La calidad en el Código Estructural

La aparición del Código Estructural, aprobado por el Real Decreto 470/2021, de 29 de junio, supone ciertas novedades en el ámbito de la construcción de nuestro país. Independientemente de la pertinencia de esta nueva norma en un momento donde deberíamos converger rápidamente hacia los Eurocódigos, lo cierto es que permite integrar en un solo documento los aspectos relacionados con el hormigón estructural, el acero y las estructuras mixtas. En este nuevo contexto, vamos a revisar de forma somera cómo se trata la calidad de las estructuras. Para ello tengamos en cuenta que el Código Estructural presenta cuatro títulos: Bases generales, Estructuras de hormigón, Estructuras de Acero y Estructuras mixtas; además de 32 Anejos, un total de 1789 páginas del Boletín Oficial del Estado.

La palabra “calidad” aparece en el nuevo código un total de 458 veces, frente a las 213 apariciones que tuvo en la anterior Instrucción de Hormigón Estructural (EHE-08). Este aumento se debe a la inclusión de las estructuras de acero y mixtas en el nuevo código. No obstante, conviene recordar que el concepto de calidad no se circunscribe exclusivamente a lo que se entiende como “control de calidad”, ya sea de recepción o de proceso, sino que va más allá, incluyendo aspectos relacionados con el aseguramiento de la calidad de las organizaciones. Con todo, si entendemos como calidad el enfoque técnico de Crosby como el cumplimiento de las especificaciones de un producto o servicio, entonces todo el Código sería objeto del concepto de calidad. Es por ello que vamos a restringir la perspectiva a aquellos aspectos al que la nueva norma se refiere cuando aparece el término calidad en su articulado.

Una lectura en diagonal del Código ya nos indica que hay una gran dispersión de los conceptos relacionados con la calidad. Nos encontramos aspectos relacionados con exigencias de calidad medioambiental en la ejecución mezclados con otros relacionados con las condiciones de suministro, las garantías de calidad y el control de la recepción. Se intercalan aspectos relacionados con la responsabilidad en la gestión de la calidad con otros relacionados con el control. Resulta evidente la confusión de conceptos como “gestión de la calidad”, “garantía de la calidad” o “control de la calidad” a lo largo del texto. Hubiera sido interesante aclarar estos conceptos en el Capítulo 5 Bases generales para la gestión de la calidad de las estructuras. De todas formas, la Tabla 17.1 nos ilumina con cierto orden, al menos, en lo relacionado con la conformidad en el control del proyecto, de los productos, de la ejecución de la estructura y de la estructura terminada.

Tabla 17.1 Definición de tipos de conformidad

Sin entrar en más detalles, sí que se detecta un cambio en el control de calidad de la ejecución respecto a la EHE-08. Mejora la trazabilidad, modifica las condiciones de fabricación y armoniza diversas nomenclaturas españolas a las europeas. Estos cambios afectan a los propios lotes, los lotes de ensayos de resistencia, las unidades de inspección y su frecuencia, etc. Los cambios tratan de diferenciar mejor los elementos estructurales y sistemas constructivos. Destaca asimismo la diferencia de los puentes respecto al resto de estructuras y una atención especial a las estructuras de baja complejidad. Cabe destacar el Anejo 4 Documentación de suministro y control de los productos recibidos directamente en obra, que explica muy claramente toda la documentación para los productos recepcionados en obra antes, durante y al finalizar su suministro.

Por otra parte, se sustituyen las menciones a la Directiva 89/106/CEE del Consejo, de 21 de diciembre de 1988, relativas a la aproximación de las disposiciones legales, reglamentarias y administrativas de los Estados miembros sobre los productos de construcción, que se contenían en la reglamentación vigente, por las del Reglamento (UE) nº 305/2011 del Parlamento Europeo y del Consejo, de 9 de marzo de 2011, por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo. También desaparece el concepto de idoneidad al uso de los productos con marcado CE y se sustituye por la presunción de veracidad de la declaración de prestaciones del producto por parte del fabricante. La declaración de prestaciones deberá cumplir las especificaciones del citado Reglamento (UE) nº 305/2011.

Resulta también de interés el refuerzo que hace el Código respecto a las consideraciones que deben aplicarse para los productos controlados en fábrica, entre los que se encuentran los prefabricados, con el añadido de la existencia de un organismo certificador externo que lo valide. Asimismo, se avanza en la posibilidad de que el fabricante pueda obtener de forma voluntaria un Distintivo de Calidad Oficialmente Reconocido (DCOR) que implique el cumplimiento de una serie de requisitos adicionales a los que establecen las normas armonizadas. Ello permite ventajas que ya venían de la EHE-08, entre las que destacan la máxima reducción posible de los coeficientes de seguridad de los materiales, hasta 1,35 en hormigón y hasta 1,10 en acero. Esto es de gran interés, por ejemplo, para prefabricados de hormigón certificados con un DCOR, siempre que se cumplan además otra serie de consideraciones.

Otro aspecto destacable es la estrecha relación que existe entre este nuevo Código Estructural y el Real Decreto 163/19, por el que se aprueba la Instrucción Técnica para la realización del control de producción de los hormigones fabricados en central, de forma que existe ahora una correcta correlación entre la producción y la puesta en obra del hormigón.

Os dejo a continuación una mapa conceptual, que utilizo yo en mis clases, y que simplifica de alguna forma los aspectos relacionados con la calidad de las estructuras.

Control de ejecución de las estructuras. Elaboración: V. Yepes

También os dejo unos vídeos explicativos del Colegio de Ingenieros Técnicos de Obras Públicas de Aragón sobre el tratamiento de la calidad en el nuevo Código Estructural. Espero que os sean de utilidad.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Tratamiento de los residuos según el Código Estructural

https://www.rdsanjuan.com/servicios/demolicion/

Como ya es conocido, el Real Decreto 470/2021, de 29 de junio, fue el que aprobó el vigente Código Estructural. Independientemente de la pertinencia de aprobar esta norma nacional en un momento donde deberíamos converger rápidamente hacia los Eurocódigos, lo cierto es que permite integrar en un solo documento los aspectos relacionados con el hormigón estructural, el acero y las estructuras mixtas. Además, posibilita conocer hacia dónde van las tendencias en este ámbito. No obstante, son necesarias más de 300 normas UNE para complementar el contenido del nuevo código en lo referente a la conformidad de los productos y procesos regulados en el mismo.

En un artículo anterior hablé del término “deconstrucción” y su empleo dentro del Código Estructural. Dejando al margen el acierto en el uso de determinadas palabras, lo cierto es que algo nuevo se respira en el ambiente en relación con el ciclo de vida de las estructuras, en especial cuando tratamos del final de la vida útil. En este caso, uno de los aspectos que se resalta en el nuevo código es el tratamiento de los residuos, tanto al final de la vida de la estructura como en su utilización como material reciclado. Repasemos, pues, el tratamiento que da el Código Estructural a los residuos. Por cierto, que un residuo de construcción y demolición es cualquier sustancia u objeto que, cumpliendo la definición de “residuo” de la Ley 10/1998, de 21 de abril, se genere en una obra de construcción o demolición.

En el artículo 5, referido a los requisitos de las estructura, y en particular en lo referente a la exigencia de calidad medioambiental de la ejecución, se exige tanto en proyecto, en ejecución y en las tareas de intervención sobre las estructuras existentes, la reducción en la generación de residuos.

En cuanto al uso de materiales en el hormigón, el artículo 30.8 referido a los áridos reciclados establece los requisitos para la utilización del árido reciclado procedente de los residuos del hormigón. Además, el artículo 32, sobre las adiciones, se refiere a las cenizas volantes como residuos sólidos.

Pero quizás lo más interesante a este respecto viene con los artículos referidos a la demolición y deconstrucción de las estructuras. Así, el Capítulo 16 se refiere a las estructuras de hormigón, y establece que en el proyecto de demolición de estas estructuras se deben definir los procedimientos de gestión de los residuos, las medidas previstas para la separación de los residuos generados y la retirada de posibles residuos peligrosos. Se añade la obligatoriedad de gestionar los residuos de forma eficiente durante el proceso de demolición. Lo novedoso es que el artículo 78 contempla medidas adicionales para lo que se viene en llamar “deconstrucción de estructuras de hormigón”. No se establece en el código cuándo es obligatorio proceder a la deconstrucción frente a la demolición, pues solo habla de esas medidas adicionales que diferencian ambos procesos, y que pasan por la reutilización y reciclado de la estructura existente. Para ello las medidas adicionales se basan en identificar los elementos reutilizables, los residuos generados y elaborar dos documentos: el Estudio de Gestión de Residuos, que contenga los destinos previstos para los residuos generados, y el Plan de Gestión de Residuos, orientado al reciclado. Además, esta deconstrucción solo la puede realizar una empresa con certificación medioambiental de conformidad con la norma UNE-EN ISO 14001.

El Capítulo 26 trata la demolición y deconstrucción de las estructuras de acero de forma similar a las de hormigón. Y del mismo modo, el Capítulo 36 lo hace con las estructuras mixtas hormigón-acero. Hubiera bastado un solo capítulo referido a la demolición y deconstrucción de las estructuras para no repetir tres veces prácticamente lo mismo.

En este contexto, por tanto, se podrían hacer los siguientes comentarios respecto al tratamiento de los residuos por parte del Código Estructural. Otra cosa es que la legislación o las normas de carácter voluntario definan con mayor claridad alguno de estos aspectos.

  1. El proyecto constructivo de una estructura debe de justificar la reducción en la generación de residuos, no se define cómo ni dónde. La exigencia se amplía a la ejecución a la intervención de las estructuras, pero la indefinición es la misma.
  2. El Código Estructural no aclara cuándo es obligatoria la deconstrucción frente a la demolición de una estructura. Pero, con los requisitos medioambientales actuales, ¿cabe hablar de una demolición que no contemple el reciclado y la gestión de los residuos? No es razonable, por tanto, distinguir el proceso de la demolición del de la deconstrucción. Hubiera bastado en el Código Estructural exigir a la demolición los requisitos adicionales citados.
  3. Se hace necesario un proyecto de demolición, aunque no se habla de un proyecto de deconstrucción.
  4. La reutilización de residuos procedentes de estructuras queda circunscrito en este código al árido reciclado. La reutilización, por tanto, queda indefinida fuera de este ámbito.
  5. Se exigen dos documentos diferentes, el Estudio de Gestión de Residuos y el Plan de Gestión de Residuos, cuyo contenido y estructura no se definen en el código (hay que acudir a otra legislación vigente).
  6. La deconstrucción la puede realizar solo una empresa con certificado ISO 14001. ¿Cualquier empresa, independientemente de su experiencia o capacidad para realizar demoliciones estructurales? No olvidemos que la deconstrucción es una demolición con unos requisitos adicionales.

La conclusión sobre el documento es bastante clara. Aunque se apuntan direcciones estratégicas respecto al ciclo de vida de las estructuras, la parte final queda algo desdibujada. No hay más remedio que acudir a otra normativa o legislación para aplicar con cierto rigor lo que establece el Código Estructural. Véase el Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición.

Aquí tenéis un vídeo sobre la demolición de estructuras en el Código Estructural. Organizado por el CITOP de Aragón.

Os dejo aquí un webminar que se desarrolló hace poco sobre el nuevo Código Estructural, organizado por el Colegio Oficial de Aparejadores y Arquitectos Técnicos de Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Lógica neutrosófica aplicada a la evaluación multicriterio de alternativas sostenibles de muros de contención de tierras

Alternativas de diseño para muros de contención de tierras

El diseño sostenible de infraestructuras es uno de los aspectos clave para alcanzar los Objetivos de Desarrollo Sostenible, debido a los impactos tanto económicos como ambientales del sector de la construcción. Las metodologías de decisión multicriterio permiten abordar el diseño sostenible de infraestructuras considerando simultáneamente el impacto de un diseño en las diferentes dimensiones de la sostenibilidad. Este artículo propone el uso de la lógica neutrosófica para resolver uno de los principales problemas asociados a la toma de decisiones: la subjetividad de los expertos implicados. Mediante el enfoque neutrosófico de la metodología AHP multicriterio y el uso de la técnica VIKOR, se analizan los impactos económicos y ambientales asociados a cuatro diseños de muros de contención de tierras.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MARTÍNEZ-MUÑOZ, D.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic logic applied to the multi-criteria evaluation of sustainable alternatives for earth-retaining walls. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.

Descargar (PDF, 2.01MB)

 

 

Toma de decisión multicriterio aplicada a la sostenibilidad de estructuras de edificios basados en métodos modernos de construcción (MMC)

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

Desde el establecimiento de los Objetivos de Desarrollo Sostenible, ha surgido una gran preocupación sobre cómo disminuir los impactos que resultan de las actividades de construcción. En este contexto, los Métodos Modernos de Construcción (MMC) surgen como una poderosa forma de reducir la huella del ciclo de vida a través de la optimización del consumo de materiales. Este trabajo se centra en la evaluación de la sostenibilidad de diferentes técnicas MMC aplicadas a estructuras de hormigón de viviendas unifamiliares. Se compara el rendimiento del ciclo de vida en términos de sostenibilidad entre un diseño de referencia convencional, un diseño prefabricado, un diseño de losa ligera con discos huecos presurizados y un diseño basado en elementos estructurales de doble pared. La sostenibilidad se evalúa mediante un conjunto de 38 indicadores que abordan no solo la respuesta económica y medioambiental de los diseños, sino también sus impactos sociales. Se aplican cinco de las técnicas más conocidas de toma de decisiones con criterios múltiples (SAW, COPRAS, TOPSIS, VIKOR y MIVES) para derivar el rendimiento del ciclo de vida de cada diseño en una única puntuación de sostenibilidad. Dado que no hay consenso sobre qué método MCDM funciona mejor en las evaluaciones de sostenibilidad, se propone aquí un Índice Global de Sostenibilidad Estructural (GSSI) que combina y pondera los anteriores para ayudar al análisis de los resultados obtenidos. Los resultados muestran que la consideración de las tres dimensiones de la sostenibilidad conduce a diseños equilibrados cuya preferencia no tiene por qué coincidir con los derivados de cada enfoque unidimensional del ciclo de vida.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE hasta el 28 de enero de 2022 en el siguiente enlace:

https://authors.elsevier.com/c/1eDIl3QCo9bRMh

Abstract

Since the establishment of the Sustainable Development Goals, great concern has arisen on how to diminish the impacts that result from construction activities. In such context, Modern Methods of Construction (MMC) rise as a powerful way to reduce life cycle impacts through optimizing the consumption of materials. This paper focuses on the sustainability assessment of different modern construction techniques applied to concrete structures of single-family houses. The life cycle performance in terms of sustainability is compared between a conventional reference design, a precast design, a lightweight slab design with pressurized hollow discs, and a design based on double-wall structural elements. The sustainability is assessed through a set of 38 indicators that address not only the economic and environmental response of the designs, but also their social impacts as well. Five of the best known Multi-Criteria Decision-Making (MCDM) techniques (SAW, COPRAS, TOPSIS, VIKOR and MIVES) are applied to derive the life-cycle performance of each design into a single sustainability score. Since there is no consensus on which MCDM method works best in sustainability assessments, a Global Structural Sustainability Index (GSSI) combining and weighting the above is proposed here to aid the analysis of the results obtained. The results show that consideration of the three dimensions of sustainability leads to balanced designs whose preference need not coincide with those derived from each one-dimensional life cycle approach.

Keywords:

Sustainability, Construction, Structural design, Life cycle cost, Life cycle assessment, Social life cycle, Multi-criteria decision-making, Modern methods of construction

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision- making applied to the sustainability of building structures bases on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

¿Qué es LEVEL(s)? El nuevo marco europeo de evaluación voluntario para mejorar la sostenibilidad en la edificación

https://www.construible.es/2020/10/20/ce-lanza-oficialmente-marco-europeo-edificios-sostenibles-level-s

A lo largo de estos años hemos visto un buen cúmulo de métodos de evaluación de la sostenibilidad en la edificación (MEES). Se trata de un campo donde nos encontramos en plena evolución conceptual, desde un enfoque inicial centrado en los impactos ambientales, hasta la inclusión paulatina de aspectos sociales y económicos de la sostenibilidad.

Todo esto ha llevado a la creación de un nuevo marco establecido por la Comisión Europea en materia de edificación que se conoce con el nombre de Level(s) y que se ha lanzado este mismo año 2021. Pero vamos a empezar contextualizando este tema y veamos después, a grandes rasgos, qué es esto de Level(s).

Se han contabilizado más de 700 métodos, desde la década de los 70, que intentan evaluar el comportamiento y rendimiento del edificio y sus impactos (López et al., 2019). Todos ellos son instrumentos basados en indicadores cuantitativos del rendimiento ambiental, económico, social y de usabilidad de los edificios que, como no puede ser de otra forma, se actualizan constantemente. No se trata solo de evaluar un edificio terminado, sino que estos métodos MEES pretenden una visión holística de la sostenibilidad que empiece desde el proyecto y que termine con el fin de la vida útil del edificio. Resulta en este punto interesante hacer referencia a la tesis doctoral de Carmen Díaz (2021), que realizó una investigación exhaustiva de 101 MEESs y que clasificó estos métodos en tres grupos: Sistemas de evaluación de la edificación sostenible, Estándares de edificación sostenible y Herramientas de evaluación.

  • Los sistemas de evaluación de la edificación sostenible tratan de evaluar, clasificar y certificar los edificios atendiendo a una serie de parámetros o categorías. En estos sistemas se establece, por tanto, una gradación entre las edificaciones. Un ejemplo sería la certificación LEED (Liderazgo en Energía y Diseño Ambiental, por sus siglas en inglés).
  • Los estándares de edificación sostenible presentan una exigencia de requisitos mínimos de desempeño y, por tanto, no establece una gradación entre las edificaciones. Sería un catálogo de soluciones constructivas o de buenas prácticas. Tenemos, por ejemplo, el caso del estándar Passivhaus (del alemán, casa pasiva).
  • Las herramientas de evaluación no evalúan, clasifican o certifican, sino que son un apoyo a otros métodos. Se trata de programas informáticos que simplifican los cálculos. Como ejemplo podemos citar EnergyPlus.
Prioridades de Level(s). https://gbce.es/blog/proyecto/levels/

Pues bien, en este contexto la Comisión Europea lanzó en 2021 un nuevo marco de evaluación voluntario denominado Level(s) que recoge los instrumentos y normas existentes con el objetivo de sensibilidad a las partes interesadas, incrementar el conocimiento, proporcionar un enfoque común, adaptarse al cambio climático y crear un marco de economía circular.

Cada indicador de Level(s) puede utilizarse para distintos tipos de evaluación del comportamiento, desde un nivel de base hasta un análisis del ciclo de vida (ACV) completo. Las prioridades que marcan los indicadores son las siguientes:

  • Emisiones de gases de efecto invernadero a lo largo del ciclo de vida del edificio.
  • Ciclos de vida de los materiales que sean circulares y eficientes en cuanto al uso de recursos.
  • Uso eficiente de los recursos hídricos.
  • Espacios sanos y confortables.
  • Adaptación y resiliencia al cambio climático
  • Coste y valor del ciclo de vida.

El proyecto se divide en 6 macroobjetivos y 16 indicadores distribuidos en tres áreas temáticas según su comportamiento. Además, Level(s) esta estructurado en tres niveles que se comportan de la siguiente manera:

Nivel 1: Nivel simple de tipo diseño conceptual del proyecto de construcción. Evaluación cualitativa para el diseño y la presentación de informes.
Nivel 2: Nivel intermedio de tipo diseño detallado y desempeño de la construcción del edificio. Evaluación cuantitativa del rendimiento diseñado y el seguimiento de la construcción de acuerdo con unidades y métodos estandarizados.
Nivel 3: Nivel avanzado de tipo desempeño tal como fue construido y el uso de cómo se desempeña el edificio después de la finalización y entrega al cliente. Evaluación cuantitativa del rendimiento del diseño y el seguimiento de la construcción de acuerdo con unidades y métodos estandarizados.

Visión general del marco de Level(s). https://itec.es/infoitec/sostenibilidad/levels-el-marco-europeo-para-edificios-sostenibles/

En este vídeo se explica, brevemente, en qué consiste Level(s).

Os paso un vídeo donde se explica la experiencia española sobre la propuesta Level(s). Espero que os sea de interés.

Referencias:

López, C. D., Carpio, M., Martín-morales, M., Díaz López, C., Carpio, M., Martín-morales, M., Zamorano, M. (2019). A comparative analysis of sustainable building assessment methods. Sustainable Cities and Society, 49, 101611. https://doi.org/10.1016/j.scs.2019.101611

Díaz-López, C. (2021). Sustainable building assessment methods: adaptation to climate change and implementation strategies. Tesis doctoral, Universidad de Granada.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nuestra aportación a la 6ª Conferencia Internacional sobre Modelos Mecánicos en Ingeniería Estructural CMMoST 2021

Como suele ser habitual, nuestro grupo de investigación suele presentar algunos de sus trabajos en la Conferencia Internacional sobre Modelos Mecánicos en Ingeniería Estructural. Estamos ya en la sexta edición, la CMMoST 2021, que se va a desarrollar del 1 al 3 de diciembre de 2021 en Valladolid (España). Se trata de un congreso bianual que, como bien indica su blog de presentación, es una excelente oportunidad para presentar a nivel internacional vuestros proyectos y compartir experiencias en el campo de los modelos mecánicos en la ingeniería estructural. CMMoST 2021 va dirigido tanto a investigadores como a profesionales dedicados al desarrollo y aplicación de modelos mecánicos en la ingeniería estructural. De este modo, ingenieros, arquitectos y otros expertos y profesionales relacionados con los modelos estructurales tienen cabida en este congreso internacional.

En esta ocasión, nos presentamos con dos comunicaciones que son parte de la investigación realizada en sendas tesis doctorales en marcha. A continuación os paso el resumen de los dos trabajos. Más adelante os pasaré las comunicaciones completas.

MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.

ABSTRACT

Bridge optimization can be difficult due to the large number of variables involved in the problem. In this work, the optimization of a steel‐concrete composite box girder bridge has been performed considering cost as objective function. To achieve this objective, Simulated Annealing (SA) has been applied as an example of trajectory‐based algorithm for the optimization of the structure. It is observed that the addition of cells to the bridge cross sections improves not only the section behavior but also the optimization results. Finally, it is observed that the proposed double composite‐action design materializing slabs on the bottom flange on supports, allows eliminating the continuous longitudinal stiffeners. This method automatize the optimization process of an initial design of a composite bridge, which has traditionally been based on the technician’s own experience, allowing to reach results in a more efficient way.

Keywords: Optimization, Structures, Composite bridges, Metaheuristics, Trajectory‐based algorithms.

 

SÁNCHEZ-GARRIDO, A.J.; MARTÍNEZ-MUÑOZ, D.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic logic applied to the multi-criteria evaluation of sustainable alternatives for earth-retaining walls. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.

ABSTRACT

The sustainable design of infrastructures is one of the key aspects for the achievement of the Sustainable Development Goals, given the recognized magnitude of both the economic and environmental impacts of the construction sector. Multi-criteria decision methodologies allow addressing the sustainable design of infrastructures, simultaneously considering the impact of a design on the different dimensions of sustainability. This article proposes the use of neutrosophic logic to solve one of the main problems associated with decision making: the subjectivity of the experts involved. Through the neutrosophic approach of the AHP multi-criteria methodology and the use of the VIKOR technique, the economic and environmental impacts associated with four earth retaining wall designs are analyzed. In the present assessment, the most sustainable response over its life cycle has been found to be the gabion wall.

Keywords: Sustainability, Retaining walls, Neutrosophic logic, AHP, Multi-criteria decision making.

 

Special Issue “2nd Edition of Trends in Sustainable Buildings and Infrastructure”

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 3.390 (2020)

JCR category rank: Q1: Public, Environmental & Occupational Health (SSCI) | Q2: Public, Environmental & Occupational Health (SCIE) | Q2: Environmental Sciences (SCIE)

Special Issue “2nd Edition of Trends in Sustainable Buildings and Infrastructure”

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 30 September 2022.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor

Prof. Dr. Moacir Kripka
Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo CEP 99052-900, Brazil
Interests: structural analysis; optimization; building; engineering optimization; civil engineering; linear programming; mathematical programming; heuristics; structural optimization; concrete; combinatorial optimization; structural engineering; multiobjective optimization; reinforced concrete; optimization methods; discrete optimization; optimization theory; simulated annealing; optimization software

Special Issue Information

Dear Colleagues,

This Special Issue is the 2nd edition of Trends in Sustainable Buildings and Infrastructure. The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

Sostenibilidad de las carreteras rurales mediante la lógica neutrosófica

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. En este caso se ha considerado la incertidumbre en la determinación de los criterios para la sostenibilidad en carreteras rurales usando la lógica neutrosófica. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En Latinoamérica existe una gran diferencia entre los kilómetros de vías pavimentadas y los que no tienen ningún tipo de protección. Esta situación se agrava en las zonas rurales, limitando las oportunidades de desarrollo y la calidad de vida de los habitantes. En Chile, existen programas estatales que buscan reducir la brecha territorial a través de soluciones básicas de pavimentación de bajo costo; sin embargo, los criterios de priorización aplicables a los caminos rurales son poco claros. Son múltiples los actores que intervienen en los espacios rurales, y la inexistencia de patrones de referencia aumenta la subjetividad en la toma de decisiones de este tipo de infraestructuras. Este estudio intenta determinar los criterios que influyen en la selección de caminos rurales en el sur de Chile para promover el desarrollo territorial sostenible considerando los múltiples actores y la incertidumbre del proceso de selección. Para ello, se realizó una revisión documental, visitas a terreno y 12 entrevistas semiestructuradas. Los criterios se han validado a través de un panel multidisciplinario de expertos y la aplicación de números neutrosóficos para abordar la incertidumbre derivada de estas consultas. Los resultados de este estudio aportan 14 criterios basados en la sostenibilidad para apoyar la planificación de caminos rurales básicos en el sur de Chile.

Abstract:

In Latin America, there is a wide gap between kilometers of paved ways and those with no type of protection. This situation is worse in rural areas, limiting development opportunities and inhabitants’ quality of life. In Chile, there are state programs that seek to reduce the territorial gap through basic low-cost paving solutions; however, the prioritization criteria for rural roads are unclear. Multiple actors affect the rural territories, and the non-existence of reference patterns increases subjectivity in infrastructure decision making. This study attempts to determine criteria that influence the selection of rural roads in southern Chile to promote sustainable territorial development considering multiple actors and the uncertainty of the selection process. For this, a documentary review, field visits, and 12 semi-structured interviews were conducted. The criteria are validated through a multidisciplinary panel of experts and the application of neutrosophic numbers to address the uncertainty derived from the expert consultations. The results of this study contribute 14 sustainable criteria in order to support the planning of basic rural roads in southern Chile.

Keywords:

Rural road; uncertainty; Chile; neutrosophic; sustainability; stakeholders

Reference:

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic. Sustainability, 13(17):9854. DOI:10.3390/su13179854

Descargar (PDF, 1.11MB)

Open Access Book: Trends in Sustainable Buildings and Infrastructure

Tengo el placer de compartir con todos vosotros, totalmente en abierto, un libro que he editado junto con Ignacio J. Navarro. La labor de editar libros científicos es una oportunidad de poder seleccionar aquellos autores y temas que destacan en un ámbito determinado. En este caso, sobre las tendencias en las infraestructuras y la construcción sostenible.

Además, resulta gratificante ver que el libro se encuentra editado en abierto, por lo que cualquiera de vosotros os lo podéis descargar sin ningún tipo de problema en esta entrada del blog. También os lo podéis descargar, o incluso pedirlo en papel, en la página web de la editorial MPDI: https://www.mdpi.com/books/pdfview/book/3854

Referencia:

YEPES, V.; NAVARRO, I.J. (Eds.) (2021). Trends in Sustainable Buildings and Infrastructure. MPDI, 272 pp., Basel, Switzerland. ISBN: 978-3-0365-0914-3

 

Preface to ”Trends in Sustainable Buildings and Infrastructure”

The Sustainable Development Goals agreed by the United Nations in 2015 advocate for a profound paradigm shift in the way that infrastructures are designed. Actual practices usually fall short in assessing issues beyond the economic ones. Aspects such as the environmental impacts resulting from the life cycle of our structures, as well as the positive and negative effects that their construction and maintenance can have on society, are new criteria that need to be effectively included in our designs by 2030. To face such a challenging task, actual practices need to be reinvented, approaching the design of infrastructures from a holistic perspective that simultaneously integrates each of the three dimensions of sustainability, namely economy, environment and society. This book comprises 11 chapters that explore the actual sustainability-related trends in the construction sector. The chapters collect the papers included in the Special Issue “Trends in Sustainable Buildings and Infrastructure” of the International Journal of Environmental Research and Public Health. We would like to thank both the MDPI publishing and editorial staff for their excellent work, as well as the authors who have collaborated in its preparation. The papers included in this book cover a broad range of topics directly related to the sustainable design of infrastructures, addressing maintenance design criteria towards sustainability, life-cycle-oriented building and infrastructure design, design optimization based on sustainable criteria, inclusion of the social dimension in the design of infrastructures and the application of decision-making processes that effectively integrate the three dimensions of sustainability, resilience and the use of sustainable materials.

About the Editors

Víctor Yepes is a full professor of Construction Engineering; he holds a Ph.D. in civil engineering. He serves at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has been the Academic Director of the M.S. studies in concrete materials and structures since 2007 and a Member of the Concrete Science and Technology Institute (ICITECH). He is currently involved in several projects related to the optimization and life-cycle assessment of concrete structures, as well as optimization models for infrastructure asset management. He currently teaches courses in construction methods, innovation, and quality management. He has authored more than 250 journals and conference papers, including more than 100 published in journals quoted in JCR. He acted as an expert for project proposal evaluation for the Spanish Ministry of Technology and Science, and he is a main researcher in many projects. He currently serves as an Editor-in-Chief for the International Journal of Construction Engineering and Management and a member of the editorial board of 12 other international journals (Structure and Infrastructure Engineering, Structural Engineering and Mechanics, Mathematics, Sustainability, Revista de la Construcci´on, Advances in Civil Engineering, Advances in Concrete Construction, among others).

Ignacio Navarro Martíınez holds a Ph.D. degree in civil engineering. He works at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has published 11 articles and 9 conference papers in JCR journal. He combines his research activity with his professional career as a structural designer. During his professional experience, he has been dedicated to the calculation of steel and concrete structures related to renewable energies, especially in the field of wind energy, both onshore and offshore, as well as to the calculation of road and port structures. He has specialized in the numerical calculation of steel and concrete structures in onshore and offshore environments.

Descargar (PDF, 55.18MB)

Análisis de ciclo de vida de aislamientos reciclados en edificación para diferentes condiciones climáticas en España

Acaban de publicarnos un artículo en la revista Resources, Conservation and Recycling, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis del ciclo de vida de los aislamientos utilizados en edificación reciclados y no reciclados, atendiendo a las diferentes condiciones climáticas de España. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El sector de la construcción representa más del 40% del consumo de energía en la Unión Europea, así como una de las causas significativas de impacto ambiental. Por ello, este sector necesita políticas que promuevan la eficiencia energética de los edificios. Uno de los componentes estructurales más importantes para alcanzar esta eficiencia energética son las fachadas. En este trabajo se elige la fachada ventilada por su mejor comportamiento de aislamiento térmico. El impacto ambiental de la fachada ventilada depende del material de aislamiento térmico. El objetivo de este trabajo es evaluar el impacto ambiental de diferentes fachadas ventiladas en función de su comportamiento de aislamiento térmico. Para ello, se aplica la evaluación del ciclo de vida en fachadas ventiladas con diferentes materiales en distintas ubicaciones. Los materiales estudiados son la lana de roca, el corcho natural y el corcho reciclado, y las ubicaciones consideradas son las diferentes zonas climáticas de España. Para llegar a una evaluación ambiental completa se considera todo el ciclo de vida de las fachadas ventiladas, desde la cuna hasta la tumba. Para ello se utiliza el software Open LCA con la base de datos Ecoinvent con el método ReCiPe. Los resultados muestran que el corcho reciclado es el aislamiento térmico con menor impacto ambiental, independientemente de la ubicación.

Abstract:

The construction sector represents more than 40% of energy consumption in the European Union, as well as one of the biggest causes of environmental impact. Therefore, this sector needs a great deal of intervention through policies that promote the energetic efficiency of the buildings. One of the most important structural components to reach this energetic efficiency is the facades. In this work, the facade ventilated is chosen due to its better thermal insulation behaviour. The environmental impact of the facade ventilated depends on the thermal insulation material. The goal of this paper is to evaluate the environmental impact of different ventilated facades according to their thermal insulation behavior. For this purpose, the life-cycle assessment is applied in ventilated facades with different materials in different locations. The materials studied are the rock wool, the natural cork and the recycled cork, and the locations considered are the different climatic areas of Spain. To reach a complete environmental assessment all the ventilated facades life-cycle is considered, from cradle to grave. To do this we use the Open LCA software with the Ecoinvent database with the ReCiPe method. The results show that the recycled cork is the thermal insulation with the lowest environmental impact regardless the location.

Keywords:

Life cycle assessment; ReCiPe; Facade ventilated; Thermal insulation; Sustainability

Reference:

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

Descargar (PDF, 1.25MB)