y requieren menos hormigón y armadura durante la instalación en la obra. Es importante destacar que la prelosa actúa como un encofrado y, por lo tanto, debe ser cimbrada, por el hecho de que no es un forjado autoportante.

Estos elementos prefabricados no deben confundirse con las prelosas empleadas en los tableros de puentes, que tienen dimensiones considerablemente mayores y una capacidad resistente más elevada.

Las prelosas se diseñan para utilizarse como parte de los forjados en situaciones donde las luces no sean excesivas, hasta unos 8 m. Pueden ser armadas o pretensadas, pueden tener nervios rigidizadores o armaduras básicas electrosoldadas, y pueden ser macizas o aligeradas. Las dimensiones, refuerzos y piezas especiales se fabrican según las especificaciones del cliente.

  • Las prelosas armadas son losas de hormigón con armaduras básicas electrosoldadas en celosía, generalmente dispuestas longitudinalmente, para lograr una conexión adecuada con el hormigón vertido in situ, completando así su capacidad resistente (Figura 1). El espesor de la losa varía entre 6 y 20 cm, con una anchura normalizada de 120 cm, diseñada para forjados de hasta 50 cm de espesor. Las placas de hormigón que se utilizan como encofrado suelen equiparse con una parrilla que arma la losa de hormigón prefabricado. También se pueden incorporar nervios rigidizadores, especialmente cuando se requiere que la prelosa sea autoportante, evitando la necesidad de sopandas durante el montaje y el vertido de hormigón en la obra. La prelosa presenta una cara superior rugosa con armaduras en celosía salientes para garantizar una buena adherencia del hormigón vertido “in situ”, mientras que la cara inferior es lisa, proporcionando un buen acabado a la vista.
  • Las prelosas pretensadas cuentan con dos o más nervios rigidizadores, generalmente dispuestos longitudinalmente para ofrecer resistencia y rigidez durante la ejecución (Figura 2). Los anchos típicos varían entre 600 mm o 1200 mm. Estas prelosas llevan armadura transversal de fábrica y, en ocasiones, se complementan con armaduras adicionales en la obra. Para permitir el apoyo, las prelosas cuentan con armaduras salientes, ya que no se ajustan completamente a las vigas, dejando un espacio de solo unos centímetros.
Figura 2. Prelosas pretensadas. Fuente: https://www.hermo.net/producto/prelosa-pretensada-2/

Tanto en las prelosas armadas como en las pretensadas, es posible insertar bloques de poliestireno expandido entre los nervios para reducir el peso del forjado final (Figura 2), además de proporcionar un aislamiento térmico parcial adicional. Las prelosas pueden componerse con diversos materiales, como una lámina intermedia de arlita (árido ligero de arcilla expandida) en la losa inferior, diseñada para mejorar la resistencia al fuego y el aislamiento térmico del forjado.

Estos elementos prefabricados se fabrican mediante moldeo, producción en pistas o extrusión. Se utilizan pistas metálicas con cantos biselados en los laterales para proporcionar un acabado óptimo en la superficie visible del elemento, en comparación con una construcción ‘in situ’ con encofrados. La cara inferior de los elementos es completamente plana y lisa. Además, es posible integrar elementos como cajas eléctricas, puntos de luz, registros, etc., lo que permite obtener un techo liso sin necesidad de falsos techos.

La prelosa representa un sistema más avanzado que el tradicional método de vigueta y bovedilla, caracterizándose por un nivel medio de industrialización. Entre sus ventajas, destacan su ejecución rápida y sencilla, al menos en lo que respecta a la sección prefabricada, y la eliminación de la necesidad de encofrar la planta en el caso de prelosas pretensadas.

Otras ventajas adicionales son las siguientes:

  • Simplificación de la construcción al eliminar en gran medida el encofrado y las cimbras (aunque algunas áreas de juntas y transiciones aún pueden requerir trabajo in-situ). En ocasiones, puede ser necesario mantener un cimbrado parcial.
  • Incremento de la precisión geométrica gracias a la utilización de procesos industrializados en entornos más controlados, lo que incluye el acabado.
  • Mejora en la calidad y variedad del hormigón utilizado, gracias a las opciones de mezcla, vertido y curado en un entorno más controlado. Esto incluso puede incluir técnicas de curado al vapor para prevenir la evaporación del agua.
  • Inclusión de pretensado localizado por zonas, lo que optimiza los recursos y mejora el rendimiento estructural.
  • Empleo de calidades superiores de hormigón en áreas de alta demanda, tanto en términos de capacidad estructural como de durabilidad. Dado que las prelosas son la parte siempre expuesta a la intemperie, pueden utilizar un hormigón de mayor compactación e impermeabilidad, o con un diseño optimizado para resistir los ciclos de hielo y deshielo, incluso incluyendo aire en los parámetros óptimos de la mezcla.

Os dejo algunos vídeos donde se ve el montaje de unas prelosas pretensadas.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2022). Guía técnica. Forjados prefabricados de hormigón, 89 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón como encofrado perdido: Prelosas y losas en puentes

Figura 2. Encofrado perdido de hormigón entre vigas prefabricadas de puente.

El empleo del hormigón como encofrado se utiliza en distintos casos de forma eficiente. En el caso de puentes de vigas, se utiliza en prelosas o losas, ya sean armadas o pretensadas, integrándose a la sección resistente de la pieza de hormigón mediante una conexión adecuada. Estos elementos sirven, cuando se hormigona, como encofrados perdidos de hormigón entre las vigas prefabricadas de un puente (Figura 1). Los encofrados perdidos pueden ser de distintos materiales, pero este artículo se centra en los fabricados en hormigón.

La placa de encofrado perdido es un componente construido con hormigón pretensado esencial para la conformación de los tableros de vigas. Por un lado, actúan como elementos autoportantes que sirven como encofrado del tablero durante la fase de hormigonado “in situ”, eliminando la necesidad de emplear otros sistemas de encofrado de la estructura. Por otro lado, colaboran en las cargas del puente en servicio. Normalmente, son de sección maciza, aunque también se han llegado a fabricar losas alveoladas.

Estos elementos se ubican entre las alas superiores de las vigas, proporcionando un soporte para la instalación de la armadura de la losa in situ, lo que facilita el vertido de hormigón y actúa como encofrado. De este modo, el elemento queda completamente integrado dentro del hormigón de la losa. Estas prelosas están compuestas por una losa de hormigón con un espesor variable entre 6 y 20 cm, junto con celosías o nervios de acero dispuestos a lo largo de toda su longitud, ya sea de sección constante o variable.

Se pueden dar varios tipos:

Losas de encofrado perdido entre vigas

Esta técnica es comúnmente utilizada para encofrar los espacios entre vigas doble T o vigas artesa, así como los vanos internos en las vigas artesa (Figura 1). Sin embargo, no permiten la creación de voladizos en el exterior de las vigas laterales. Normalmente, tienen un espesor de 6 a 7 cm, aunque en casos excepcionales puede reducirse a 5 cm, o bien emplear otros materiales, como chapas grecadas, que son comunes en tableros de vigas adosadas en T invertida.

Prelosas o semilosas entre vigas o con vuelos exteriores

Presentan espesores de hasta 8 cm, tal y como se muestra en la Figura 2. Sin embargo, valores más altos no resultan económicos y generan acciones en las vigas difíciles de compensar, especialmente al actuar sobre la sección de la viga sola. Además, dificultan la colocación de armaduras in situ, especialmente para el anclaje de los pretiles de borde. Para contrarrestar estas dificultades, se emplean disposiciones de armadura en forma de celosía plana (una barra superior y una inferior) o de sección triangular (una barra superior y dos inferiores), hormigonando luego el espesor restante de la losa. En caso necesario, se incorporan conectores de armadura entre ambos hormigones. Este sistema se ha utilizado en tableros con grandes vuelos exteriores y amplias separaciones entre vigas para las losas de tablero pretensadas transversalmente, aunque no es una solución común. Algunos fabricantes ofrecen una variante compleja de prelosas con formas especiales, como nervios rigidizadores o quebradas, que pueden alcanzar anchuras del orden de 15 m. Esta solución es frecuente en estructuras mixtas, con vigas metálicas (Figura 3), o en ampliaciones de puentes existentes, donde en lugar de una viga artesa prefabricada se utiliza un zuncho de apoyo y anclaje en la estructura existente.

Figura 2. Losas de hormigón pretensado como encofrado colaborante entre vigas de puente. http://www.paolini.com.ar/montaje-vigas-preslosas-del-puente/

 

Figura 3. Losas de hormigón pretensado como encofrado colaborante entre vigas de puente mixto. http://www.paolini.com.ar/montaje-vigas-preslosas-del-puente/

Losas de espesor completo

Son frecuentes en proyectos de ampliación de trazados, como carreteras a media ladera y estructuras existentes, donde los equipos de construcción pueden circular sobre las losas ya instaladas, agilizando considerablemente el progreso de la obra (Figura 4). Por lo general, estas losas cubren toda la anchura del tablero y se utilizan en tableros que descansan sobre dos vigas en doble T o una monoviga. Se unen entre sí mediante juntas transversales in situ y a las vigas mediante ventanas también hormigonadas in situ, lo que permite que los conectores de las vigas se coloquen en áreas localizadas en lugar de distribuirse por toda la viga sin interrupciones. En el caso de que no cubran toda la anchura del tablero, requieren juntas longitudinales, las cuales son más complicadas de realizar, ya que afectan la armadura transversal del tablero, que es más importante y densa que la armadura longitudinal.

Figura 4. Losa de espesor completo. Fuente: https://www.prenava.com/prelosas-semilosas-losas-vigas-y-jabalcones-prefabricados-para-tableros-de-puente/

A continuación os dejo un vídeo de montaje de prelosas y vigas.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados de plástico reforzado con fibra de vidrio

Figura 1. Molde en Fibra de Vidrio de una Placa de hormigón. https://www.facebook.com/SILIKAMoldesEInsumos/

Debido al creciente uso de formas y diseños complicados en el hormigón, ha surgido la necesidad de encontrar un material de encofrado con propiedades que se aparten de las convenciones de los encofrados tradicionales. Los plásticos reforzados con fibra de vidrio han experimentado un desarrollo notable y popular en la construcción de elementos de hormigón como respuesta a esta demanda. Las razones fundamentales que han impulsado este desarrollo son las siguientes: este material ofrece total libertad en el diseño; permite al constructor realizar simultáneamente el encofrado y el acabado de las superficies; posibilita la creación de dibujos y formas poco convencionales en los encofrados; no hay limitaciones en las dimensiones, ya que los diversos elementos pueden ser montados en obra de manera que se oculten las juntas; puede ser el material más económico entre todas las opciones disponibles, especialmente si se prevé un alto número de usos; es ligero y fácil de desmontar; y, por último, no presenta problemas de herrumbre ni corrosión.

La construcción de encofrados sigue un proceso muy similar al calafateado manual de embarcaciones. Inicialmente, se crea un molde de yeso, madera o acero con la forma y dimensiones requeridas. Luego, se aplica una capa de parafina, se pule y se rocía con un agente desmoldante para evitar que la resina se adhiera al molde principal. Seguidamente, se recubre el molde con una capa de fibra de vidrio y se impregna completamente con resina poliéster mediante pinceladas. Una vez que la resina se ha secado y enfriado, se aplica otra capa de fibra de vidrio y resina poliéster, repitiendo este proceso hasta alcanzar el grosor de pared necesario.

Figura 2. Fabricación de molde con fibras de vidrio. https://www.smooth-on.com/tutorials/concrete-fence-exhibits-detail/

Otro método para construir moldes de fibra de vidrio implica la aplicación de resina con una pistola pulverizadora, sobre la cual se colocan cordones de fibra de vidrio como refuerzo. En muchos casos, se emplea una combinación de ambos sistemas mencionados. En la mayoría de las situaciones, se recomienda reforzar la rigidez y resistencia de los encofrados mediante costillas, tirantes de madera, barras de acero o tubos de aluminio.

El grosor de las paredes en los encofrados de fibra de vidrio varía, siendo de 0,32 cm en los destinados a losas sin armaduras o refuerzos, y aumentando hasta 1,59 cm en los utilizados para pilares que cuentan con tablas de refuerzo de 7,62 a 10,16 cm.

Con cualquiera de los métodos de construcción de encofrados previamente mencionados, es posible eliminar las juntas y marcas que suelen presentarse en los construidos con materiales convencionales. Esto se logra mediante la posibilidad de construir encofrados por elementos que luego se ensamblan en el lugar de trabajo. Además, a través de un tratamiento adicional con resina y fibra de vidrio, se eliminan las rebabas.

Cabe destacar que la fabricación de este material no puede llevarse a cabo en condiciones arbitrarias, ya que requiere un control preciso de la temperatura y la humedad a lo largo de todo el proceso de producción. Por esta razón, todos los encofrados de fibra de vidrio construidos hasta la fecha han sido elaborados bajo las condiciones mencionadas anteriormente.

Os paso algunos vídeos de cómo se elaboran moldes con fibra de vidrio.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrado metálico de acero

Figura 1. Encofrado metálico para muros. Fuente: https://www.sioingenieria.com/portal/novedades/encofrados-metalicos-y-sus-ventajas

Los encofrados metálicos de acero se componen de piezas que se ensamblan entre sí, definiendo las formas de los elementos a moldear. Este tipo de encofrado, de gran rigidez y resistencia, se utiliza preferentemente en obras donde predominan elementos de un mismo tipo, como columnas y vigas, y se combina a menudo con madera en la confección de losas. Además, se emplean ampliamente en la fabricación de elementos prefabricados debido a sus ventajas y características. A diferencia de los encofrados de madera, las piezas del encofrado metálico, por su naturaleza, están destinadas exclusivamente al tipo de molde para el cual fueron diseñadas, no siendo aprovechables, salvo en casos excepcionales, para otro elemento diferente.

En obras con una gran cantidad de piezas idénticas, como aquellas que cuentan con numerosos pilares de dimensiones uniformes, los tableros metálicos prefabricados resultan muy adecuados para la creación de los respectivos encofrados. En estas situaciones, la utilización de encofrados metálicos resulta más rentable que la opción de madera. Aunque el costo inicial de adquisición es elevado, su durabilidad promedio de 100 a 500 usos, cuando se mantienen adecuadamente, hace que esta alternativa sea más eficiente. Aunque en ocasiones resulta difícil establecer de antemano el número exacto de reutilizaciones. El encofrado metálico de chapa de acero se sustenta comúnmente mediante rigidizadores paralelos, ya sean horizontales o verticales, dispuestos a intervalos de 0,25 o 0,30 m. En cuanto al espesor de las chapas en estos encofrados metálicos de acero, varía entre 4 y 5 mm, destacándose por su economía debido a la alta frecuencia de uso. En aplicaciones específicas, como en encofrados para prefabricación, se emplean grosores de 6 a 8 mm, considerando el deterioro de la superficie del encofrado (más de 1000 a 2000 usos).

Figura 2. Moldes de acero para prefabricados. Fuente: https://www.mesaimalat.com.tr/es/urun/moldes-para-prefabricados/

La principal ventaja radica no solo en la facilidad y rapidez tanto del encofrado como del desencofrado, y en la obtención de superficies lisas y bien cuidadas, sino también en la gran durabilidad de dicho encofrado, pues no sufre deformaciones ni deterioros por el uso. Los acabados del hormigón son regulares, siendo las coqueras su principal defecto. Se requiere atención cuidadosa en el manejo y mantenimiento para evitar abolladuras.

En cuanto a su manejo, resulta sencillo, y aunque la simple observación del dibujo correspondiente suele ser suficiente para comprender el montaje. Cabe destacar que, en los extremos y bordes, los tableros llevan machos o vástagos que se introducen en los orificios de otro tablero, lo que permite obtener pilares de diversas secciones con un mismo tablero.

Las operaciones de encofrado, desencofrado y aplomado son rápidas y sencillas, y con el equipo adecuado, todas estas tareas pueden llevarse a cabo con elementos de tamaño considerable. Además, las superficies lisas de hormigón que con ellos se consiguen pueden ser interesantes en determinados tipos de obras, ofreciendo acabados con caras limpias. Es fundamental realizar una limpieza exhaustiva cada vez que se desencofra, asegurando un ajuste preciso en la siguiente instalación.

Entre las desventajas, se puede mencionar su falta de adaptabilidad a todos los tipos de pilares, a diferencia de la madera, y su mayor peso, que dificulta su transporte y manejo. En el caso de los soportes, uno de sus mayores inconvenientes es la dificultad de aplomarlos cuando la altura supera los 4 m. Por otra parte, a menos que se utilicen muchas veces, resultan costosos y, en ausencia de precauciones, proporcionan escasa protección y aislamiento durante el vertido de hormigón en tiempo frío. Además, hay que tener en cuenta el riesgo de oxidación de los elementos de este tipo de encofrados.

Os dejo algunos vídeos que, espero, sean de vuestro interés.

Referencias:

BENDICHO, J. P. (1983). Manual de planificación y programación para obras públicas y construcción. Segunda parte: programación y control. Editorial Rueda, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Avances científicos en relación con los edificios prefabricados de hormigón sismorresistentes

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. El trabajo lleva a cabo un análisis exhaustivo de 127 artículos para identificar las tendencias predominantes y las brechas actuales en la investigación sobre edificios prefabricados de hormigón (PCB) resistentes a los terremotos. Estos edificios ofrecen ventajas como la rapidez de construcción, la mejora de la durabilidad y la reducción de la mano de obra, pero es necesario estudiar las conexiones entre los elementos prefabricados para garantizar su resistencia sísmica.

El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Entre otras, se pueden destacar las siguientes contribuciones del trabajo:

  • Reveló la correlación entre los PCB y temas como las conexiones secas, la disipación de energía, el diseño óptimo y el colapso progresivo, lo que puso de relieve la naturaleza diversa de las investigaciones actuales en este campo.
  • Identificaron los sistemas de marcos y pantallas de rigidización como las categorías predominantes en la investigación de los PCB, siendo el enfoque tradicional de construcción moldeada in situ la referencia para determinar su rendimiento sísmico.
  • Destacó la necesidad de explorar con mayor detalle sistemas estructurales innovadores y resilientes y de adoptar metodologías de vanguardia para integrar la seguridad sísmica y la sostenibilidad de los PCB.
  • Proporcionó una hoja de ruta para futuros proyectos de investigación e informó sobre los últimos avances y tendencias en la investigación de PCB con seguridad sísmica.

La editorial permite la descarga gratuita del artículo en la siguiente dirección: https://authors.elsevier.com/sd/article/S2352-0124(23)01686-7

Abstract:

Precast concrete buildings (PCB) offer several advantages, including swift construction, exceptional quality, enhanced durability, decreased formwork requirements, and reduced labour. However, it is crucial to effectively study the connections between the various prefabricated elements that make up the structure, particularly in the face of dynamic loads and seismic actions. Extensive research has been conducted to develop seismic-resistant PCB, underscoring the necessity of exploring research approaches, identifying trends, addressing gaps, and outlining future research directions. A thorough analysis was carried out on a literature set comprising 127 articles published between 2012 and May 2023, using a three-step research process that included bibliometric search, quantitative analysis, and qualitative analysis. The primary objective was to identify prevailing research trends and pinpoint current gaps that would contribute to the advancement of future research. The scientific mapping of authors’ keywords revealed the correlation between PCB and topics such as dry connections, energy dissipation, optimal design, and progressive collapse, highlighting the diverse nature of current research in the field. Furthermore, the qualitative literature analysis demonstrated that frame and shear wall systems emerged as the predominant categories. This dominance can be attributed to the seismic performance reference being the traditional cast-in-place building approach. Nonetheless, this study brings attention to several notable research gaps. These gaps include exploring innovative, resilient structural systems in greater detail and adopting state-of-the-art methodologies that facilitate decision-making processes in integrating PCB seismic safety and sustainability. This study provides a roadmap for future research projects and reports on the latest developments and trends in seismically safe PCB research.

Keywords:

Precast concrete; Prefabricated building; Connections; Seismic design; Construction industry; Modern methods of construction; State of the art

Reference:

GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598. DOI:10.1016/j.istruc.2023.105598

 

Hormigón reforzado con fibra de vidrio

Figura 1. Fibra de vidrio. https://fibereagle.com/refuerzo-de-hormigon-con-fibra-de-vidrio/

El mortero de cemento reforzado con fibra de vidrio (GRC, en inglés), combina un mortero de cemento con fibras cortas de vidrio. Su evolución comenzó en la década de 1950 con la idea de incorporar fibras de vidrio en lugar de usar armaduras de hormigón. Sin embargo, el GRC actual surgió en los años 60 debido al reemplazar las fibras de amianto, que eran cancerígenas. Los primeros tipos empleaban fibras de vidrio basadas en sílice y mortero de cemento Portland. Sin embargo, estas propiedades a corto plazo se deterioraban debido a la corrosión de las fibras por el cemento. Para ampliar las aplicaciones del GRC, se desarrollaron fibras de vidrio resistentes a ambientes alcalinos, con circonio como elemento base, denominadas “alcali resistant “o AR.

El GRC sobresale por su resistencia mecánica y capacidad de adaptación en aplicaciones no estructurales, lo que lo convierte en un valioso recurso en proyectos de ingeniería civil y arquitectura que buscan soluciones estéticas y funcionales. Su flexibilidad en el diseño lo hace idóneo para la creación de diversas formas con grosores de aproximadamente 10 mm, sin el uso de armaduras. En la ingeniería civil, el GRC se aplica a elementos prefabricados para saneamiento, encofrados perdidos, pantallas de aislamiento acústico y revestimiento de túneles. La versatilidad de este material, en términos de diseño, permite la creación de encofrados perdidos con mosaicos y formas sumamente complejas.

Figura 2. Fachada de GRC para el Palacio de Justicia de Córdoba. https://arqzon.com.mx/2021/06/23/grc-concreto-reforzado-fibra-de-vidrio-en-la-construccion/

El mortero reforzado con fibra de vidrio se caracteriza por su resistencia al agrietamiento y a la tracción mecánica. Además, es eficaz en la prevención de daños por impacto y aumenta su capacidad de deformación, lo que contribuye a una mayor resistencia a las tensiones externas. También destaca su resistencia a la congelación, la descongelación, la fatiga, el peso y los cortes. Además, reduce significativamente la segregación, el sangrado y las filtraciones de líquidos, mejorando la integridad de las estructuras en las que se utiliza.

Las fibras de vidrio suelen tener un módulo de elasticidad a 25 °C de 70 GPa, una resistencia a tracción de una fibra de 3600 MPa (de 1750 MPa si es un haz de fibras) y una deformación en rotura del 2%. Es importante destacar que las fibras de vidrio no son monolíticas, pues se componen por un haz de alrededor de 200 filamentos de vidrio, cada uno con un diámetro de unos 10-20 μm.

La cantidad necesaria de fibra de vidrio varía en función del método de fabricación. Hay que prestar cuidado a que las cantidades de cada componente sea la justa. Así se evita que la fibra de vidrio aparezca en la superficie, al tiempo que se consigue obtener la máxima resistencia. Si el GRC se proyecta, se añade una fracción volumétrica del 5% de fibras de vidrio. Cuando se opta por una mezcla premezclada de fibras y mortero de cemento, la fracción se reduce al 3,5%. La longitud de las fibras empleadas se encuentra en el rango de 25 a 40 mm. El cemento Portland es prácticamente el único empleado en la fabricación de GRC. La arena suele ser de origen silíceo. Además, suele añadirse un plastificante que confiere al mortero la viscosidad adecuada. Asimismo, se pueden introducir diversos aditivos y pigmentos para lograr que los elementos adquieran el aspecto deseado.

Por lo general, se emplean cantidades iguales de cemento y arena, con una relación agua/cemento en torno a 0,4. No obstante, esta relación puede ajustarse para lograr la fluidez adecuada al proceso de fabricación. Para evitar un exceso de agua, se recurre a superplastificantes. Para mantener las características del material en etapas avanzadas de su vida útil, en ocasiones se recurre al humo de sílice o al metacaolín. Es importante destacar que el GRC cambia sus propiedades con el paso del tiempo, con una pérdida apreciable de ductilidad y capacidad de carga.

Hoy día se emplean tres métodos principales para la fabricación del GRC: la proyección conjunta del GRC, la mezcla previa de GRC y la mezcla previa de GRC con posterior proyección. Cada uno de estos métodos presenta sus propias variantes y particularidades. Veamos las características de cada uno de ellos.

Fabricación por proyección conjunta

La proyección se ejecuta mediante una pistola que dispara las fibras y el mortero por orificios separados, los cuales se unen y mezclan en el molde. Una bobina suministra una cuerda de fibras de vidrio que se corta a la longitud deseada en el cabezal de la pistola. Por su parte inferior fluye el mortero a través de una manguera. La consistencia del mortero debe ser fluida para facilitar la proyección. Hay dos posibilidades, la proyección manual y la proyección automática.

En la proyección manual, se aplica un desencofrante en el molde y se efectúa una primera pasada depositando el material mediante movimientos oscilantes. Una vez que el molde presenta una fina capa del material, se utiliza un rodillo helicoidal para que el mortero y las fibras se adapten a la forma del encofrado. La proyección continúa hasta alcanzar el espesor deseado, y finalmente, se emplea una llana sobre la superficie libre para lograr uniformidad. Requiere una gran cantidad de mano de obra, pero este método ofrece resultados de alta calidad, particularmente cuando el operario posee la experiencia adecuada. En España, este método de fabricación es el habitual.

La proyección automática se emplea en la fabricación de paneles rectangulares de formas simples y planas. Aunque es menos versátil que el método manual, también existen dos variantes: una utiliza un cabezal de proyección móvil, mientras que el otro implica el movimiento del molde. En ambos casos, se regula la velocidad de proyección para asegurar una distribución precisa del material. Para igualar el espesor de la pieza, se recurre a un sistema automático que pasa una llana, un rodillo u otra herramienta sobre la cara expuesta del material.

La principal ventaja de este método es su capacidad para lograr una mayor producción a un menor costo. Además, el sistema automatizado se ha mejorado mediante moldes con pequeños agujeros que evacuan el exceso de agua. Esto reduce la relación agua/cemento, aumenta la densidad del material y mejora sus propiedades mecánicas. Otra variante de este método pasa por aplicar una carga en la cara libre del material para que la mezcla se adapte con precisión a los diseños y patrones del molde.

Fabricación por premezclado

El método de premezclado implica la combinación previa del cemento, fibras de vidrio, agua, arena, plastificante y adiciones, antes de verterlos en el molde. Hay que preparar el mortero de cemento y luego incorporar las fibras de vidrio. Para evitar que las fibras se enreden, se sumergen en aditivos que las lubrican, facilitando su dispersión en la matriz de mortero. Es esencial minimizar el tiempo de mezcla del mortero y las fibras para prevenir la segregación y la pérdida de agua en la mezcla. Una vez se han mezclado los componentes, la pasta se vierte en los moldes. Luego, se someten los moldes a una vibración externa para eliminar burbujas de aire y espacios vacíos. Si es necesario rellenar moldes con cavidades, es preferible la inyección del GRC premezclado, aunque puede dañar las fibras y, a veces, introducir burbujas de aire.

Fabricación por premezclado y proyección

En los últimos años, ha surgido un método conocido como “sprayed premix.” Las fibras de vidrio se integran durante la mezcla del mortero y, posteriormente, se proyectan ambos componentes, ya mezclados, en el molde. A pesar de obtener resultados similares a la proyección tradicional, la calidad de los elementos fabricados depende en menor medida de la destreza del operario; la determinación del contenido de fibra se realiza en peso, más preciso que el método tradicional; se elimina la formación de burbujas en la mezcla, y la maquinaria de proyección se simplifica considerablemente.

Os dejo algún vídeo explicativo que espero os sea de interés.

Referencias:

ACHE (2000). Monografía M-2. Manual de tecnología del hormigón reforzado con fibras de acero.

GÁLVEZ, J.C.; ALBERTI, M.G.; ENFEDAQUE, A.; PICAZO, A. (2019). Fundamentos de hormigón reforzado con fibras. García-Maroto Editores, 51 pp.

SERNA, P. (2007). Recientes ejemplos estructurales de aplicación de hormigón de fibras. Monografía sobre aplicaciones estructurales de hormigones con fibras, pp. 33-47.