Mantenimiento preventivo sostenible de estructuras de edificios de hormigón tipo MMC en un entorno adverso

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo sobre el mantenimiento preventivo y sostenible de los métodos modernos de construcción en entornos hostiles. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción desempeña un papel significativo en la presión medioambiental, atribuido principalmente a su importante consumo de recursos, impulsado sobre todo por el auge de la construcción residencial. Los Métodos Modernos de Construcción (MMC) presentan un paradigma innovador para diseñar y construir infraestructuras y edificios de forma más eficiente, utilizando materiales convencionales con técnicas no convencionales. El artículo pretende aplicar este enfoque a una estructura de edificación basada en MMC, minimizando el impacto de su ciclo de vida mediante la optimización del consumo de materiales de construcción, con especial atención a los efectos de la fase de mantenimiento desde un punto de vista preventivo. Este estudio se centra en la evaluación de la sostenibilidad de los forjados planos de hormigón armado que emplean un sistema de cuerpo estructural hueco, haciendo hincapié explícitamente en los factores de agresividad ambiental que contribuyen a la corrosión, como la carbonatación y los cloruros. La investigación explora diez opciones de diseño para un edificio residencial público frente al mar, examinando su impacto en la economía, el medio ambiente e incluso la sociedad en lo que respecta a los ciclos de mantenimiento necesarios a lo largo de la vida útil de la estructura, en función de la estrategia preventiva empleada para cada diseño. Para evaluar la sostenibilidad de estas opciones, los investigadores emplearon una combinación del método del mejor-peor (BWM) y la técnica VIKOR, teniendo en cuenta nueve criterios relacionados con la sostenibilidad. El estudio concluyó que el hormigón con un 5% de humo de sílice es la opción más rentable y respetuosa con el medio ambiente, y que la impregnación hidrófoba reduce el impacto social. Sin embargo, en comparación con las evaluaciones unidimensionales y bidimensionales, el estudio demuestra la importancia de considerar simultáneamente los impactos económicos, medioambientales y sociales del ciclo de vida de un diseño para lograr la sostenibilidad en el mantenimiento con una visión holística. Este enfoque condujo a una calificación de sostenibilidad un 86% más alta para un diseño que utilizaba cemento sulforresistente en la mezcla de hormigón que la opción de partida.

Aspectos destacables:

  • El estudio evalúa el impacto en el ciclo de vida de diez opciones de diseño mejoradas para un módulo hotelero de tres pisos en un entorno costero, con el objetivo de mejorar la durabilidad y reducir las necesidades de mantenimiento a lo largo de la vida útil de la estructura.
  • Los resultados óptimos se obtienen del intervalo de mantenimiento preventivo, lo que hace hincapié en la importancia de las estrategias de mantenimiento proactivo para mejorar la sostenibilidad y la longevidad de las estructuras de construcción de hormigón basadas en MMC.
  • El documento proporciona evaluaciones exhaustivas del ciclo de vida según las normas ISO 14040, que abordan las tres dimensiones simultáneamente, ofreciendo una visión holística del desempeño en materia de sostenibilidad en los proyectos de construcción.
  • Al centrarse en el mantenimiento preventivo, la investigación destaca el potencial de obtener beneficios ambientales y económicos a largo de un período de 50 años, ya que contribuyen a la sostenibilidad general de las estructuras de los edificios en entornos hostiles.
  • Al incorporar las opiniones de expertos a través del método de toma de decisiones multicriterio de BMW, el estudio proporciona un análisis completo de varios aspectos de la sostenibilidad en los proyectos de construcción, promoviendo prácticas de toma de decisiones sostenibles en la industria.
  • Los resultados subrayan la importancia de la toma de decisiones sostenibles en la construcción, en consonancia con los esfuerzos mundiales para reducir el impacto ambiental y promover prácticas ecológicas en la industria.
  • La investigación hace hincapié en la importancia de las estrategias de mantenimiento preventivo sostenibles para mejorar la longevidad y la sostenibilidad de las estructuras de construcción de hormigón basadas en el MMC, y destaca los beneficios de los enfoques de mantenimiento proactivo.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S2352710224017236

Abstract:

The construction industry plays a significant role in environmental strain, attributed mainly to its substantial resource consumption, primarily driven by the surge in residential construction. Modern Methods of Construction (MMC) presents an innovative paradigm for designing and constructing infrastructure and buildings more efficiently, using conventional materials with unconventional techniques. The article aims to apply this approach to an MMC-based building structure, minimizing its life cycle impact by optimizing the consumption of building materials, with particular attention to the effects of the maintenance phase from a preventive point of view. This study focuses on assessing the sustainability of reinforced concrete flat slabs, employing a hollow structural body system, explicitly emphasizing environmental aggressiveness factors contributing to corrosion, such as carbonation and chlorides. The research explores ten design options for a waterfront public residential building, examining their impact on the economy, the environment, and even society, regarding the maintenance cycles required over the structure’s lifetime, depending on the preventive strategy employed for each design. In assessing the sustainability of these options, researchers employed a combination of the best-worst method (BWM) and the VIKOR technique, considering nine criteria related to sustainability. The study found that 5% silica fume concrete is the most cost-effective and environmentally friendly option, with hydrophobic impregnation reducing social impacts. However, compared to one— and two-dimensional evaluations, the study demonstrates the importance of simultaneously considering a design’s life cycle’s economic, environmental, and social impacts to achieve sustainability in maintenance with a holistic view. This approach led to an 86% higher sustainability rating for a design using sulforesistant cement in the concrete mix than the baseline.

Keywords:

Modern Methods of Construction; Life Cycle Assessment; Sustainable design; Multi-criteria Decision-making; Preventive maintenance; Corrosion

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering,95:110155. DOI:10.1016/j.jobe.2024.110155

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Descargar (PDF, 5.43MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mesa vibrante de hormigón

Figura 1. Mesa vibrante para compactar hormigón. https://www.eralki.com/maquinas/mesas-compactacion/

Por lo general, una mesa vibrante está compuesta por una superficie de acero u hormigón armado, con vibradores externos montados en el marco de soporte (ver Figura 1). Tanto la mesa como el marco están aislados de la base mediante resortes de acero, juntas aislantes de neopreno u otros dispositivos similares. La propia mesa puede formar parte del molde. Sin embargo, normalmente se coloca un molde separado sobre la mesa. La vibración se transmite desde la mesa al molde y, luego, al hormigón. Existen diferentes opiniones sobre la conveniencia de sujetar el molde a la mesa.

Normalmente, se prefiere una vibración de baja frecuencia (por debajo de 100 Hz) y alta amplitud (más de 0,13 mm), al menos para mezclas más rígidas. La efectividad de la vibración de mesa depende en gran medida de la aceleración que se imparte al hormigón por parte de la mesa. Generalmente, se recomiendan aceleraciones en el rango de 3 g a 10 g (30 m/s² a 100 m/s²), siendo necesarios valores más altos para las mezclas más rígidas. Además, la amplitud no debe ser inferior a 0,025 mm para las mezclas plásticas, ni a 0,050 mm para las más rígidas.

Se trata de mesas formadas por un tablero rígido, que suele ser de acero, y que se sostiene de manera elástica sobre una base fija y adecuadamente aislada. La vibración se genera mediante generadores ubicados debajo del tablero. En mesas de dimensiones pequeñas (L = 1,50 m), un solo vibrador es suficiente, pero si las dimensiones son mayores, hay que aumentar proporcionalmente el número de vibradores.

Estas mesas vibrantes se utilizan tanto en laboratorios como en la compactación de elementos prefabricados de hormigón. Por lo tanto, la amplitud y la frecuencia del vibrador deben poder ajustarse para adaptarse a los diferentes tipos de hormigón. Es esencial que la mesa sea completamente rígida para garantizar una transmisión uniforme de las vibraciones a toda la pieza.

Figura 2. Movimiento de las masas excéntricas.

Los vibradores, similares a los vibradores externos de encofrado, cuentan con dos masas excéntricas que giran en direcciones opuestas, generando fuerzas vibratorias perpendiculares a la mesa. Deben tener una amplitud elevada y una frecuencia baja, ya que los hormigones utilizados en la prefabricación suelen ser secos.

Al igual que con los vibradores de encofrado, la fuerza centrífuga del vibrador puede calcularse aproximadamente en función de los pesos del hormigón y del molde o encofrado, mediante la siguiente fórmula:

donde:

  • PM: peso de la mesa (más el del molde, en caso de que este sea solidario a ella).
  • Pm: peso del molde (apoyado y fijado correctamente a la mesa).
  • Ph: peso del hormigón.
  • k: coeficiente variable, que va de 0,5 a 4 según la rigidez de la mesa.

Cuando se vayan a vibrar secciones de hormigón de diferentes tamaños, la mesa debe tener una amplitud variable. Una frecuencia variable es un beneficio adicional. Si la mesa vibratoria tiene un elemento vibrante que contiene solo un excéntrico, puede generarse un movimiento vibratorio circular que imparte un movimiento rotacional no deseado al hormigón. Esto puede evitarse montando dos vibradores uno al lado del otro, de tal manera que sus ejes giren en direcciones opuestas. De este modo, se neutraliza la componente horizontal de la vibración, de modo que la mesa solo está sujeta a un movimiento armónico simple en la dirección vertical. De esta manera, se pueden obtener amplitudes muy altas. Para lograr una buena consolidación de mezclas muy rígidas, con frecuencia es necesario aplicar presión sobre la superficie superior durante la vibración.

Os dejo algunos vídeos sobre mesas vibradoras.

Referencias:

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora de la robustez en la optimización de estructuras modulares prefabricadas: Integración de NSGA-II, NSGA-III y RVEA para una infraestructura sostenible

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento explora el diseño de estructuras modulares prefabricadas sostenibles utilizando la optimización multiobjetivo (MOO) y la toma de decisión multicriterio (MCDM) con algoritmos avanzados como NSGA-II, NSGA-III y RVEA. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo destaca la importancia de integrar la sostenibilidad del ciclo de vida en los proyectos de infraestructura de transporte para estimular la innovación y la colaboración entre las partes interesadas. Además, presenta una estrategia de diseño novedosa que se centra en la optimización del ciclo de vida de los marcos modulares prefabricados de hormigón armado (RCPMF). Por último, amplía la comprensión de la aplicabilidad de los algoritmos avanzados de MOO y las técnicas de MCDM para mejorar el desarrollo sostenible de la infraestructura.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio evalúa el rendimiento de optimización del ciclo de vida de los algoritmos NSGA-II, NSGA-III y RVEA dentro de una estructura prefabricada tipo marco de diseño coherente para una infraestructura de transporte sostenible.
  • El NSGA-III se identifica como el algoritmo con mejor rendimiento, lo que demuestra su potencial para facilitar enfoques de diseño sostenibles.
  • El problema del MCDM se evalúa rigurosamente y se abordan nueve soluciones no dominantes generadas por los algoritmos de optimización, lo que demuestra la eficiencia y la fiabilidad del marco integrado de MOO y MCDM.
  • Los resultados abogan por un enfoque transformador del desarrollo de infraestructuras, orientado hacia soluciones de ingeniería más avanzadas y sostenibles.

Abstract:

The advancement toward sustainable infrastructure presents complex multi-objective optimization (MOO) challenges. This paper expands the current understanding of design frameworks that balance cost, environmental impacts, social factors, and structural integrity. Integrating MOO with multi-criteria decision-making (MCDM), the study targets enhancements in life cycle sustainability for complex engineering projects using precast modular road frames. Three advanced evolutionary algorithms—NSGA-II, NSGA-III, and RVEA—are optimized and deployed to address sustainability objectives under performance constraints. The efficacy of these algorithms is gauged through a comparative analysis, and a robust MCDM approach is applied to nine non-dominated solutions, employing SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR decision-making techniques. An entropy theory-based method ensures systematic, unbiased criteria weighting, augmenting the framework’s capacity to pinpoint designs, balancing life cycle sustainability. The results reveal that NSGA-III is the algorithm converging towards the most cost-effective solutions, surpassing NSGA-II and RVEA by 21.11% and 10.07%, respectively, while maintaining balanced environmental and social impacts. The RVEA achieves up to 15.94% greater environmental efficiency than its counterparts. The analysis of non-dominated solutions identifies the 𝐴4𝐴4 design, utilizing 35 MPa concrete and B500S steel, as the most sustainable alternative across 80% of decision-making algorithms. The ranking correlation coefficients above 0.94 demonstrate consistency among decision-making techniques, underscoring the robustness of the integrated MOO and MCDM framework. The results in this paper expand the understanding of the applicability of novel techniques for enhancing engineering practices and advocate for a comprehensive strategy that employs advanced MOO algorithms and MCDM to enhance sustainable infrastructure development.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-II; NSGA-III; RVEA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1001KB)

Evaluación del ciclo de vida social de las alternativas de subestructura ferroviaria

Acaban de publicar un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El estudio presenta indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias y evalúa los impactos sociales de tres soluciones comunes de este tipo subestructura. La investigación tiene como objetivo determinar la alternativa de diseño más ventajosa desde el punto de vista social para la infraestructura ferroviaria, haciendo hincapié en la importancia de tener en cuenta los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo sostenible. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio utilizó el proceso de redes analíticas (ANP) para sintetizar el desempeño social de las diferentes soluciones de subestructuras en un solo indicador de comparación. La investigación recopiló datos de inventario de las bases de datos oficiales del territorio español para evaluar los indicadores basados en el contexto social. El documento estableció una colección de criterios mensurables y seleccionó seis indicadores sociales basándose en las «directrices» y las fichas metodológicas para las subcategorías de la evaluación del ciclo de vida social. La metodología introducida en la investigación se puede aplicar en la evaluación de los impactos sociales en varios proyectos de infraestructura más allá de los ferrocarriles, como puentes, carreteras o estructuras portuarias, lo que mejora la aplicabilidad de la evaluación del ciclo de vida social.

Las contribuciones más destacables de este trabajo son las siguientes:

  • Introduce indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias.
  • Evalúa los impactos sociales de tres soluciones frecuentes de subestructura de vías férreas.
  • Destaca la importancia de considerar los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo de infraestructuras sostenibles.

ABSTRACT

The sustainable design of infrastructure involves assessing economic, environmental, and social impacts. While significant progress has been made in evaluating economic and environmental life cycle impacts since the Paris Agreement, there’s a notable gap in techniques for assessing social aspects in infrastructure design. This study introduces social indicators tailored for evaluating the lifecycle of railway infrastructures. The indicators are applied to assess the social impacts of three common railway track substructure solutions: conventional ballasted track, embedded slab track (BBEST solution), and sleeper-based, ballastless (RHEDA2000) substructure solutions. Using the Analytic Network Process (ANP), the social performance of each alternative is synthesized into a single indicator for comparison. Results indicate that the conventional ballasted track outperforms, scoring 12% higher than BBEST and 61% better than RHEDA in social terms. This is attributed to its reliable capacity for generating high-quality employment and fostering economic activities in the defined product system regions.

KEYWORDS:

Social life cycle assessment; Railway; ANP; Sustainability; Multi-criteria decision-making; Sustainable design.

REFERENCE:

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450:142008. https://doi.org/10.1016/j.jclepro.2024.142008.

Os dejo el artículo para su descarga, pues está publicado en abierto.

Descargar (PDF, 5.96MB)

Revibrado del hormigón

Figura 1. Vibrado del hormigón con aguja. Fuente: Revista Construir

La revibración del hormigón se emplea en ciertos casos para mejorar la adherencia entre el hormigón y el acero de refuerzo, para liberar el agua atrapada debajo de las barras horizontales y para eliminar posibles bolsas de aire adicionales. Esta práctica no causa ningún daño si el hormigón aún está en estado plástico. Sin embargo, es esencial evitar el contacto entre la aguja del vibrador y el acero de refuerzo. La vibración transmitida a través de las armaduras al hormigón semiplástico puede provocar la pérdida de adherencia de la barra con el hormigón y fisuras en las armaduras.

La revibración ofrece una serie de beneficios significativos, como mejorar la resistencia a la compresión en un 15 %-40 %, sobre todo a edades tempranas. También permite aumentar la impermeabilidad, potenciar la adherencia, reducir las bolsas de grava, eliminar el agua atrapada y expulsar el aire y las bolsas de agua. Sin embargo, es importante tener en cuenta que no se debe aplicar el revibrado en mezclas con consistencia seca y granulometría abierta. Por tanto, es más adecuado para consistencias blandas.

El proceso implica la introducción de un vibrador en la masa de hormigón precompactada pasados unos 30 minutos desde la primera compactación, pero dentro de las primeras 2 a 4 horas (antes del inicio del fraguado). Una regla práctica indica que se puede llevar a cabo el revibrado siempre que la aguja pueda penetrar en el hormigón por su propio peso y logre fluidificarlo. Además, es posible emplear un aditivo retardador del fraguado para facilitar este proceso.

En diferentes circunstancias, el revibrado puede ser igualmente conveniente:

  • Al colocar hormigón en capas y vibrar la inferior, lo cual evita la formación de juntas entre ellas.
  • Para perfeccionar el acabado superficial de los pilares y muros superiores, eliminando el aire que suele acumularse en esas áreas.
  • Para cerrar las fisuras producidas por la retracción plástica.

Esta técnica es especialmente útil para hormigones con altos valores de relación agua-cemento, aquellos con baja retención de agua o en situaciones donde la colocación inicial ha sido compleja. Al rellenar los huecos generados durante el asentamiento inicial del hormigón fresco alrededor de la armadura horizontal, se garantiza una mejor calidad estructural.

Es crucial realizar el revibrado en el momento adecuado, cuando el hormigón aún está maleable. El proceso de fraguado generalmente comienza entre una hora y media y cuatro horas después de la vibración previa. Esta operación conlleva ciertos riesgos y es fundamental calcular con precisión la duración de la nueva vibración, ya que un error en este sentido puede causar daños irreparables al hormigón.

Dada su complejidad y el riesgo asociado, el revibrado es una tarea que debe ser ejecutada por personal altamente especializado, con un control meticuloso del proceso. Por esta razón, y debido al riesgo inherente, no es una práctica comúnmente empleada. En cualquier caso, es necesario obtener la aprobación previa de la dirección facultativa antes de llevar a cabo el revibrado.

Os dejo a continuación un artículo que estudia la acción del revibrado en morteros, hormigones y prefabricados, que espero os sea de interés.

Descargar (PDF, 2.02MB)

Referencias:

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curado al vapor del hormigón e índice de madurez

Figura 1. Ejemplo de proceso de curado al vapor

El uso de vapor es uno de los métodos más eficaces para el curado del hormigón, ya que acelera considerablemente su endurecimiento. Este tipo de curado se emplea casi de forma exclusiva en prefabricación. En el proceso de curado al vapor, y en general en cualquier método que involucre calor húmedo, se aplica el concepto de maduración del hormigón. La maduración es el resultado de la temperatura en grados centígrados a la que se expone la pieza, multiplicada por el tiempo de exposición si este es constante. En el caso de una temperatura variable, se calcula la integral de la curva temperatura-tiempo (Figura 2). Se acepta que, para un mismo tipo de hormigón y dentro de ciertos límites, el curado es igualmente eficaz si la maduración también lo es. Es decir, diferentes combinaciones de temperaturas y tiempos producirán resultados similares siempre que el producto de estos, o la suma de los productos, se mantenga constante.

Figura 2. Evolución de la temperatura con el tiempo (Carino y Lew, 2001)

En función del tipo de elemento, el curado al vapor puede realizarse a baja o alta presión. El método a baja presión se lleva a cabo típicamente a presión atmosférica y se emplea en estructuras encerradas construidas en el lugar o en grandes unidades prefabricadas de hormigón. Por otro lado, el curado con vapor a alta presión se realiza en autoclaves y se aplica a pequeñas unidades prefabricadas.

El proceso de curado al vapor comienza una vez que ha transcurrido la etapa de prefraguado, elevando gradualmente la temperatura hasta alcanzar un límite establecido. Esta temperatura se mantiene durante un período de tiempo determinado, tras el cual se reduce de manera continua hasta igualar la temperatura ambiente. Es importante evitar que el hormigón experimente cambios térmicos bruscos durante este proceso.

Cada tipo de cemento presenta una curva de curado ideal, que puede determinarse experimentalmente para conocer las velocidades óptimas de variación de temperatura, el valor de la temperatura límite y el tiempo de permanencia en esta última. En términos generales, la duración del prefraguado oscila entre 2 y 5 horas; la velocidad de calentamiento y enfriamiento no debe exceder los 20 °C por hora, y la temperatura límite óptima se sitúa entre 55 °C y 75 °C, sin superar los 80 °C. Se recomienda que el primer periodo del proceso de curado al vapor no sea inferior a 4 horas cuando la temperatura ambiente es de 20 °C, pudiendo reducirse conforme aumenta dicha temperatura (Figura 1).

Es importante mantener una presión de vapor uniforme a lo largo de la pieza, asegurándose de que el recinto de curado permanezca constantemente saturado de humedad. Además, el curado con vapor requiere un control meticuloso, ya que si se aplica de forma descuidada pueden producirse cambios de volumen excesivos que afecten a la resistencia inicial del hormigón.

El curado al vapor ofrece diversas ventajas significativas en comparación con otros métodos convencionales. Entre las principales ventajas cabe destacar las siguientes:

  • Endurecimiento rápido en climas fríos: Es especialmente útil en climas fríos, ya que promueve un rápido endurecimiento del hormigón, lo que facilita la construcción en estas condiciones.
  • Alta resistencia inicial: Permite obtener una alta resistencia inicial en el hormigón, aspecto fundamental para la fabricación de unidades prefabricadas y pretensadas.
  • Aumento de la velocidad de construcción: Al acelerar el proceso de endurecimiento del hormigón, el curado al vapor puede incrementar significativamente la velocidad de construcción, lo que se traduce en una mayor eficiencia y productividad.
  • Rapidez en comparación con otros métodos de curado: Es más rápido que los métodos de curado convencionales, lo que acorta los tiempos de construcción y permite una mayor rotación de proyectos.

A pesar de sus ventajas, el curado al vapor también presenta algunas desventajas que deben tenerse en cuenta:

  • Limitaciones en superficies grandes: Puede no ser eficiente en superficies extensas, lo que podría requerir la implementación de métodos alternativos de curado.
  • Se necesitan trabajadores cualificados: El proceso de curado al vapor exige la presencia de personal capacitado y experimentado para garantizar resultados óptimos y evitar problemas como cambios volumétricos excesivos.
  • Costo inicial más elevado: El equipo y los materiales necesarios para el curado al vapor suelen tener un coste inicial más alto en comparación con los métodos de curado convencionales, lo que puede ser una consideración importante en proyectos con limitaciones presupuestarias.

Os dejo algunos vídeos al respecto del curado al vapor y al método de madurez del hormigón.

A continuación os dejo un documento de Hilti donde se explica el método de madurez del hormigón.

Descargar (PDF, 305KB)

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CARINO, N.J.; LEW, H.S. (2001) El método de la madurez: From Theory to Application. Proceedings of the 2001 Structures Congress & Exposition, Washington, D.C., American Society of Civil Engineers, Reston, Virginia, Peter C. Chang, Editor, 2001, 19 p.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones sobre infraestructuras viarias sostenibles: NSGA-II con operadores de reparación para optimización multiobjetivo

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El trabajo trata sobre la toma de decisiones en infraestructuras viales sostenibles. Para ello se utiliza una variante personalizada de la técnica NSGA-II con operadores de reparación para una optimización multiobjetivo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento propone un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad. El estudio evalúa la eficacia de tres operadores de reparación a la hora de optimizar los objetivos económicos, ambientales y sociales, y utiliza algoritmos personalizados y un análisis del ciclo de vida (LCA) para una evaluación precisa. Los resultados muestran que el operador de reparaciones basado en estadísticas ofrece soluciones con un menor impacto en todas las dimensiones y demuestra una variabilidad mínima, lo que lo convierte en el más adecuado para cumplir con los requisitos de diseño del RCPMF.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento presenta un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad.
  • El estudio evalúa la eficacia de tres operadores de reparación (basados en estadísticas, aleatorios y de proximidad) a la hora de optimizar los objetivos económicos, ambientales y sociales.
  • El artículo presenta una versión personalizada del algoritmo NSGA-II (NSGA-II) de clasificación no dominada, complementada con un análisis detallado del ciclo de vida (LCA), para facilitar la evaluación precisa de las funciones objetivas.
  • El artículo demuestra el uso de dos técnicas de MCDM, a saber, la ponderación aditiva simple (SAW) y (FUCA), para puntuar y clasificar las soluciones MOO.
  • La investigación proporciona una estrategia clara y metódica para integrar el MOO y el MCDM, formando un marco coherente para la implementación práctica en contextos de ingeniería complejos.
  • El estudio destaca la importancia de tener en cuenta los principios de sostenibilidad desde la fase de diseño y de emplear las técnicas de MOO para encontrar soluciones equilibradas y óptimas en la ingeniería civil.

Abstract:

Integrating sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring environmentally responsible, economically feasible, and socially beneficial outcomes. In this study, this challenge is addressed, with the significance of sustainable development in modern engineering practices being underscored. A novel approach, which combines multi-objective optimization (MOO) with multi-criteria decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design requirements is exhibited by the statistical-based repair operator, which offers solutions with lower impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their consistent evaluation capacity despite distinct operational methodologies.

Keywords:

Multi-objective optimization; multi-criteria decision-making; modular structure; life cycle sustainability; NSGA-II; simple additive weighting; fair un choix adéquat.

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1.06MB)

Encofrados flexibles textiles

Figura 1. Casa Pascual de Juan en La Moraleja, (Madrid), obra de Miguel Fisac. Fuente: https://arquitecturaviva.com/obras/casa-pascual-de-juan-en-la-moraleja-madrid

En los encofrados flexibles, el hormigón se confina mediante una combinación de elementos rígidos de soporte y una membrana que únicamente resiste tracciones. Mediante la fijación de un material textil sobre un soporte de madera, el hormigón vertido adopta la forma preestablecida por el material. Así, al recibir el hormigón fresco, la membrana la contiene y adopta una forma gravitacional.

En este contexto, lo particular de esta tecnología radica en el uso de una tela que puede resistir el hormigón hasta que este complete su curado. En la actualidad, en el mercado de la construcción, se encuentran disponibles los geotextiles, los cuales poseen alta resistencia y coste competitivo, convirtiéndolos en una opción para emplearse como encofrados flexibles. Estos textiles se distinguen además por su ligereza y su reducido volumen, lo que los hace adecuados emplearse en proyectos que requieran largos desplazamientos.

Al reemplazar los tradicionales encofrados prismáticos con un material flexible compuesto por láminas textiles de alta resistencia y bajo costo, es posible aprovechar la fluidez del hormigón para construir formas altamente optimizadas y de interés arquitectónico.

A partir de finales de la década de 1960, Miguel Fisac empleó los encofrados flexibles sujetos con elementos que alteran su superficie, moldea el hormigón, el cual al fraguar adquiere una apariencia lisa con una textura singular. Esta técnica encuentra aplicación especialmente en las fachadas de numerosos edificios. El material, que evoluciona en formas y acabados con el tiempo, se convierte desde entonces en un elemento distintivo y destacado que define su identidad arquitectónica. Este tipo de encofrado proporciona al hormigón una apariencia redondeada y suave, evocando la sensación de un material aún fluido.

Los encofrados textiles permiten obtener estructuras que requieren hasta un 40% menos de hormigón que una sección prismática equivalente, lo que representa un ahorro notable en términos de sostenibilidad. Existen áreas prometedoras para futuros desarrollos, tales como modelos informáticos de cálculo, el uso de textiles avanzados como encofrados colaborativos, el pretensado y la implementación de estructuras aligeradas con huecos.

En el vídeo que podéis ver a continuación vemos una forma innovadora de usar este tipo de encofrados.

Os dejo a continuación un par de documentos de interés sobre este tipo de encofrados.

Descargar (PDF, 8.79MB)

Descargar (PDF, 412KB)

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València. Ref. 477 (en prensa)

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de forjado con prelosas

Figura 1. Prelosa armada empleada en la construcción de forjados de edificación. Fuente: https://weckenmann.com/es/infoteca/productos-prefabricados-de-hormig%C3%B3n/prelosas

La prelosa es un componente prefabricado que consta de una lámina inferior de hormigón con un espesor uniforme y nervios dispuestos longitudinalmente. Su función principal es servir como encofrado para el forjado que posteriormente se hormigonará en obra. Una vez que el hormigón ha fraguado, la prelosa se convierte en una placa compuesta junto con el hormigón vertido. Estos elementos representan una evolución industrializada de la vigueta, ya que tienen una sección prefabricada más grande y requieren menos hormigón y armadura durante la instalación en la obra. Es importante destacar que la prelosa actúa como un encofrado y, por lo tanto, debe ser cimbrada, por el hecho de que no es un forjado autoportante.

Estos elementos prefabricados no deben confundirse con las prelosas empleadas en los tableros de puentes, que tienen dimensiones considerablemente mayores y una capacidad resistente más elevada.

Las prelosas se diseñan para utilizarse como parte de los forjados en situaciones donde las luces no sean excesivas, hasta unos 8 m. Pueden ser armadas o pretensadas, pueden tener nervios rigidizadores o armaduras básicas electrosoldadas, y pueden ser macizas o aligeradas. Las dimensiones, refuerzos y piezas especiales se fabrican según las especificaciones del cliente.

  • Las prelosas armadas son losas de hormigón con armaduras básicas electrosoldadas en celosía, generalmente dispuestas longitudinalmente, para lograr una conexión adecuada con el hormigón vertido in situ, completando así su capacidad resistente (Figura 1). El espesor de la losa varía entre 6 y 20 cm, con una anchura normalizada de 120 cm, diseñada para forjados de hasta 50 cm de espesor. Las placas de hormigón que se utilizan como encofrado suelen equiparse con una parrilla que arma la losa de hormigón prefabricado. También se pueden incorporar nervios rigidizadores, especialmente cuando se requiere que la prelosa sea autoportante, evitando la necesidad de sopandas durante el montaje y el vertido de hormigón en la obra. La prelosa presenta una cara superior rugosa con armaduras en celosía salientes para garantizar una buena adherencia del hormigón vertido “in situ”, mientras que la cara inferior es lisa, proporcionando un buen acabado a la vista.
  • Las prelosas pretensadas cuentan con dos o más nervios rigidizadores, generalmente dispuestos longitudinalmente para ofrecer resistencia y rigidez durante la ejecución (Figura 2). Los anchos típicos varían entre 600 mm o 1200 mm. Estas prelosas llevan armadura transversal de fábrica y, en ocasiones, se complementan con armaduras adicionales en la obra. Para permitir el apoyo, las prelosas cuentan con armaduras salientes, ya que no se ajustan completamente a las vigas, dejando un espacio de solo unos centímetros.
Figura 2. Prelosas pretensadas. Fuente: https://www.hermo.net/producto/prelosa-pretensada-2/

Tanto en las prelosas armadas como en las pretensadas, es posible insertar bloques de poliestireno expandido entre los nervios para reducir el peso del forjado final (Figura 2), además de proporcionar un aislamiento térmico parcial adicional. Las prelosas pueden componerse con diversos materiales, como una lámina intermedia de arlita (árido ligero de arcilla expandida) en la losa inferior, diseñada para mejorar la resistencia al fuego y el aislamiento térmico del forjado.

Estos elementos prefabricados se fabrican mediante moldeo, producción en pistas o extrusión. Se utilizan pistas metálicas con cantos biselados en los laterales para proporcionar un acabado óptimo en la superficie visible del elemento, en comparación con una construcción ‘in situ’ con encofrados. La cara inferior de los elementos es completamente plana y lisa. Además, es posible integrar elementos como cajas eléctricas, puntos de luz, registros, etc., lo que permite obtener un techo liso sin necesidad de falsos techos.

La prelosa representa un sistema más avanzado que el tradicional método de vigueta y bovedilla, caracterizándose por un nivel medio de industrialización. Entre sus ventajas, destacan su ejecución rápida y sencilla, al menos en lo que respecta a la sección prefabricada, y la eliminación de la necesidad de encofrar la planta en el caso de prelosas pretensadas.

Otras ventajas adicionales son las siguientes:

  • Simplificación de la construcción al eliminar en gran medida el encofrado y las cimbras (aunque algunas áreas de juntas y transiciones aún pueden requerir trabajo in-situ). En ocasiones, puede ser necesario mantener un cimbrado parcial.
  • Incremento de la precisión geométrica gracias a la utilización de procesos industrializados en entornos más controlados, lo que incluye el acabado.
  • Mejora en la calidad y variedad del hormigón utilizado, gracias a las opciones de mezcla, vertido y curado en un entorno más controlado. Esto incluso puede incluir técnicas de curado al vapor para prevenir la evaporación del agua.
  • Inclusión de pretensado localizado por zonas, lo que optimiza los recursos y mejora el rendimiento estructural.
  • Empleo de calidades superiores de hormigón en áreas de alta demanda, tanto en términos de capacidad estructural como de durabilidad. Dado que las prelosas son la parte siempre expuesta a la intemperie, pueden utilizar un hormigón de mayor compactación e impermeabilidad, o con un diseño optimizado para resistir los ciclos de hielo y deshielo, incluso incluyendo aire en los parámetros óptimos de la mezcla.

Os dejo algunos vídeos donde se ve el montaje de unas prelosas pretensadas.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2022). Guía técnica. Forjados prefabricados de hormigón, 89 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón como encofrado perdido: Prelosas y losas en puentes

Figura 2. Encofrado perdido de hormigón entre vigas prefabricadas de puente.

El empleo del hormigón como encofrado se utiliza en distintos casos de forma eficiente. En el caso de puentes de vigas, se utiliza en prelosas o losas, ya sean armadas o pretensadas, integrándose a la sección resistente de la pieza de hormigón mediante una conexión adecuada. Estos elementos sirven, cuando se hormigona, como encofrados perdidos de hormigón entre las vigas prefabricadas de un puente (Figura 1). Los encofrados perdidos pueden ser de distintos materiales, pero este artículo se centra en los fabricados en hormigón.

La placa de encofrado perdido es un componente construido con hormigón pretensado esencial para la conformación de los tableros de vigas. Por un lado, actúan como elementos autoportantes que sirven como encofrado del tablero durante la fase de hormigonado “in situ”, eliminando la necesidad de emplear otros sistemas de encofrado de la estructura. Por otro lado, colaboran en las cargas del puente en servicio. Normalmente, son de sección maciza, aunque también se han llegado a fabricar losas alveoladas.

Estos elementos se ubican entre las alas superiores de las vigas, proporcionando un soporte para la instalación de la armadura de la losa in situ, lo que facilita el vertido de hormigón y actúa como encofrado. De este modo, el elemento queda completamente integrado dentro del hormigón de la losa. Estas prelosas están compuestas por una losa de hormigón con un espesor variable entre 6 y 20 cm, junto con celosías o nervios de acero dispuestos a lo largo de toda su longitud, ya sea de sección constante o variable.

Se pueden dar varios tipos:

Losas de encofrado perdido entre vigas

Esta técnica es comúnmente utilizada para encofrar los espacios entre vigas doble T o vigas artesa, así como los vanos internos en las vigas artesa (Figura 1). Sin embargo, no permiten la creación de voladizos en el exterior de las vigas laterales. Normalmente, tienen un espesor de 6 a 7 cm, aunque en casos excepcionales puede reducirse a 5 cm, o bien emplear otros materiales, como chapas grecadas, que son comunes en tableros de vigas adosadas en T invertida.

Prelosas o semilosas entre vigas o con vuelos exteriores

Presentan espesores de hasta 8 cm, tal y como se muestra en la Figura 2. Sin embargo, valores más altos no resultan económicos y generan acciones en las vigas difíciles de compensar, especialmente al actuar sobre la sección de la viga sola. Además, dificultan la colocación de armaduras in situ, especialmente para el anclaje de los pretiles de borde. Para contrarrestar estas dificultades, se emplean disposiciones de armadura en forma de celosía plana (una barra superior y una inferior) o de sección triangular (una barra superior y dos inferiores), hormigonando luego el espesor restante de la losa. En caso necesario, se incorporan conectores de armadura entre ambos hormigones. Este sistema se ha utilizado en tableros con grandes vuelos exteriores y amplias separaciones entre vigas para las losas de tablero pretensadas transversalmente, aunque no es una solución común. Algunos fabricantes ofrecen una variante compleja de prelosas con formas especiales, como nervios rigidizadores o quebradas, que pueden alcanzar anchuras del orden de 15 m. Esta solución es frecuente en estructuras mixtas, con vigas metálicas (Figura 3), o en ampliaciones de puentes existentes, donde en lugar de una viga artesa prefabricada se utiliza un zuncho de apoyo y anclaje en la estructura existente.

Figura 2. Losas de hormigón pretensado como encofrado colaborante entre vigas de puente. http://www.paolini.com.ar/montaje-vigas-preslosas-del-puente/

 

Figura 3. Losas de hormigón pretensado como encofrado colaborante entre vigas de puente mixto. http://www.paolini.com.ar/montaje-vigas-preslosas-del-puente/

Losas de espesor completo

Son frecuentes en proyectos de ampliación de trazados, como carreteras a media ladera y estructuras existentes, donde los equipos de construcción pueden circular sobre las losas ya instaladas, agilizando considerablemente el progreso de la obra (Figura 4). Por lo general, estas losas cubren toda la anchura del tablero y se utilizan en tableros que descansan sobre dos vigas en doble T o una monoviga. Se unen entre sí mediante juntas transversales in situ y a las vigas mediante ventanas también hormigonadas in situ, lo que permite que los conectores de las vigas se coloquen en áreas localizadas en lugar de distribuirse por toda la viga sin interrupciones. En el caso de que no cubran toda la anchura del tablero, requieren juntas longitudinales, las cuales son más complicadas de realizar, ya que afectan la armadura transversal del tablero, que es más importante y densa que la armadura longitudinal.

Figura 4. Losa de espesor completo. Fuente: https://www.prenava.com/prelosas-semilosas-losas-vigas-y-jabalcones-prefabricados-para-tableros-de-puente/

A continuación os dejo un vídeo de montaje de prelosas y vigas.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.