MS-ReRo y D-ROSE: Nuevas metodologías para evaluar la incertidumbre de los riesgos y oportunidades de las infraestructuras

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR. Presentamos un sistema integral de apoyo a la planificación urbana que integra la generación de planificación de alternativas, la evaluación de dichas alternativas bajo un conjunto de escenarios relevantes seleccionados dinámicamente de forma cognitiva, y la propuesta de políticas que acompañen a la alternativa de planificación seleccionada. Para ello presentamos dos métodos novedosos: (1) la identificación “a posteriori” de escenarios relevantes para la evaluación de la vulnerabilidad y resiliencia de las alternativas, y (2) la evaluación de la incertidumbre relacional. De acuerdo con los riesgos y las oportunidades que soporta el sistema, la metodología permite seleccionar un plan de infraestructura para paliar el problema de la vulnerabilidad urbana, así como un conjunto de contratos para su correcta implementación en las diferentes administraciones públicas y en diferentes escalas del sistema de infraestructura. La metodología se aplica a un estudio de caso en España, en el que primero se proponen planes óptimos de infraestructura urbana que contribuyan a mejorar el problema de la urbanización, y luego evalúan los riesgos y las oportunidades asociadas a las alternativas de planificación para, finalmente presentar un conjunto de medidas políticas para acompañar la implementación de la alternativa seleccionada. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 3 de abril de 2019 en el siguiente enlace: https://authors.elsevier.com/c/1YZ1b3QCo9R7vs

Abstract

There is a growing interest in model-based decision support systems contributing to strategic planning. The application of these in the case of urban infrastructure planning requires methods specifically aimed at addressing the relational uncertainties arising from the complex, multi-scale, nature of this field. This study presents UPSS, a comprehensive urban planning support systemintegrating the generation of planning alternatives, the evaluation of alternatives under a set of relevant scenarios selected dynamically in a cognitive way, and the proposal of policies to accompany the planning alternative. For this purpose, UPSS integrates two novel methods. These deal respectively with the ex post identification of relevant scenarios for the evaluation of the vulnerability and resilience of the alternatives, and with the assessment of relational uncertainty. According to the risks and opportunities borne by the system, the process makes it possible to select an infrastructure plan to alleviate the problem of urban vulnerability, as well as a set of relational contracts for its proper implementation across the different governmental scales of the infrastructure system. The whole process is tested via a case study, in which USPP first proposes optimal urban infrastructure plans that contribute to ameliorate the problem of urban vulnerability in Spain, then evaluates the risks and opportunities attached to the planning alternatives, and finally presents sets of policy measures to accompany the implementation of the alternative selected.

Keywords:

Urban vulnerability; Infrastructure planning; Multi-scale; Risk; Opportunity; Relational uncertainty

Reference:

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

 

 

 

¿Por qué es tan difícil asignar recursos a la conservación de las carreteras?

Figura 1. Conservación de carretera Guayaquil-Santa Elena.

En muchos foros se repite, a modo de mantra, que la falta de conservación de nuestras carreteras (y calles, en el caso de las ciudades) se debe fundamentalmente a un problema de orden económico. Por algún u otro motivo (crisis económica, dificultad en aprobar presupuestos, falta de voluntad política, etc.), la falta aparente de recursos obliga a realizar una conservación correctiva o reactiva de las carreteras que, como ya se justificó en un artículo anterior, provoca estados sub-óptimos en la infraestructura y tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Conviene insistir en este punto, una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico. La justificación económica de las restricciones presupuestarias queda en entredicho cuando se consideran los costes totales del transporte.

Sin embargo, en nuestro grupo de investigación hemos desarrollado modelos que, incluso en el caso de disponer presupuestos restrictivos, pueden maximizar el estado o condición, no de una carretera, sino de una red completa, considerando, además, distintas funciones objetivo (costes económicos, sociales y medioambientales). Pero para entender mejor el problema, expongo a continuación la dificultad intrínseca de este tipo de problemas y justificaré las razones por las que muchos gestores del mantenimiento de carreteras toman decisiones que se alejan de ser óptimas.

La clave para entender la magnitud del problema radica en la dificultad que tienen los gestores de la red de carreteras en la toma de decisiones debido a la explosión combinatoria de las soluciones posibles cuando se tienen en cuenta distintos tipos de tratamientos de preservación, mantenimiento y rehabilitación (P+M+R) y los periodos de aplicación. Dicho de otra forma, en una red de carreteras se trata de decidir en qué tramo de la red se aplica un tratamiento de los múltiples posibles y cuándo se debe realizar. Las decisiones tomadas conforman el programa de conservación de la red de carreteras.

En la Figura 2 se representan las variables fundamentales que conforman el problema. En una red de carreteras tenemos N activos (tramos considerados), S posibles tratamientos cada uno de los cuales se aplicará en el instante t en los T años considerados en el programa de conservación.

Figura 2. Programa de conservación (Torres-Machí, 2015)

El programa de conservación resultante de las decisiones tomadas para un horizonte de T años nos dirá para cada uno de los años dónde actuar y qué tipo de tratamiento se deberá realizar. En la Figura 3 queda representada un posible programa fruto de las decisiones tomadas.

Figura 3. Ejemplo de programa de conservación (Torres-Machí, 2015)

Lo difícil de este problema, como hemos dicho anteriormente, es acertar con el mejor programa de conservación. No hay más remedio que aplicar técnicas de optimización para resolver el problema si los presupuestos son escasos. Caben dos enfoques, el secuencial y el holístico. El primero se centra en un activo (tramo de carretera, calle en una ciudad) y se decide qué tratamientos y cuándo se van a aplicar. En este caso el problema tiene N·S^T soluciones. En cambio, el enfoque holístico considera toda la red: se trata de elegir qué activo tiene prioridad en la red y luego decidir qué tratamiento y cuándo se aplica. Aquí se dispara el número de posibles soluciones a S^(N·T). A modo de ejemplo, teniendo en cuenta solo dos tratamientos (S=2), un horizonte de 10 años (T=10) y 7 tramos diferentes de carretera (N=7), el número de posibles soluciones es de 1,18E+21.

La única forma de abordar este problema es con algoritmos heurísticos de optimización multiobjetivo. Os dejo algunas referencias de cómo hemos resuelto en nuestro grupo de investigación este problema y en un artículo posterior os explico cómo formular el problema de optimización (funciones objetivo, restricciones, etc.). Como ya dije en artículos anteriores, la puerta está abierta a quien quiera participar en nuestro grupo.

Referencias:

  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Indicadores de estado y de prestaciones de las infraestructuras

En una entrada anterior vimos las distintas estrategias de conservación de las infraestructuras y cómo éstas influían en el coste que debían pagar los usuarios. Estas estrategias podían modificar el estado o las prestaciones de la infraestructura, que de forma irremediable, se degradan con el tiempo. Llegado a este punto, conviene diferenciar los conceptos de estado y de prestaciones de una infraestructura.

La gestión de las infraestructuras (carreteras, puentes, etc.) supone un proceso por el cual se debe asignar de forma eficiente los recursos limitados en la dirección marcada por los objetivos estratégicos de la organización responsable de dicha gestión. Para ello se hacen necesarios una serie de indicadores que permitan medir de forma cuantitativa o cualitativa los resultados procedentes de las acciones realizadas sobre dichos activos respecto a los objetivos.

Dichos indicadores pueden ser de estado o de prestaciones. El estado o condición de una infraestructura se define como su estado físico, que puede afectar o no a sus prestaciones. En cambio, la prestación o rendimiento se define como la capacidad de la infraestructura para proveer un determinado nivel de servicio a los usuarios. Se pueden llamar también prestaciones funcionales, pues indican el nivel de habilitación de una infraestructura para desarrollar su función principal, que es la prestación del servicio, aunque también podrían incluir otras características o efectos no directamente relacionados con el servicio a los usuarios.

Saber diferenciar ambos conceptos es básico para cualquier organización responsable de la gestión de una infraestructura. Así, por ejemplo, las prestaciones de un puente pueden no verse afectadas por el estado hasta que se produzca un fallo. Es fácil encontrar un puente de hormigón con defectos superficiales (corrosión de armaduras, desconchados, etc.) que mantiene intacta su funcionalidad e integridad estructural. También podría darse el caso de un puente en muy buen estado que no sea capaz de soportar determinadas cargas de tráfico o que impone restricciones de gálibo que afectan al tráfico.

Puente “traga camiones” de Leganés. https://www.lavanguardia.com

Pero, ¿cuáles son las razones para disponer de indicadores en la gestión de las infraestructuras? Pues son imprescindibles para tomar decisiones que afectan a estos activos. Permiten identificar las necesidades de intervención, proporcionan la guía de los procesos y criterios en la toma de decisiones y son los elementos que permiten controlar el progreso hacia los objetivos y metas trazados por la organización responsable de la gestión.

En el caso de una carretera, los indicadores utilizados en su gestión se suelen agrupar en diferentes categorías que corresponden con los objetivos de la organización responsable de dicha gestión. Se podrían considerar, entre otros, los siguientes: conservación de la carretera, seguridad vial, movilidad y accesibilidad, medioambiente, operaciones y mantenimiento y eficiencia económica.

Si se disponen de mediciones de dichos indicadores, éstos permiten comparar sus valores con determinados estándares, umbrales o niveles mínimos. Esta información es determinante en la identificación de las necesidades de intervención y, por tanto, catalizan todo el proceso posterior de selección de intervenciones y asignación de recursos económico.

En artículos posteriores hablaremos de cómo podremos utilizar estos índices para el caso particular de las carreteras y utilizar técnicas procedentes de la optimización multiobjetivo y de la toma de decisiones multicriterio para asignar los presupuestos restrictivos de los que dispone una organización para que la condición de las carreteras sea la máxima posible. Ya adelantamos que el problema no es sencillo, pero afortunadamente nuestro grupo de investigación ya dispone de las herramientas necesarias para planificar el mantenimiento y la conservación de una red de carreteras o de calles en una ciudad con presupuestos muy restrictivos.

 

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influyen las estrategias de conservación y el coste que pagan los usuarios de las carreteras?

Figura 1. Las generaciones futuras tendrán que pagar por unas infraestructuras deterioradas

En esta entrada vamos a justificar cómo determinadas estrategias de gestión del mantenimiento y conservación de las carreteras disparan los costes que tienen los usuarios. Por tanto, en primer lugar vamos a definir las distintas estrategias posibles y posteriormente analizaremos cuál de ellas influye negativamente en el coste de los usuarios.

Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, no menos cierto es que una parte significativa de dicha infraestructura está empezando a notar el paso del tiempo; es más, parece que podemos vivir dentro de un horizonte no tan lejano, un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación (Figura 1) se va a encontrar con la sorpresa de tener que pagar por unas infraestructuras con pésimos niveles de servicio. Es lo que en otro artículo califiqué como la “crisis de las infraestructuras“. Todo ello nos lleva a la cuestión central del problema: la urgente necesidad de tener un plan racional con recursos suficientes para mantener las infraestructuras básicas de un país.

En la Figura 2 podemos ver una gráfica donde se representa no solo la degradación del estado o de las prestaciones de la carretera, sino las distintas estrategias que se tienen al alcance para modificar dicho deterioro.

Figura 2. Estrategias de conservación (Clemente, 2012)

Así, la estrategia preventiva o proactiva tiene como objetivo mantener en el tiempo el estado físico del elemento en un nivel adecuado, evitando que alcance elevados niveles de deterioro que puedan afectar a su funcionalidad y disparar los costes de reparación. Estas actuaciones son normalmente de alcance y coste limitado y se realizan con cierta periodicidad en función de la evolución observada o incluso de manera programada antes de que el defecto se llegue a manifestar. La estrategia correctiva o reactiva es la que deja al elemento que se deteriore al límite, en cuyo momento se realizan intervenciones de gran calado, como por ejemplo grandes rehabilitaciones integrales o estructurales, que lo devuelven, o lo intentan devolver, a su estado original. Sin embargo, son actuaciones de mayor coste, aunque más separadas en el tiempo. Por último, se podría optar por un deterioro controlado hasta la retirada. En este caso se pasa directamente a retirar el elemento cuando se ha alcanzado su vida útil de servicio y se sustituye por otro similar. Durante este periodo no se interviene, o se hace mínimamente para no afectar la funcionalidad.

Por tanto, la estrategia óptima no es evidente, pues depende tanto de factores endógenos (características constructivas de la carretera, edad, etc.) y exógenos (condiciones del clima, nivel de tráfico, etc.) y por tanto no se pueden generalizar las conclusiones. Este problema, por consiguiente, es uno de los focos más importantes de nuestro grupo de investigación. Os he puesto referencias de algunas de nuestras publicaciones.

Pero el problema se hace más complejo cuando se tienen en cuenta los costes de los usuarios. En efecto, las características de la carretera y el nivel y la composición de la demanda de tráfico influyen en los costes de los usuarios. Un mal estado del pavimento, incrementa claramente el coste soportado por el usuario. Y lo que es peor, un estado sub-óptimo de la infraestructura debido a una estrategia de conservación reactiva, tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Insisto en este punto. Una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico.

En la Figura 3 se puede ver que existe un hipotético nivel de conservación óptimo que minimiza los costes totales del transporte, teniendo en cuenta el coste del usuario, el coste de conservación y el coste de construcción. Sin una estrategia clara de conservación, los responsables de una red de carreteras suelen realizar una conservación correctiva, que tiene un aparente ahorro económico en el corto plazo, pero que traslada al futuro unos costes que pueden ser muy elevados tanto para los contribuyentes que sufragan la inversión como para los usuarios.

Figura 3. Costes totales del transporte

A continuación os dejo algunas de las referencias y de los trabajos que se han publicado al respecto. Todo lo que estamos haciendo ahora se encuentra dentro de un proyecto de investigación competitivo al que hemos denominado DIMALIFE (BIA2017-85098-R): Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Si alguien se anima trabajar en estos temas de investigación con nosotros o hacer una tesis doctoral, tiene las puertas abiertas.

Además, igual os interesa leer los enlaces que publicamos en una entrada anterior: ¿Qué hemos hecho para conservar nuestras carreteras?

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Balance personal de 2018 en el ámbito docente e investigador

El 31 de diciembre suele ser una buena fecha para reflexionar lo que ha sido el año. Todo pasa muy rápido, demasiado rápido, las cosas cambian y las noticias del año que acaba suelen ser agridulces cuando se mira la prensa o la televisión. Desde el punto de vista de la ingeniería, me impactaron mucho los desastres del puente de Morandi en Génova y el hundimiento de una pasarela en Vigo, ambos casi simultáneos ocurridos en agosto, aunque son muchos más los desastres naturales y los relacionados con la ingeniería, el territorio y el cambio climático. Hoy toca realizar el balance del 2018 y destacar aquellos logros que hacen que haya merecido la pena el paso de este año. Como siempre, me centraré en el ámbito docente e investigador.

Lo primero que me gustaría destacar es el 50 aniversario de nuestra Escuela de Ingenieros de Caminos de Valencia. Va a ser difícil llegar a ver el centenario, pero con un poco de suerte, dentro de 25 años podremos ver cómo ha cambiado la Escuela y la profesión. Este año, muy especial en cuanto a fechas, también ha sido el año en que mi hija Lorena terminó de forma brillante el Máster en Ingeniería de Caminos, Canales y Puertos. También es momento de recordar a algunos que nos dejaron. Un recuerdo para los profesores Carlos A. Brebbia y David Billington.

En cuanto a la difusión de la ingeniería, he participado este año en varios programas de radio. En Radio Nacional, en el programa “Esto me suena” me han realizado varias entrevistas donde tuve la ocasión de divulgar aspectos menos conocidos por el público en general de la ingeniería civil. Esta colaboración ya viene siendo habitual desde el año 2016. Este año hemos hablado sobre cómo se construyeron los arcos a lo largo de la historia, sobre las tuneladoras, del viaducto sobre el río Almonte de Garrovillas de Alconétar y otra más sobre la seguridad de nuestros puentes. También me entrevistaron en À Punt Ràdio hablando de los algoritmos heurísticos basados en el jazz que hemos desarrollado en nuestro grupo de investigación como ayuda en la decisión de qué infraestructuras son las prioritarias a la hora de invertir. Esta noticia tuvo eco en numerosos medios de comunicación escrita. En Radio Alcoy también tuve la ocasión de hablar sobre la reparación del puente Fernando Reig, y allí hablé de la necesidad de reconocer a los autores de las obras de ingeniería. Además, de los desastres de Génova y Vigo tuve ocasión de hablar en un artículo denominado “Más allá de Génova y Vigo: la crisis de las infraestructuras es un problema global“, que se publicó en “The Conversation” y que luego se reprodujo en numerosos medios de comunicación escrita. Por último, no quiero olvidar mi labor de difusión a través de mi blog personal. Este año he escrito 130 entradas en el blog sobre diversos temas. Es un blog que ha crecido un 43,9% en número de usuarios respecto al año anterior. En este año 2018 han sido 428 mil usuarios los que han utilizado el blog, lo cual empiezan a ser cifras a tener en cuenta.

En cuanto a las publicaciones de artículos científicos en revistas indexadas, 2018 ha sido un buen año. He publicado 10 artículos internacionales en revistas indexadas en el JCR (Journal of Cleaner Production, Sustainability Environmental Impact Assessment Review), de las cuales 8 corresponden a revistas en el primer cuartil y 2 a las del segundo cuartil. De las 8 del primer cuartil, 7 son revistas del primer decil. Pero, además, a fecha de hoy, ya nos han publicado tres artículos en revistas de impacto para el año 2019 (Engineering Structures, Journal of Cleaner ProductionEnvironmental Impact Assessment Review), las tres del primer cuartil. Además, hemos publicado en 2018 también un par de artículos en revistas internacionales (Journal of Construction Engineering, Management & Innovation y Technologies). Asimismo, destaco mi contribución como Editor Invitado, junto con el profesor José Mª Moreno, al número especial “Optimization for Decision Making” de la revista Mathematics; así como Editor Asociado en el número especial “Advanced Optimization Techniques and Their Applications in Civil Engineering“, de la revista Advances in Civil Engineering. Todo esto no hubiera sido posible sin mis alumnos de doctorando y colegas del grupo de investigación. También debo reseñar el reconocimiento recibido por el Publons Peer Review Awards 2018, donde se reconoce estar durante el periodo 2017-2018 en el 1% de los revisores en el ámbito “Engineering”. El resultado ha sido que, a fecha de hoy, mi índice Hirsch de producción científica, según la Web of Science, es h=21, mientras que ese mismo índice en Google Académico es h=34.

En cuanto a Congresos, tuve la oportunidad de asistir a dos congresos donde, además de presentar ponencias, he pertenecido a los Comités Científicos. Del 11 al 13 de julio de 2018 asistí al HPSM/OPTI 2018 (International Conference on High Performance and Optimum Design of Structures and Materials), celebrado en Liubliana (Eslovenia). La comunicación presentada se publicará en 2019 en la revista International Journal of Computational Methods and Experimental Measurements). Por otra parte, del 28 al 31 de octubre asistí al IALCCE 2018 (The sixth International symposium on Life-Cycle Civil Engineering), que tuvo lugar en Gante (Bélgica). Este congreso fue especialmente importante porque Tatiana García Segura, a la que dirigí su tesis doctoral, recibió el  Junior Award IALCCE 2018, que premia al mejor investigador, con una edad menor a 42 años. Es la primera vez que un español gana este galardón, lo cual es un hito para la Escuela de Ingenieros de Caminos de Valencia y para la Universitat Politècnica de València. Sobre el tema de playas inteligentes me invitaron a impartir una conferencia magistral en el III Congreso Internacional de Calidad Ambiental en Playas Turísticas, organizado por la Universidad de la Guajira en Colombia, del que también formo parte del Comité Científico Internacional; dicho congreso se celebra entre el 21 y el 23 de marzo de 2018. Debido a problemas de agenda, se me invitó a impartir la charla por teleconferencia. Otros congresos donde participé este año han sido el Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia;  el ICERI2018,the 11th annual International Conference of Education, Research and Innovation, en Sevilla; y el VIBRArch Valencia 1 Bienial Research of Architecture, en Valencia.

En cuanto a proyectos de investigación competitivos, este año iniciamos el proyecto DIMALIFE  (Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos, BIA2017-85098-R), el cual tiene una duración prevista de tres anualidades y cuenta con la financiación necesaria para un contrato predoctoral FPI. Este es un proyecto donde soy investigador principal. Además, también empezamos el proyecto RTC-2017-6148-7-AR (Sistema integral de mantenimiento eficiente de pavimentos urbanos) donde participo como investigador. En cuanto a tesis doctorales, están muy avanzadas las de Jorge Salas, Ignacio Navarro y Vicent Penadés. Estas tres tesis se leerán, con toda seguridad, a lo largo del 2019.

En el ámbito docente, me gustaría destacar el Curso de Creatividad que impartí en marzo de este año en la universidad de La Rioja a personal docente y el Curso de Planificación y Gestión de Playas que impartí y dirigí en la Universidad de Oporto en junio. Pero, quizás sin duda, uno de los hitos de este año fue la puesta en marcha, por primera vez, de un curso MOOC (gratuito, masivo y online) denominado “Introducción a los encofrados y las cimbras en obra civil y edificación“, que este mismo año ya va por la tercera edición y ha tenido casi 4000 alumnos inscritos. Todo un éxito inesperado que espero poder repetir en un futuro próximo con otros temas. En cuanto a premios recibidos, destaco el Premio Docencia en Red 2017/2018, recibido en el contexto del Plan de Docencia en Red de la Universitat Politècnica de València por la elaboración de material educativo en formato digital.

Por último, me gustaría destacar las visitas de investigación recibidas por parte de profesores de prestigio internacional como ha sido el caso del profesor Gizo Partskhaladze, (Georgia) que nos ha visitado ya por tercera vez. También hemos recibido al profesor Moacir Kripka, catedrático de estructuras en la Universidade de Passo Fundo, en Brasil.

En definitiva, 2018 se puede calificar de un buen año en estos aspectos universitarios. Espero que 2019 siga siendo al menos, la mitad de bueno que éste. A continuación paso un listado de alguna de las cosas que he podido terminar este año.

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos. DIMALIFE. [Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges and highway infrastructures under restrictive budgets]. BIA2017-85098-R.

 

ARTÍCULOS INDEXADOS EN EL JCR:

  1. SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  2. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  3. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  4. GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  7. DEDE, T.; KRIPKA, M.; TOGAN, V.; YEPES, V.; RAO, R.V. (2018). Advanced optimization techniques and their applications in civil engineering. Advances in Civil Engineering, 2018: 5913083. DOI:1155/2018/5913083
  8. PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:1016/j.jclepro.2018.04.268
  9. SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:1016/j.jclepro.2018.03.022
  10. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  11. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  12. SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:1016/j.jclepro.2018.01.088
  13. SALAS, J.; YEPES, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176:1231-1244. DOI:1016/j.jclepro.2017.11.249
  14. SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:1016/j.jclepro.2017.12.140

 

OTROS ARTÍCULOS:

  • YEPES, V.; PÉREZ-LÓPEZ, E.; GARCÍA-SEGURA, T.; ALCALÁ, J. (2019). Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges. International Journal of Computational Methods and Experimental Measurements, (accepted, in press).
  • YEPES, V.; PÉREZ-LÓPEZ, E.; ALCALÁ, J.; GARCÍA-SEGURA, T. (2018). Parametric study of concrete box-girder footbridges. Journal of Construction Engineering, Management & Innovation, 1(2):67-74. doi:10.31462/jcemi.2018.01067074
  • ALCALÁ, J.; GONZÁLEZ-VIDOSA, YEPES, V.; MARTÍ, J.V. (2018). Embodied energy optimization of prestressed concrete slab bridge decks. Technologies, 6(2):43. doi:10.3390/technologies6020043 (link)

 

CONGRESOS:

  • FERNÁNDEZ-MORA, V.; YEPES, V. (2018). Problems in the adoption of BIM for structural rehabilitation.  VIBRArch Valencia 1 Bienial Research of Architecture, Valencia (Spain),  18th-19th October 2018.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Heuristics in engineering education. A case study application to sustainable bridge management systems. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9788-9797.  ISBN: 978-84-09-05948-5
  • NAVARRO, I.; MARTÍ, J.V.; YEPES, V. (2018). Multi-criteria decision making techniques in civil engineering education for sustainability. Proceedings of ICERI2018,the 11th annual International Conference of Education, Research and Innovation, Seville (Spain), 12th-14th November 2018, pp. 9798-9807.  ISBN: 978-84-09-05948-5
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V. (2018). Kriging-based heuristic optimization of a continuous concrete box-girger pedestrian bridge. Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), Ganth (Belgium), October 2018, pp. 2753-2759. ISBN: 9781138626331
  • YEPES, V. (2018). La transición de playas certificadas a playas inteligentes. III congreso Internacional de Calidad Ambiental en Playas Turísticas (CAPT 2018). Marzo, Universidad de la Guajira (Colombia).
  • YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

 

TRABAJOS FIN DE MÁSTER

  • CALDERÓN, S. (2018). Estudio sobre BIM integrado. Análisis del caso práctico de la ampliación de la Tercera Compuerta en la Esclusa de Beatriz y Ensanchamiento del Canal de Lek (Holanda). Máster Universitario en Planificación y Gestión de la Construcción.
  • RÓDENAS, A. (2018). Comparativa Ambiental y Económica de Pantallas de Contención de Tierras para Edificación Mediante el Análisis del Ciclo de Vida. Máster Universitario en Planificación y Gestión de la Construcción.
  • TRONCOSO, P.T. (2018). Gestión de la Economía Circular en la Producción de Mezcla Asfáltica en Chile. Máster Universitario en Planificación y Gestión de la Construcción.
  • TRIANA, C.R. (2018). Gestión de Innovación de las Empresas del Sector de la Construcción en Colombia. Máster Universitario en Planificación y Gestión de la Construcción.

 

VÍDEOS EDUCATIVOS (POLIMEDIAS)

  1. Definición de cimbra autolanzable. 7 minutos, 11 segundos.
  2. Clasificación de las cimbras autolanzables. 6 minutos, 38 segundos.
  3. Cimbra autolanzable frente a otros procedimientos constructivos. 9 minutos, 13 segundos.
  4. Parámetros para seleccionar una cimbra autolanzable.  6 minutos, 50 segundos.
  5. Elementos de una cimbra autolanzable.  7 minutos, 57 segundos.
  6. Cimbra autolanzable bajo tablero.  7 minutos, 33 segundos.
  7. Cimbra autolanzable sobre tablero.  8 minutos, 4 segundos.
  8. Construcción de puentes mediante lanzador de vigas. 8 minutos, 0 segundos.

 

Método acelerado de optimización de puentes en cajón

 

Acaban de publicarnos en Engineering Structures, revista de ELSEVIER indexada en el primer cuartil del JCR, un artículo en el que hemos propuesto un novedoso método de optimización que acelera los cálculo al emplear Kriging como metamodelo en los cálculos intermedios de las iteraciones de un proceso de optimización heurística. Se ha aplicado en la optimización de la energía requerida para la construcción de un puente en cajón de hormigón pretensado, pero la metodología es aplicable al cálculo de cualquier estructura. Este artículo forma parte del proyecto de investigación DIMALIFE. Como se ha publicado en abierto, os puedo pasar el artículo completo, que os podéis descargar también en la propia revista.

ABSTRACT:

Structural optimization is normally carried out by means of conventional heuristic optimization due to the complexity of the structural problems. However, the conventional heuristic optimization still consumes a large amount of time. The use of metamodels helps to reduce the computational cost of the optimization and, along these lines, kriging-based heuristic optimization is presented as an alternative to carry out an accelerated optimization of complex problems. In this work, conventional heuristic optimization and kriging-based heuristic optimization will be applied to reach the optimal solution of a continuous box-girder pedestrian bridge of three spans with a low embodied energy. For this purpose, different penalizations and different initial sample sizes will be studied and compared. This work shows that kriging-based heuristic optimization provides results close to those of conventional heuristic optimization using less time. For the sample size of 50, the best solution differs about 2.54% compared to the conventional heuristic optimization, and reduces the computational cost by 99.06%. Therefore, the use of a kriging model in structural design problems offers a new means of solving certain structural problems that require a very high computational cost and reduces the difficulty of other problems.

KEYWORDS: Low-embodied energy; Post-tensioned concrete; Box-girder bridge; Structural optimization; Metamodel; Kriging

REFERENCE:
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

 

Impacto de la crisis económica en la construcción: lo que opinan los estudiantes

ABSTRACT:

The current economic crisis has specially affected the Spanish construction industry, causing the loss of 1.2 million jobs in the last four years. The increase in the unemployment rate is particularly worrisome for recent graduates in the construction industry. This fact leads to changes in the university degrees related to construction: undergraduate students should be prepared for a new professional environment and recent graduate find it hard to enter the labor market. Low employment opportunities entail a lack of motivation that can cause a significant decrease in the achievement of learning outcomes. This paper seeks to analyze the impact of the crisis in the construction industry from the point of view of the students of a M.Sc. in Construction Management, analyzing the evolution of student’s perception on unemployment and their motivations to enroll in the master degree. For this purpose, a questionnaire was handed out to students of three consecutive classes of the M.Sc. in Construction Management at the Universitat Politècnica de València (Spain) from 2010 to 2012. A statistical analysis of the survey was developed. This way, some interesting points can be highlighted on the impact of crisis on young construction professionals.

KEYWORDS:

Construction; Economic Crisis; Employment; Motivation; Labor Market; M.Sc. Degree

REFERENCIA:

TORRES-MACHÍ, C.; PELLICER, E.; YEPES, V.; PICORNELL, M. (2013). Impact of the economic crisis in construction: a perspective from graduate students. Procedia – Social and Behavioral Sciences, 89:640-645.

Descargar (PDF, 199KB)

 

 

Optimización de rutas mediante la búsqueda en entornos variables y aceptación por umbrales estocásticos

Búsqueda local mejorada por el criterio de aceptación por umbrales

RESUMEN

La ponencia presenta un procedimiento de resolución aproximada en la optimización económica de rutas de reparto con flotas de vehículos heterogéneas y horarios de servicio flexibles VRPHESTW basado en la búsqueda probabilista en entornos variables y en la aceptación por umbrales estocásticos. Se ha ensayado en un problema concreto la eficacia de la búsqueda con múltiples operadores, así como la ventaja del empleo de la aceptación por umbrales. Sin embargo, la introducción de ruidos estocásticos gaussianos en los umbrales no ha representado una mejora significativa del procedimiento.

 

Referencia:

MEDINA, J.R.; YEPES, V. (2004). Optimización de rutas mediante la búsqueda en entornos variables y aceptación por umbrales estocásticos, en Larrodé, E. y Castejón, L. (Eds.): Infraestructuras de Transporte y Logística como Motor de Desarrollo de las Regiones EuropeasActas del VI Congreso de Ingeniería del Transporte. Vol. 4, pp. 1985-1992. Zaragoza, 23-25 de junio. ISBN (Vol. 4): 84-609-1364-3.

Descargar (PDF, 254KB)

El profesor Moacir Kripka de estancia con nosotros en la Universitat Politècnica de València

Nuestro grupo de investigación está muy orgulloso y es muy afortunado de contar con visitas y estancias de otros profesores, de gran prestigio internacional, que vienen a trabajar y compartir experiencias en la Universitat Politècnica de València. Si en entradas anteriores hablé de la estancia del profesor Dan M. Frangopol y de la visita del profesor Gizo Parskhaladze, ahora os contaré la estancia de investigación del profesor Moacir Kripka con nosotros en el ICITECH. El profesor Kripka, es catedrático de estructuras en la Universidade de Passo Fundo, en Brasil, donde ejerce de profesor desde el año 1991. Ha sido director del Departamento de Ingeniería Civil y del Grado en Ingeniería, siendo actualmente editor de la revista Journal of Applied and Technological Sciences – CIATEC/UPF. Su área de investigación se centra fundamentalmente en la optimización de estructuras, por lo que ha sido de gran productividad para nosotros compartir experiencias durante su estancia de investigación (septiembre a diciembre de 2018). Fruto de esta colaboración, a parte de los relacionados con la investigación, se extienden al futuro intercambio de estudiantes y profesorado entre nuestras respectivas universidades y en la participación conjunta en proyectos de investigación y de transferencia tecnológica. En la fotografía que os dejo nos podéis ver después de una clase sobre optimización heurística de estructuras correspondiente al Máster Universitario en Ingeniería del Hormigón. Todo un verdadero placer.

Optimización heurística de pilas rectangulares huecas de hormigón armado

Figura. Geometría de la pila objeto de estudio

RESUMEN: 

El trabajo se centra en optimizar los costes de pilas rectangulares huecas de viaductos pretensados mediante métodos heurísticos y metaheurísticos, demostrando su efectividad. La evaluación de cada una de las soluciones se lleva a cabo mediante un módulo de comprobación según la instrucción EHE y Eurocódigo 2. El cálculo de esfuerzos se realiza aplicando las cargas de la IAP-98 y la comprobación frente a inestabilidad se hace por el método de Arenas y Villegas. Los métodos heurísticos utilizados son la búsqueda de aceptación por umbrales y las colonias de hormigas. Todos los métodos de búsqueda han sido aplicados a una pila tipo de 23.97 m de altura. Se concluye que la colonia de hormigas es la metaheurística más eficiente de las 4 comparadas.

PALABRAS CLAVE:

Optimización heurística, puentes, pilas rectangulares huecas, hormigón armado.

REFERENCIA: 

MARTÍNEZ, F.; PEREA, C.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2007). Optimización heurística de pilas rectangulares huecas de hormigón armado. Hormigón y Acero, 244: 67-80. ISBN: 0439-5689. (link)

Descargar (PDF, 2.99MB)