Joaquín Pons, becado por la Caixa

Joaquín Pons, junto con el Director de la ETSICCP de Valencia, Eugenio Pellicer

A veces ser profesor tiene compensaciones que van más allá de tus tareas habituales. Es el caso de Joaquín Pons, que fue becario de investigación en mi grupo durante el curso 2018-2019. He tenido el privilegio de dirigir a Joaquín, junto con el profesor Ricardo Insa, durante estos últimos años tanto en su Trabajo Fin de Grado (que por cierto, obtuvo la máxima calificación posible) como sus estudios de investigación cuando apenas había acabado el segundo curso de Ingeniería Civil.

Su TFG tenía el título siguiente: “Estudio de soluciones para la construcción y mantenimiento de superestructuras ferroviarias mediante criterios de sostenibilidad y análisis del ciclo de vida. Aplicación a la línea de Alta Velocidad Madrid-Norte de España“. Ya tendré ocasión de hablar de este trabajo, absolutamente brillante. Ha sido la primera vez que un TFG ha incluido en su resolución, los objetivos de desarrollo sostenible 2030 (contemplando la sostenibilidad social y ambiental en un proyecto).

Tanto es así, que publicamos un artículo científico de muy alto impacto (en el primer decil del JCR) cuando apenas estaba cursando el tercer curso de su grado. Ya hemos enviado un segundo artículo y, estamos preparando un tercero. Se trata, de un alumno muy brillante, como veis. Cómo no, obtuvo el mejor expediente académico de su promoción en este curso que terminó.

Pues bien, tengo la satisfacción de dar la noticia de que Joaquín ha conseguido una de las 10 becas de La Caixa para estudios de posgrado en universidades europeas, en el ámbito de las ingenierías y las tecnologías. La entidad financiera La Caixa convoca cada año su programa de becas para cursar estudios de posgrado en cualquier universidad o centro de enseñanza superior de cualquier país del Espacio Europeo de Educación Superior.

861 estudiantes con altas calificaciones de toda España optaron a las becas (de todos los ámbitos y estudios universitarios). Finalmente se han concedido 75 y de ellas solo 10 al ámbito de las ingeniería y tecnologías. Una de estas 10 becas es la que ha recibido Joaquín.  La cuantía de la beca “cubre la matrícula del programa de estudios, una dotación mensual y otras dotaciones para gastos relacionados con los estudios”.

Según nos explica el propio Joaquín: “voy a estudiar el MSc Transport and Business Management, ofrecido conjuntamente por el Imperial College London y UCL, durante el próximo año. Son 90 ECTS, de octubre a octubre, sin vacaciones en verano”.

Para la Escuela de Caminos de la UPV, pero sobre todo para mí como director en su trayectoria, es un orgullo formar a estudiantes capaces de conseguir estas becas competitivas, ¡Enhorabuena, Joaquín!

Referencias:

PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:1016/j.jclepro.2018.04.268

Demolición del Puente de los Ingleses

El puente de los Ingleses, Burgos. De DaianaSol – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64484066

A veces no hay más remedio que sustituir algunas infraestructuras. Sin embargo, cuando desaparece un puente, algo nuestro también se va. Es el caso de este puente burgalés.

El Puente de los Ingleses, inaugurado en 1928, se ha demolido para construir un nuevo puente sobre el Arlazón y el vial de la Universidad, en Burgos. Este puente formaba parte de la infraestructura de la línea Santander-Mediterráneo.

Este puente de fábrica se utilizó hasta que se cerró la línea férrea, usándose desde entonces como ​  ramal industrial para dar servicio al Polígono de Villalonquéjar hasta 2009. Su demolición se realizó en marzo de 2018.

En su lugar se ha construido un nuevo puente que da continuidad a los viales cercanos y que une los barrios de la zona suroeste (como el barrio del Pilar, la zona de Bakimet y el campus universitario de la Milanera) con los barrios de la zona noroeste (como Fuentecillas y la barriada Yagüe).

Os dejo a continuación un vídeo rápido elaborado por Herrero Temiño, la empresa adjudicataria del proyecto, que lo ha ejecutado en colaboración con Metálicas Estrumar, encargada de la nueva estructura. Espero que os guste.

 

 

 

Revisión de los métodos de optimización aplicados al consumo de energía en ferrocarriles

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR. Se trata de un artículo de revisión del estado del arte donde se analizan 52 artículos científicos relacionados con el consumo energético en ferrocarriles. Se analizan dos áreas principales: las técnicas de modelización utilizadas para simular el movimiento de los trenes y el consumo de energía, y los métodos de optimización utilizados para conseguir una circulación ferroviaria más eficiente. Se describen brevemente los métodos más utilizados en cada caso y se analizan las principales tendencias encontradas. Además, se ha realizado un estudio estadístico para reconocer las relaciones entre los métodos y las variables de optimización. Se encontró que los modelos determinísticos basados en la ecuación de Davis son, con diferencia (85% de los trabajos revisados), los más comunes en términos de modelización. En cuanto a la optimización, los métodos meta-heurísticos son la opción preferida (57,8%), en particular los Algoritmos Genéticos. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar las infraestructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 3 de mayo de 2019 en el siguiente enlace: https://authors.elsevier.com/a/1YjHX3QCo9Uqa3

Abstract:

Railways are a rather efficient transport mean, and yet there is increasing interest in reducing their energy consumption and making them more sustainable in the current context of climate change. Many studies try to model, analyse and optimise the energy consumed by railways, and there is a wide diversity of methods, techniques and approaches regarding how to formulate and solve this problem. This paper aims to provide insight into this topic by reviewing up to 52 papers related to railways energy consumption. Two main areas are analysed: modelling techniques used to simulate train(s) movement and energy consumption, and optimisation methods used to achieve more efficient train circulations in railway networks. The most used methods in each case are briefly described and the main trends found are analysed. Furthermore, a statistical study has been carried out to recognise relationships between methods and optimisation variables. It was found that deterministic models based on the Davis equation are by far (85% of the papers reviewed) the most common in terms of modelling. As for optimisation, meta-heuristic methods are the preferred choice (57.8%), particularly Genetic Algorithms.

Keywords:

Railways
Energy efficiency
Modelling
Optimisation
Meta-heuristics

Reference:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; INSA-FRANCO, R.; YEPES, V. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

 

 

Puente del Barranco de la Batalla, en Alcoy (Alicante)

Puente del Barranco de la Batalla. Imagen: V. Yepes (2019)

En esta entrada vuelvo a contar algunas anécdotas sobre las infraestructuras que rodean Alcoy, cuna de muchos ingenieros de caminos, entre los que me incluyo. Este puente ferroviario, de la malograda línea de ferrocarril entre Alicante y Alcoy, forma parte de un valioso conjunto de viaductos realizados a finales de los años veinte.

El puente que describimos a continuación, recibe varios nombres, como el puente del Barranco de la Batalla, del Barranco de San Antonio, e incluso, puente de las Siete Lunas. Sin embargo, ésta última acepción lo confunde con el verdadero puente formado por siete arcos que se encuentra dispuesto paralelo al que vamos a describir, a 20 m aguas abajo, en la carretera N-340 entre Alcoy y Alicante. Asimismo, también se llama “de las Siete Lunas” el viaducto más espectacular de todo el trazado ferroviario, que es el situado sobre el río Polop. Es sugerente el nombre de “Barranco de la Batalla”, pues rememora la revuelta entre mudéjares y cristianos en la que el caudillo andalusí Al-Azraq quiso reconquistar la ciudad de Alcoy y que, según la leyenda, tuvo lugar la aparición de San Jorge. De esta tradición surge la famosa fiesta de Moros y Cristianos, declarada de Interés Turístico Internacional. Pero eso es otra historia.

La idea de una linea de ferrocarril entre Alcoy y Alicante tuvo su primer impulso con la Primera República, que el 10 de mayo de 1873 adjudicó el proyecto. Posteriormente, hubo diferentes iniciativas en 1900 y 1902, así como otra del Ayuntamiento de Alcoy en 1908. Tendría que llegar el gobierno de Primo de Rivera, y su ministro de Obras Públicas el conde de Guadalhorce, para que este proyecto se declaró prioritario en un plan nacional.

Este puente, al igual que todos los de la  línea férrea, tuvo sus orígenes el la R.O. de 5 de marzo de 1926, en el “Plan preferente de ferrocarriles de urgente construcción“, el conocido como Plan Guadalhorce. Se trataba de 66,200 km de trazado que comprendía la explanación general, obras de fábrica y túneles, y cuyo proyecto lo redactó el ingeniero de caminos D. José Roselló Martí en 1927, puesto que estaba destinado en la 3ª jefatura de Estudios y Construcciones de Ferrocarriles del Sureste de España. Roselló se basó en un proyecto previo de D. Próspero Lafarga, que incluía viaductos metálicos de tramos rectos de 50 m de luz, pero que cambió por viaductos en arco de hormigón armado, más baratos. Aunque la obra empezó y se construyeron túneles y puentes, la crisis de la época paralizó la mayoría de obras en curso, incluida ésta. Nunca más se retomó la obra, aunque hoy día tenemos una fantástica Vía Verde para el disfrute de todos los aficionados. Ya hablamos de este tema en una entrada anterior de este blog.

Puente del Barranco de la Batalla. Imagen: V. Yepes (2019)

Centrándonos en este puente, diremos que tiene una longitud de 69 m y una altura máxima de 20 m sobre el cauce. Se trata de un arco rebajado de 44 m de cuerda y 8,80 m de flecha. En los arranques su espesor es de 1,50 m que se reduce a 1,10 m en la clave, siendo su ancho de 3,60 m. La rasante tiene una pendiente ascendente del 2,1%. Se trata de una obra que salva la dificultad del estrecho paso entre dos túneles de 900 y 1200 m de longitud. El entorno es de roca caliza competente, lo cual permitió esta tipología de arco. Se utilizó un procedimiento constructivo basado en dos castilletes de celosía y poleas diferencias para el montaje de las cimbras y cerchas metálicas. Las cimbras que se utilizaron aquí fueron modificadas de las que se usaron en el viaducto del Cint, en la misma línea. El lector que se interese mayor documentación sobre éste y otros acueductos de esta línea ferroviaria, puede consultar la Revista de Obras Públicas año 1929, páginas 349, 365 y 381.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

Morfología de tableros aligerados de canto constante postesados para puentes carreteros y ferroviarios

Prueba de carga en puente de canto constante postesado

RESUMEN: En el trabajo se aborda una caracterización estadística de una muestra de 82 tableros reales tipo losa pretensada de canto constante para carreteras y ferrocarriles. El objetivo principal es encontrar fórmulas de predimensionamiento con el mínimo número de datos posible que permita mejorar el diseño previo de estas estructuras. Para ello se ha realizado un análisis exploratorio y otro multivariante de las variables geométricas determinantes, de las cuantías de materiales y del coste de los tableros. Los modelos de regresión han permitido deducir que el canto queda bien explicado por la luz y el aligeramiento exterior. El canto es la variable que mejor explica el coste por unidad de superficie de tablero en losas para carreteras (51,9%), mientras que en las de ferrocarriles sólo lo explica en un 23,4%, por lo que se necesitan más variables para su explicación. La luz principal y los voladizos bastan para el diseño previo de losas para carreteras; si además se incluye el número de vanos y la longitud total, se pueden predimensionar las losas de ferrocarril, con errores razonables en la estimación económica.

PALABRAS CLAVE: Puentes pretensados, Puentes carreteros, Puentes ferroviarios, Análisis multivariante, Predimensionamiento económico.

REFERENCIA:

YEPES, V.; ALCALÁ, J.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F. (2011). Morfología de tableros aligerados de canto constante postesados para puentes carreteros y ferroviarios. Ingeniería Civil, 161:61-72. [Post-stressed constant depth beam concrete road and railway bridge voided decks morphology].

Descargar (PDF, 332KB)

Esto me suena… El viaducto sobre el río Almonte de Garrovillas de Alconétar

Viaducto sobre el río Almonte. Fuente: ADIF

Va siendo ya habitual colaborar de vez en cuando con el periodista José Antonio García Muñoz, conocido como Ciudadano García, sobre temas de ingeniería. Como ya he comentado en alguna entrada anterior, la labor de divulgación de las ciencias, y en particular de la ingeniería, resulta una tarea agradable y enriquecedora.

Hoy hemos hablado acerca del viaducto sobre el río Almonte de Garrovillas de Alconétar (Cáceres) con motivo de haber sido la obra ganadora de los premios anuales a la Excelencia en la Construcción con hormigón que otorga el ACI (American Concrete Institute). Con una longitud total de 996 m, la luz del vano principal es 384 m, que lo convierte en el puente ferroviario más grande de España y en el puente de arco de hormigón para servicio ferroviario de alta velocidad más grande del mundo. Si se compara sólo con puentes de arco de hormigón, fuera del uso ferroviario, es el tercero de mayor luz a nivel mundial; por detrás del puente de Waxian que presenta un arco de 421 m en China y el puente KRK con un arco de 390 m en Croacia. Destaca el uso de hormigón autocompactante de 80 MPa y su construcción monitorizada, que aportó información sobre el comportamiento de la estructura durante la construcción y la entrada en servicio.

Tener la oportunidad de comunicar aspectos de nuestra profesión a más de 300.000 oyentes supone todo un reto, más si lo que se busca es transmitir de forma sencilla y para todo el mundo, aspectos técnicos que, a veces, solo somos capaces de hacerlo con colegas o estudiantes. Insisto, todo un reto y una oportunidad que se agradece.

Os dejo a continuación el audio por si queréis escucharlo. Se grabó en directo, y suena tal cual se hizo. Espero que os guste.

También os dejo un vídeo del procedimiento constructivo, obra de FCC.

 

Construcción del viaducto de O Eixo

El viaducto de O Eixo se encuentra situado en el amplio valle, que forma el Rego de Aríns, entre las localidades de O Eixo de Arriba y O Eixo de Abajo, de las que recibe su nombre. Forma parte del corredor norte-noreste del tren de alta velocidad Lalín-Santiago (A Coruña). Tiene una longitud total de 1.224,4 m repartidos en 25 vanos con luces de 42,5 + 25 x 50 + 39,10 m. Presenta un canto variable de 4,0 a 2,75 m y un ancho de tablero de 14,0 m. Las pilas, que varían entre 9 y 84 m de altura, son de sección octogonal de 5,5 m de anchura y variable en altura. Ocupando los vanos 12 y 13 se proyecta un arco ligeramente ojival donde se materializa el punto fijo.

En cuanto al proceso constructivo, cabe destacar que las pilas se ejecutaron mediante encofrado trepante, mientras que el tablero se construyó mediante cimbra autolanzable y ejecución vano a vano. El hormigonado se ejecutó en dos fases. En la primera se hormigona toda la sección compuesta por la tabla inferior y las almas. En la segunda fase se hormigona la losa superior. Posteriormente se introduce el postensado de la misma y se le da continuidad con los siguientes vanos mediante el cruce de tendones en los frentes de fase, evitando de esta manera disponer conectadores.

El arco se ejecutó en dos mitades ejecutadas por separado, ubicando cada uno de los semiarcos en vertical junto a las pilas 11 y 13. Una vez hormigonados los dos semiarcos realizó el giro de ambos por medio de unas rotulas metálicas ubicadas junto a las zapatas. Una vez colocados los dos semiarcos en su posición definitiva se hormigona la zona de empotramiento con la zapata uniendo las armaduras de espera de la pila con las de la zapata, utilizando manguitos. Dicha rótula quedará embebida posteriormente al hormigonarse la zona de empotramiento, pila-encepado.

Los semiarcos quedan fijos entre sí mediante el hormigonado de una zona de unión de ambos y con armadura pasiva. El arco una vez monolítico lleva en su parte superior un tetón de hormigón armado que quedará solidarizado con un hueco dejado en el tablero mediante un pretensado vertical y otro horizontal que se tesará en la fase correspondiente, es decir, una vez realizado el tesado de la fase 12.

Una descripción completa la podéis ver en el siguiente enlace: http://e-ache.com/modules/ache/ficheros/Realizaciones/Obra109.pdf

También os aconsejo el siguiente link de Xosé Manuel Carreira: http://notonlybridges.blogspot.com.es/2008/01/bridge-for-our-high-speed-train.html

 

Para aclarar estos aspectos constructivos, os dejo un vídeo donde se describen las peculiaridades, especialmente la construcción del arco. Espero que os guste.

También os dejo un vídeo (en gallego) sobre el viaducto:

Construcción de puentes arco por voladizos sucesivos atirantados con torre provisional

Arcos por atirantamientoSe pueden construir puentes arco por voladizos sucesivos sujetando cada tramo mediante tirantes desde torres provisionales. Una vez se tocan los semiarcos, se puede eliminar el atirantamiento y las torres y construir sobre el arco las pilas y el tablero. Es una técnica similar al avance por voladizos sucesivos de los tableros rectos, pudiéndose realizar con dovelas prefabricadas o bien por carro de avance hormigonando “in situ”. Este procedimiento constructivo permite la construcción de arcos de grandes luces, empleando un volumen de medios auxiliares reducido en comparación con otros métodos.

Este procedimiento constructivo se empleó en el montaje de cimbras, aunque hasta finales del siglo XIX no se empezó a utilizar para construir un arco completo. En efecto, James B. Eads construyó el puente metálico de San Luís (1867-1874) sobre el Mississippi con atirantamientos provisionales. El sistema también lo utilizó Gustave Eiffel en la construcción de los puentes arco metálicos de María Pía y Garabit.

Puente Eads, sobre el Mississippi en San Luís (Misuri). Diseñado por James Buchanan Eads, fue un puente metálico construido en 1874. Con tres arcos de 153, 158 y 153 m dispuso del arco más grande de su tiempo. Destacó también el empleo de cajones de aire comprimido para su cimentación.
Construcción del puente María Pía (Oporto). Gustave Eiffel y Théophile Seyring proyectaron este puente, que con 160 m de luz principal, fue el arco más largo del mundo entre 1877, fecha de su terminación, y 1884.
Viaducto de Garabit , sobre el río Truyère (Francia). Con sus 165 m de luz principal, fue el mayor arco desde 1884 a 1886. El puente lo construyó la compañía de Eiffel.

La técnica empezó a usarse en arcos de hormigón en 1952 cuando Freyssinet empleó parcialmente este método en los arranques de los arcos en los viaductos de la carretera al puerto de La Guaira, en Caracas. El tramo central de la cimbra se elevó desde el fondo del barranco apoyándose en los arranques de arco atirantados.

Construcción del Viaducto 1 de la autopista Caracas la Guaira (Venezuela). Los viaductos, construidos en 1952, son tres puentes arco biarticulados de 152, 146 y 138 m de luz, de E. Freyssinet.

Una realización más reciente construida con este sistema de atirantamiento provisional es el puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante (Manterola et al., 2012). Se trata de un arco de 261 m de luz, con tablero superior de hormigón pretensado y una longitud total de 587, 25 m. Los semiarcos avanzan por voladizos sucesivos mediante hormigonado con carro de avance, para lo cual se disponen dos pilonos metálicos sobre el tablero, en la vertical de unas pilas provisionales.

Puente de ferrocarril sobre el embalse de Contreras. Detalle de la construcción del arco.

A continuación os dejo algunos vídeos que muestran la construcción del viaducto de Contreras. Espero que os sean de interés.

Referencia:

MANTEROLA, J.; MARTÍNEZ, A.; NAVARRO, J.A.; MARTÍN, B. (2012). Puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante. Hormigón y Acero, 63:5-29.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Springsol: mejora de terrenos mediante columnas de suelo-cemento

Figura 1. http://www.tectonica-online.com/

Springsol es una técnica especialmente útil en el tratamiento del terreno en trabajos de rehabilitación o refuerzo de estructuras, terrenos bajo losas de naves industriales, terraplenes en infraestructuras de comunicación, etc. Se encuentra a medio camino entre el pilote de mortero, las columnas de suelo-cemento realizadas mediante jet grouting y las columnas de mortero inyectado a presión controlada ejecutadas mediante intrusiones rígidas o compaction grouting.

Se trata de un procedimiento donde se crea una columna de suelo-cemento por medios mecánicos, con unas aspas o alas que giran y amasan el suelo. Utiliza equipos de tamaño reducido realizando perforaciones de pequeños diámetros (de 100 a 150 mm). Esta característica permite minimizar el efecto sobre losas, soleras o zapatas, siendo posible perforar estratos intermedios no perforables con barrenas, dejando los primeros metros sin tratamiento. Además, evita la inyección a altas presiones, susceptibles de afectar a las estructuras. Además, permite ejecutar la columna a partir de una profundidad concreta (con, por ejemplo tapones, de fondo).

Una aplicación especialmente interesante es el tratamiento de taludes ferroviarios atravesando el balasto, evitando su contaminación, con una mínima afección al servicio.

Figura 2. Aspecto de la columna formada. http://www.rodiokronsa.es/
Figura 3. A- Perforación con ligante. B- Mezcla suelo-ligante (rechazo). C- Apertura de alas bajo tubería. D- Perforación, mezcla suelo-ligante. Diámetro de columna 400 mm. http://www.tectonica-online.com/
Figura 4. http://actions-incitatives.ifsttar.fr/

Os paso a continuación una animación donde se puede ver con mayor claridad cómo funciona este tratamiento.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp.

La viabilidad de la vía en placa en líneas de alta velocidad

Vía en placa de hormigón en Alemania. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Feste_Fahrbahn_FFB%C3%B6gl.jpg
Vía en placa de hormigón en Alemania. Fuente: https://es.wikipedia.org

La concepción de la superestructura del ferrocarril presenta ciertas semejanzas de evolución conceptual e histórica respecto a la de las carreteras. De hecho, el dualismo existente en los firmes de carreteras referido a los firmes flexibles y los rígidos, puede extenderse, de alguna forma, al existente en la tecnología del ferrocarril respecto a la superestructura de vía con balasto o sin él, es decir, con vía en placa. El debate entre el uso del balasto o de la vía en placa es un debate abierto (Puebla et al., 2000), donde los condicionantes técnicos, funcionales y económicos cobran especial importancia, especialmente cuando se refieren a las líneas de alta velocidad.

La superestructura de balasto presenta, sin duda, ventajas importantes como son los costes de construcción menores que las alternativas sin balasto, la posibilidad de modificar la situación de la vía sin causar problemas de explotación, la regulación sencilla de la altura en caso de asientos de terraplenes, una buena amortiguación acústica y una conservación avalada por la experiencia, con medios mecanizados (Estrade, 1991). Países mediterráneos como Francia, Italia o España han sido partidarios del balasto debido, entre otras causas, a la calidad de los yacimientos de rocas silíceas que permiten, según indican Puebla et al. (2000) una adecuada relación comportamiento/coste. Además, como indica Melis (2006a), los grandes descensos de los terraplenes impiden en ocasiones poner vía en placa sobre ellos. Ello supone, de hecho (Melis, 2006b) la práctica eliminación de los terraplenes altos en las líneas de alta velocidad, reduciendo su altura a 9 m y su asiento a 30 mm, bajando rasantes y alargando túneles.

Sin embargo, uno de los problemas más importantes de las líneas de alta velocidad es el mantenimiento de la calidad de la vía sobre balasto. Este hecho se constató ya en la línea del Tokaido, en Japón, en el año 1964, para velocidades máximas de 210 km/h. El mantenimiento de la calidad geométrica de la vía obliga a operaciones mecanizadas de mantenimiento. Esta dificultad, además, suele ser mayor en infraestructuras difíciles como puentes y túneles. Así, ya en 1924 en un túnel japonés se sustituyó el balasto por unos bloques de madera embebidos en hormigón, formando un basamento bajo cada carril para evitar los problemas con los flujos de agua. Por tanto, la necesidad de una alternativa al balasto se reveló como importante, a pesar de que dicha tecnología también presentaba problemas a resolver. Esta necesidad de un sistema de vía distinto al tradicional ya se puso de manifiesto en 1971 en el estudio HSB (ver Escolano, 1998) para velocidades superiores a los 200 km/h. Ello se debe a que el esfuerzo dinámico aumenta con la velocidad del tren y depende de la calidad posicional de la vía. Es por ello que Alemania adoptó la decisión de aplicar este tipo de montaje en todas sus nuevas líneas de alta velocidad. A todo ello habría que añadir el efecto del schotterflug o “vuelo del balasto” arrastrastrado en el caso de trenes circulando a elevada velocidad (Melis, 2006b).

Vista de como se construye la vía, las armaduras posicionan las traviesas y luego serán hormigonadas. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Schwellen_Rheda.jpg
Vista de como se construye la vía, las armaduras posicionan las traviesas y luego serán hormigonadas. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Schwellen_Rheda.jpg

Los elementos constitutivos de la vía en placa lo forma la plataforma, la solera, la placa soporte, la fijación del carril, la soldadura en barra larga y los elementos adicionales. Una ventaja que caracteriza a la vía en placa es que, frente a la rodadura, el sistema presenta una elasticidad y una amortiguación independiente de la climatología, con una alta disponibilidad para el servicio del vial, con un buen comportamiento ante la dinámica de la marcha, y por tanto, y bajo mantenimiento (Escolano, 1998). Además, las proyecciones de balasto quedan descartadas, precisan de una sección menor de los túneles, se adapta mejor al terreno y el comportamiento se garantiza para velocidades menores a 300 km/h (Escolano, 1998). Otro aspecto de gran importancia es, tal y como indica López-Pita (2001), la cuantificación de la rigidez vertical de la vía. Se trata de un indicador clave en los fenómenos de interacción vía-vehículo, y por tanto, en el deterioro de la vía, especialmente importante en las líneas de alta velocidad. En este sentido, López-Pita (2001) indica que la degradación de la capa de balasto por causa de las vibraciones generadas por el material ferroviario, especialmente en líneas de alta velocidad, podría limitarse con el empleo de vía en placas de asiento de elevada elasticidad. En este sentido, Sheng et al. (2004) comentan que la placa en vía puede reducir el nivel de vibración frente al balasto en el caso de presencia de irregularidades verticales. La solución de vía en placa es más cara de construcción, pero más económica en su mantenimiento. Así por ejemplo, Esveld (2001) indica que este coste de mantenimiento puede reducirse hasta un 70-90%. El encarecimiento se debe, fundamentalmente, a los bajos rendimientos. Además, el rectificado y ajustado del posicionamiento del carril se mueve dentro de límites muy estrictos.

Lei y Zhang (2011) presentaron un modelo de análisis dinámico que le permitió desarrollar un nuevo tipo de placa para vía. Poveda et al. (2015) han presentado recientemente un estudio numérico sobre fatiga en el diseño de placas para vía. Parte de estos autores presentaron también un diseño experimental que comprobaba el comportamiento a fatiga de estos elementos (Tarifa et al., 2015). El Ministerio de Fomento (2014), elaboró una monografía sobre la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril, centrándose en la vía en placa en aquellos aspectos no contradictorios con dichos códigos.

Puebla et al. (2000) indican cuatro grupos de sistemas de vía en placa: construcción en capas, construcción monolítica, construcción por bloques recubiertos de elastómero y sistemas de construcción especiales. En cualquier caso, el problema más importante que afecta a la viabilidad económica de la vía en placa es su materialización, es decir, los costes elevados derivados de su construcción. Las causas del bajo rendimiento y del elevado coste del montaje de vía sobre placa se debe fundamentalmente a dos motivos. El primero al propio montaje de la vía a su posición teórica definitiva, con un elevado grado de precisión y tolerancias muy restrictivas. Así, el hormigonado tradicional permite un rendimiento de 150 a 200 m/día, muy por debajo de los rendimientos en balasto, que pueden ser más de 1000 m/día. Incluso con el método Alemán, que consiste básicamente en introducir un tren de mezcladoras por una vía auxiliar -construida expresamente a tal efecto- y bombear el contenido de forma íntegra, los rendimientos no superan los 175 a 250 m/día. Es evidente que es necesario un salto tecnológico para superar esta barrera en los rendimientos para ser competitivo económicamente frente al balasto.

Os dejo a continuación un vídeo sobre el hormigonado tradicional de la vía en placa. Espero que os guste.

Referencias:

  • Escolano, J. (1998). La “vía en placa” en la DB AG. Revista de Obras Públicas, 145(3382):21-34.
  • Estrade, J.M. (1991) La superestructura de vía sin balasto: perspectivas de su aplicación en las nuevas líneas de alta velocidad. Revista de Obras Públicas, 138(3305):9-28.
  • Estrade, J.M. (1998) La superestructura de vía en placa en las nuevas líneas de alta velocidad de nuestro país. Revista de Obras Públicas, 145(3372):63-74.
  • Esveld, C. (2001). Modern railway track. 2nd ed. The Netherlands: Delft University of Technology.
  • Lei, X.; Zhang, B. (2011). Analysis of dynamic behavior for slab track of high-speed railway base don vehicle and track elements. ASCE Journal of Transportation Engineering, 137(4): 227-240.
  • López-Pita, A. (2001). La rigidez vertical de la vía y el deterioro de las líneas de alta velocidad. Revista de Obras Públicas, 148(3415):7-26.
  • Melis, M. (2006a). Terraplenes y balasto en la alta velocidad ferroviaria (primera parte). Revista de Obras Públicas, 153(3464):7-36.
  • Melis, M. (2006b). Terraplenes y balasto en la alta velocidad ferroviaria. Segunda parte: Los trazados de Alta velocidad en otros países. Revista de Obras Públicas, 153(3468):7-26.
  • Ministerio de Fomento (2014). Documentos complementarios no contradictorios para la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril. Centro de Publicaciones, 211 pp.
  • Poveda, E.; Yu, R.C.; Lancha, J.C.; Ruíz, G. (2015). A numerical study on the fatigue life design of concrete slabs for railway tracks. Engineering Structures, 100:455-467.
  • Puebla, J.; Fernández, A.; Gilaberte, M.; Hernández, S.; Ruíz, A. (2000). Para altas velocidades ¿Vía con o sin balasto? Revista de Obras Públicas, 147(3401): 29-40.
  • Sheng, X.; Jones, C; Thompson, D. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 272(3–5):937–65.
  • Tarifa, M.; Zhang, X.; Ruíz, G.; Poveda, E. (2015). Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Engineering Structures, 100: 610-621.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.