Visibilidad para el grupo de investigación CONSTRUCTION OPTIMIZATION – ICITECH UPV

En mi blog personal, suelo destacar los logros personales de los miembros de nuestro grupo de investigación, compuesto por profesores e investigadores jóvenes de varios países, que tienen su sede en el ICITECH (Instituto de Ciencia y Tecnología del Hormigón) de la Universitat Politècnica de València. Sin embargo, estos logros a menudo pasan desapercibidos debido a la falta de una vía de comunicación propia.

Desde 2006, nuestro grupo ha centrado sus investigaciones en la optimización multiobjetivo y la toma de decisiones multicriterio para garantizar la sostenibilidad económica, social y medioambiental a lo largo del ciclo de vida de puentes e infraestructuras. Hasta la fecha, hemos publicado unos 150 artículos científicos indexados en el JCR y hemos presentado numerosas comunicaciones en congresos nacionales e internacionales. Ya se han leído 15 tesis doctorales y, en este momento, se encuentran otras 10 en marcha.

No obstante, consideramos que es crucial aumentar la visibilidad de nuestro trabajo para acercarlo a la sociedad. De esta manera, esperamos que nuestra investigación pueda contribuir a la construcción de infraestructuras más sostenibles y eficientes en el futuro.

Como podréis observar, hemos diseñado un logotipo para identificar nuestro trabajo. El diseño sigue el estilo institucional de los grupos de investigación de nuestra universidad. En la parte inferior, en color rojo destacado, aparece el acrónimo de la UPV, mientras que encima figuran dos palabras que consideramos fundamentales: “CONSTRUCTION” y “OPTIMIZATION”. Las hemos escrito en inglés porque queremos comunicar nuestro trabajo a nivel internacional.

La primera de ellas transmite que nuestro objeto de investigación no se limita a las estructuras de hormigón o puentes, sino que abarcamos un amplio espectro de infraestructuras, como edificios, carreteras, ferrocarriles, puertos y presas, entre otros. Además, la palabra “optimización” resume la base y los inicios de nuestro grupo, ya que buscamos mejorar la sostenibilidad integral de las infraestructuras a lo largo de su ciclo de vida.

Sin lugar a dudas, lo más complicado para nosotros ha sido crear una silueta que capture, a modo de paraguas, el núcleo central de nuestro mensaje. Hemos creado un arco que simboliza un puente y también tiene la intención de representar una cúpula de un edificio, un tramo de carretera o una sección de una presa bóveda. En resumen, hemos buscado un diseño que sea fácil de comprender y que simbolice el trabajo que llevamos a cabo en nuestro grupo.

Pues bien, podéis encontrar toda la información que vaya generando el grupo en las siguientes redes de comunicación. Os invito a que las sigáis para estar al tanto de lo que está ocurriendo en la punta de lanza del conocimiento en este ámbito de la ingeniería de la construcción.

Twitter: https://twitter.com/ConstOptUPV

Facebook: https://www.facebook.com/groups/231497652653826

LinkedIn: https://www.linkedin.com/groups/12794089/

 

Diseño regenerativo y métodos modernos de construcción: La crisis del paradigma de la sostenibilidad

Figura 1. Edificio Media-TIC. Enric Ruiz Geli. El Poblenou, Barcelona. https://commons.wikimedia.org/wiki/File:Edificio_Media-TIC._Enric_Ruiz_Geli.jpg

La construcción y gestión de las infraestructuras constituye un sector económico clave, tanto por sí mismo como por su papel fundamental en el soporte de la actividad social. Sin embargo, la creciente conciencia sobre la necesidad de construir de manera sostenible ha impulsado la puesta en marcha de nuevas tecnologías y materiales. Entre las tecnologías clave para hacer más sostenibles las infraestructuras se encuentran el uso de materiales de construcción ecológicos y sostenibles, la adopción de energías renovables como paneles solares y aerogeneradores, la iluminación LED, sistemas urbanos de drenaje sostenible, materiales de aislamiento térmico y sistemas de sensorización y automatización. El empleo de estos materiales y tecnologías puede ayudar a reducir la huella de carbono de las infraestructuras, disminuir el consumo de energía y recursos no renovables, generar ahorros económicos y mejorar la calidad del agua. Además, estas opciones pueden favorecer la eficiencia de la infraestructura y la calidad de vida de los usuarios. Pero es claramente insuficiente.

El paradigma de la sostenibilidad está en crisis. Ya no se considera suficiente la reducción de los impactos ambientales asociados a la actividad humana, sino que se deben contemplar también los aspectos económicos y sociales. Alcanzar este equilibrio resulta complejo, pues a veces la sostenibilidad ambiental no es compatible con la social o la económica. No obstante, el reto es claro: preservar los recursos naturales, el patrimonio, la cultura, el equilibrio social, los ecosistemas y muchos otros aspectos más, para las generaciones futuras.

Por tanto, el paradigma actual se ve cuestionado cuando el antiguo canon de “reciclar, reducir y reutilizar” ya no es suficiente y debe ser reemplazado por otro que consiste en “restaurar, renovar y reponer”. Este enfoque representa un nuevo paradigma para mejorar el entorno construido: el Diseño Regenerativo (conocido como “regenerative design” en inglés). En la actualidad, reducir los impactos ambientales resulta insuficiente ante la aceleración del cambio, por lo que se hace necesario adoptar un enfoque de diseño regenerativo que genere impactos positivos a lo largo de todo el ciclo de vida de una infraestructura.

El diseño regenerativo implica la restauración de los ecosistemas y fomenta el desarrollo de los ecosistemas naturales y humanos. Para lograrlo, se requiere un cambio de pensamiento y de diseño, con un enfoque holístico e integrado. Además, este nuevo paradigma exige la incorporación de un alto nivel de conocimientos científicos que no se encuentran en el diseño convencional. No podemos ignorar la herencia de etapas anteriores, pero los proyectistas y los encargados de tomar decisiones necesitan expandir sus horizontes. El nuevo desafío requiere un profundo conocimiento de diversas áreas y, en algunos casos, la colaboración de varios especialistas y herramientas apropiadas, junto con nuevos métodos de investigación, pautas y estrategias de diseño.

Figura 2. Ciudad del Puerto de Malmö. Autor: Jorge Franganillo
https://www.flickr.com/photos/franganillo/43494905904

Los Métodos Modernos de Construcción (Modern Methods of Construction, en inglés) se refieren a un enfoque que utiliza tecnologías y procesos innovadores para mejorar la eficiencia y la calidad de la construcción. Incluyen la prefabricación de componentes en una fábrica, la utilización de materiales más ligeros y resistentes, y la adopción de técnicas constructivas más rápidas y precisas. Estos nuevos procedimientos se relacionan con el diseño regenerativo, pues ambos buscan promover prácticas más sostenibles y responsables con el medio ambiente. Este enfoque se basa en la comprensión de que los edificios y la infraestructura pueden tener un impacto positivo al proporcionar servicios ecosistémicos como la purificación del aire y del agua, la protección contra inundaciones y la mitigación del cambio climático.

Por tanto, estamos frente a un cambio de paradigma, ya que los métodos modernos de construcción pueden ser herramientas valiosas para el diseño regenerativo. Al emplear materiales más sostenibles, reducir los residuos de construcción y disminuir la huella de carbono, estos nuevos métodos pueden ayudar a crear edificios y comunidades más sostenibles y eficientes. Además, pueden contribuir a la creación de infraestructuras que promuevan la regeneración del medio ambiente y la salud de la comunidad.

La investigación y la innovación en este ámbito está siendo puntera en España, tanto en las universidades como en los institutos tecnológicos o las empresas. En el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València, el grupo de investigación que dirijo se enfoca en promover la sostenibilidad de las infraestructuras en todas las etapas de su ciclo de vida, desde el diseño hasta la demolición, a través de técnicas de optimización heurística multiobjetivo, toma de decisiones y análisis del ciclo de vida social y ambiental.

Figura 3. Puente de la Gran Belt, Dinamarca. https://commons.wikimedia.org/wiki/File:GreatBeltBridgeTRJ1-edit.JPG

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ponencia invitada en CEVISAMA: Nuevas técnicas para reducir costes y mejorar la sostenibilidad de los elementos constructivos

Me complace anunciar que he sido invitado a impartir una ponencia en CEVISAMA, titulada “Nuevas técnicas para reducir costos y mejorar la sostenibilidad de los elementos constructivos”, que tendrá lugar el jueves 2 de marzo de 2023 a las 10:00 h. Esta ponencia se llevará a cabo en el Foro Cevisama Build, en el Nivel 3 del Pabellón 1 de Feria Valencia, que acogerá a numerosos profesionales y empresas del sector de la construcción sostenible y bioconstrucción. El programa completo del evento se puede encontrar en el siguiente enlace: https://cevisama.feriavalencia.com/actividades/programa-completo/.

Durante mi intervención, repasaré los principales logros que ha alcanzado nuestro grupo de investigación en los últimos 15 años y destacaré las posibilidades que tienen las empresas para incorporar las nuevas tecnologías y reducir los costos de producción, a la vez que mejoran la sostenibilidad de sus productos, especialmente en el sector de la construcción.

Cevisama 2023 reunirá a marcas insignes del sector cerámico, el baño y la piedra natural, y contará con novedades como “Cevisama Tech”, un área exclusiva que mostrará las últimas soluciones en innovación y tecnología aplicadas a la industria cerámica.

En su última edición, celebrada en 2020, Cevisama reunió a más de 800 firmas y marcas y recibió la visita de 90.000 profesionales, de los que más de 21.000 fueron visitantes extranjeros.

Ecuaciones estructurales aplicadas a la gestión del conocimiento. La perspectiva del estudiante.

Acaban de publicarnos un artículo en el International Journal of Environmental Research and Public Health, revista indexada en el JCR. Se trata de una aproximación innovadora a la gestión del conocimiento desde la perspectiva de los estudiantes de postgrado. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La capacidad de compartir conocimientos se considera uno de los componentes más relevantes de la gestión del conocimiento. Por otra parte, existen pocas pruebas empíricas que indiquen cómo valoran los futuros recursos humanos del sector de la construcción, la riqueza de compartir conocimientos y la riqueza de su comportamiento innovador. Los propósitos de este estudio son (1) determinar qué facilitadores, desde el punto de vista de los estudiantes de máster relacionados con la ingeniería y la gestión de la construcción en España, influyen más sustancialmente en la capacidad de compartir conocimiento; (2) comprobar si la capacidad de compartir conocimiento (KS) influye positivamente en el comportamiento innovador (IB); y (3) demostrar si el clima de innovación organizacional (OIC) es un factor que modera la relación entre KS e IB. En esta investigación, hemos propuesto un modelo teórico y probado empíricamente el modelo en una muestra de 253 estudiantes de máster en universidades públicas de España. Los resultados apoyan el modelo propuesto, y la evaluación del modelo de ecuaciones estructurales (SEM) sugiere que, entre todos los facilitadores de la KS, las tecnologías de la información y la comunicación (TIC) destacan entre los demás facilitadores y tienen una influencia más significativa en la KS. Además, la investigación halló una correlación directa entre la SK y la BI y vínculos causales entre las TIC y la BI.

Abstract:

The capability to share knowledge is considered one of the most relevant components of knowledge management. Moreover, there is little empirical evidence indicating how future human resources in the construction industry value the richness of knowledge sharing and the richness of their innovative behavior. The purposes of this study are (1) to determine which facilitators, from the point of view of master’s degree students related to engineering and construction management in Spain, most substantially influence knowledge-sharing capability; (2) to test whether knowledge-sharing capability (KS) positively influences innovative behavior (IB); and (3) demonstrating whether organizational innovation climate (OIC) is a factor that moderates the relationship between KS and IB. In this research, we have proposed a theoretical model and empirically tested the model in a sample of 253 master’s degree students in public universities in Spain. The findings support the proposed model, and the structural equation modeling (SEM) evaluation suggests that among all the facilitators of KS, information and communication technologies (ICT) stand out among the other facilitators and have a more significant influence on KS. Furthermore, the research found a direct correlation between KS and IB and causal links between OIC and IB.

Keywords:

Knowledge sharing capability; knowledge sharing facilitators; innovative behavior; Innovation climate; graduate students; SEM

Reference:

YEPES, V.; LOPEZ, S. (2023). The Knowledge sharing capability in innovative behavior: A SEM approach from graduate students’ insights. International Journal of Environmental Research and Public Health, 20(2):1284. DOI:10.3390/ijerph20021284

Descargar (PDF, 427KB)

¿Cuántas obras puede atender un jefe de grupo? ¿Y cuántos tajos un encargado?

https://www.flickr.com/photos/prefecturaguayas/15207218668

Si a un jefe de grupo experimentado le preguntamos cuántas obras puede llevar simultáneamente, vamos a obtener respuestas de todo tipo. Dirá que es función del tipo de obra, de la experiencia de los equipos que trabajan en cada una de ellas, de los costes y de los plazos. Incluso te contestaría que depende de su capacidad de aguante y de las horas que le dedique a esta tarea. La misma pregunta se podría plantear en el caso de un encargado de obra y el número de tajos que puede supervisar sin que la obra llegue a ser un caos.

Se trata de un problema complejo, incluso algunos dirían que subjetivo. Sin embargo, quisiera aportar un pequeño esquema conceptual donde se puede realizar una aproximación al problema teniendo en cuenta la necesidad de supervisión de cada obra, del número de horas que se trabajan diariamente, de la producción de cada tajo y de los costes económicos que implica la dirección de los equipos. Veamos entonces cómo plantearlo.

En ocasiones es necesario prestar servicio a un equipo que se queda fuera de servicio de forma imprevista y aleatoria. En estos casos no se conoce cuándo se debe proporcionar servicio o cuánto tiempo dura el servicio a dicho equipo. Debemos utilizar las leyes de probabilidad para determinar el número de unidades de servicio de apoyo que deben estar disponibles para evitar esperas innecesarias.

Una aproximación de la probabilidad de que 0, 1, 2, …., n equipos se queden fuera de servicio se puede estimar con la distribución binomial. De esta forma, la probabilidad de que se queden m equipos fuera de servicio de un conjunto de n, siendo p la probabilidad de estar fuera de servicio y q = 1 – p, la de que estén en operación, sería la siguiente:

De esta forma, se puede determinar el porcentaje del tiempo en las que algunos equipos van a permanecer fuera de servicio y el tiempo perdido resultante.

Para aclarar estos conceptos, os resuelvo un problema donde se trata de averiguar si es rentable, para un caso determinado, contratar a más encargados de obra para conseguir que un conjunto de equipos de encofradores se encuentren trabajando lo máximo posible. Este es uno de los casos estudiados en el “Curso de gestión de costes y producción de la maquinaria empleada en la construcción”. Espero que os sea de interés.

Descargar (PDF, 196KB)

Referencias:

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Curso en línea de “Gestión de costes y producción de la maquinaria empleada en la construcción”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 13 de junio de 2022 y termina el 25 de julio de 2022. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico sobre la gestión de los costes y la producción de los equipos y maquinaria empleada en la construcción, tanto en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos sobre la gestión de la producción, la selección económica de los bienes de equipo, los costes de propiedad y operación de la maquinaria, su amortización, la disponibilidad y fiabilidad de los equipos, el mantenimiento y reparación, los parques de maquinaria y la gestión de instalaciones, almacenes e inventarios, el estudio del trabajo y la productividad, las políticas de incentivos, métodos de medición del trabajo y la producción de equipos de máquinas. El curso se centra especialmente en la comprensión de los fundamentos básicos que gobiernan la gestión de los costes y la producción de los equipos, mostrando especial atención a la maquinaria pesada de movimientos de tierras y compactación. Es un curso de espectro amplio que incide en el conocimiento de los fundamentos de la ingeniería de la producción. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de los métodos y técnicas empleadas en la gestión de los costes y el rendimiento de la maquinaria en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en el coste y la producción de conjuntos de equipos. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 30 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan 75 problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las técnicas actuales para la gestión de costes y producción de los equipos de máquinas empleados para la construcción
  2. Evaluar y seleccionar la maquinaria atendiendo a criterios económicos y técnicos
  3. Conocer la gestión de los sistemas de almacenamiento de materiales en obra y los parques de maquinaria
  4. Aplicar las técnicas de estudios de métodos y medición del trabajo para mejorar la eficiencia de los equipos
  5. Aplicar técnicas de aprendizaje e incentivos a la producción para mejorar la productividad

Programa

  • – Lección 1. Mecanización de las obras
  • – Lección 2. Adquisición y renovación de la maquinaria
  • – Lección 3. La depreciación de los equipos y su vida económica
  • – Lección 4. Selección de máquinas y equipos
  • – Lección 5. La estructura del coste
  • – Lección 6. Costes de propiedad de las máquinas
  • – Lección 7. Costes de operación de las máquinas
  • – Lección 8. Fondo horario y disponibilidad de los equipos
  • – Lección 9. Fiabilidad de los equipos
  • – Lección 10. Mantenimiento y reparación de los equipos
  • – Lección 11. Instalación y organización interna de la obra
  • – Lección 12. Parques de maquinaria y gestión de inventarios
  • – Lección 13. Constructividad y constructibilidad
  • – Lección 14. Estudio del trabajo y productividad
  • – Lección 15. Los incentivos a la productividad en la construcción
  • – Lección 16. Estudio de métodos
  • – Lección 17. Medición del trabajo
  • – Lección 18. La curva de aprendizaje en la construcción
  • – Lección 19. Ciclo de trabajo y factor de acoplamiento
  • – Lección 20. Producción de los equipos
  • – Lección 21. Composición y clasificación de suelos
  • – Lección 22. Movimiento de tierras y factor de esponjamiento
  • – Lección 23. Producción de los buldóceres
  • – Lección 24. Producción de las cargadoras
  • – Lección 25. Producción de las motoniveladoras
  • – Lección 26. Producción de las mototraíllas
  • – Lección 27. Producción de las retroexcavadoras
  • – Lección 28. Producción de las dragalinas
  • – Lección 29. Producción de los equipos de acarreo
  • – Lección 30. Producción de los compactadores
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Referencias:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 157 pp. ISBN: 978-84-9048-301-5. Ref. 402.

La medida de la productividad en las empresas constructoras

La productividad constituye uno de los elementos determinantes en la competitividad de cualquier empresa, y sobre todo de aquellas dedicadas a la construcción. Ello se debe al elevado margen de mejora que tiene esta actividad económica. De ello ya hemos hablado en varios artículos en este blog.

Recordemos que este concepto se define como la relación entre la producción y la cantidad de recursos consumidos en un periodo. Al tratarse de un concepto técnico, y no financiero, tanto la producción como los recursos se deben medir en unidades físicas.

Si existe un solo tipo de producto y de recurso, es sencillo calcular este ratio. Pero en una empresa nos interesa la productividad global, que es la relación entre su producción total, de todos sus productos, y el conjunto de factores empleados para conseguirla. Se hace notar que las unidades son heterogéneas, tanto en los productos como en los recursos. Para solucionar el problema, se deben valorar en unidades monetarias.

Al ser la productividad una medida técnica, ésta no se ve influenciada por la variación de precios en un periodo. Por eso es necesario que la productividad se pueda comparar de un periodo a otro, sin que las variaciones de los precios de productos y recursos interfieran en los resultados.

Para medir la productividad, por tanto, vamos a definir la terminología empleada (Pérez Gorostegui, 2021).

Pj: número de unidades físicas del producto j en el periodo 0, y pj su precio unitario en ese periodo;

Fi: cantidad del factor i en el periodo 0, en unidades físicas, y fi su coste unitario en dicho periodo;

Δ: variación experimentada por la variable en el periodo 1 respecto al periodo 0.

De esta forma se puede calcular la productividad de una empresa que utiliza m factores para realizar n productos valorando con los precios del año 0 (pi y fi):

siendo la del periodo 1:

Con estos cálculos, ya se puede definir el índice de productividad global (IPG) como:

La tasa de productividad global (TPG) medirá la proporción de variación de la productividad entre los dos periodos:

Asimismo, también puede interesar en qué proporción ha variado la producción de un periodo a otro. Mantenemos para ello los precios constantes. Con ello se define el índice de evolución de la cantidad de producción de Laspeyres:

Análogamente se podría establecer el índice de evolución de la cantidad de factores empleados:

Comparando las expresiones, es fácil deducir que:

Para el lector curioso, le dejo comprobar que si una empresa constructora elevó su producción un 15% el año pasado y tuvo que emplear un 5% menos de recursos, su productividad global subió un 21,05%.

Os dejo un vídeo donde se explica cómo se calcula la productividad global de una empresa.

En este otro vídeo se explica cómo se calcula el índice de productividad global.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Selección de maquinaria para la construcción por rentabilidad económica

Figura 1. https://pixabay.com/es/photos/emplazamiento-de-la-obra-1646662/

Uno de los problemas que tiene una empresa constructora es elegir adecuadamente la maquinaria habida cuenta de la elevada inversión que debe realizar. En un artículo anterior ya se indicaron los condicionantes a tener en cuenta en su selección.

Cuando se trata de elegir una máquina por su rentabilidad económica, hay que tener presente que se generan unos flujos de costes y de beneficios a lo largo del periodo utilización. Por tanto, ante la presencia de varias alternativas, os podemos hacer dos preguntas: ¿Qué criterio se puede utilizar para elegir la más ventajosa? ¿Está justificada la inversión de esta alternativa?

Para elegir la mejor opción de compra posible, se puede realizar un estudio que maximice la rentabilidad económica considerando o no la actualización monetaria de la inversión. Entre los métodos sin actualización económica destacamos los siguientes:

  • Rentabilidad media de la inversión: Se opta por aquella máquina que produce la tasa de rendimiento medio más alta, es decir, el mayor cociente entre la suma de los beneficios netos generados durante la vida de la inversión y el coste de adquisición. Los beneficios netos son la diferencia entre los ingresos brutos y los gastos, considerando la amortización de la inversión. Una variante a este método sería calcular la rentabilidad teniendo en cuenta la inversión media del equipo y no el valor de compra.
  • Recuperación de la inversión o periodo de retorno: Se elige aquella máquina que minimiza el tiempo necesario para que los beneficios netos generados igualen al precio de adquisición de la inversión. En este método no importa la rentabilidad de la inversión. Puede ser útil cuando los inversores estén interesados en recuperar lo antes posible los fondos aportados.

Por otra parte, el valor del dinero depende del tiempo, puesto que los intereses gravan la disponibilidad del dinero prestado. Así, dada una tasa de actualización i en tanto por uno, y n periodos de tiempo, una cantidad actual P y una futura S están relacionadas entre según la siguiente expresión:

De esta forma, las comparaciones intertemporales de las unidades monetarias deben realizarse con los ingresos o gastos actualizados. En estos cálculos, además, debería considerarse las expectativas de inflación. Sin embargo, normalmente la inflación futura conlleva una elevación de los valores monetarios, con lo que los rendimientos y costes serían los mismos. No obstante, no siempre ocurre este supuesto, por lo que se puede complicar el cálculo. Se pueden considerar los siguientes métodos con actualización monetaria:

  • Valor actual neto: Se elige aquella máquina que maximiza la diferencia entre el valor actual de los ingresos netos y el coste de la inversión (VAN). Siendo ej los ingresos netos en el año j, n el número de periodos e i la tasa de interés, el valor actual de los ingresos se calcula como:

Al calcular el VAN debería incluirse el valor residual actualizado, es decir, son los beneficios de liquidación al final del periodo de inversión. Pero también podríamos hablar de una plusvalía de liquidación negativa si durante el transcurso del plazo de inversión se producen costes, como, por ejemplo, de eliminación o retirada.

Una adquisición será rentable si el VAN es positivo. Ello significa que la inversión genera más beneficios que un depósito bancario con la tasa de actualización seleccionada. Si el VAN es cero, la inversión no ofrece ninguna ventaja sobre un depósito bancario, generando únicamente como beneficio el tipo de descuento.

  • Tasa interna de rentabilidad: Se elige la máquina con mayor tasa interna de rentabilidad (TIR), definida como el valor de i que anula el VAN. Una de las ventajas es que no se necesita conocer i para su cálculo. La inversión será interesante si el TIR supera la tasa de interés del mercado. Se puede decir que el TIR es el porcentaje de beneficio o pérdida que se puede obtener de una inversión.

Algunos autores recomiendan recurrir al valor más alto del TIR como criterio de selección de equipos. La pregunta es si coincidiría entonces esta selección para una tasa dada de actualización, con la que se obtendría con el criterio del VAN. Para responder a esta pregunta, supondremos la situación de dos equipos A y B, cuyos valores actualizados netos son VANA (i) y VANB (i), como se muestra en la Figura 2.

Figura 2. Comparación de los VAN de dos equipos para distintas tasas de descuento

Si el criterio de elección es el del TIR, el equipo A será seleccionado, pues iA > iB. Al seleccionar en función del VAN, se adoptaría el equipo B para tasas de actualización comprendidas entre 0 e iM, y para mayores valores, el equipo A. Este valor de iM se denomina tasa de comparación de los equipos A y B, y en ella coinciden sus VAN.

Por tanto, se puede concluir que el criterio de la TIR es útil para comparar el valor correspondiente con la tasa de actualización, ya que, si es inferior a este valor, se debe rechazar la alternativa. Cuando se trata de elegir el equipo óptimo entre otros incompatibles con él, se debe utilizar el criterio del VAN, que nos permite determinar la mejor inversión. Mientras el VAN calcula la rentabilidad de la inversión en términos monetarios actualizados, el TIR realiza el análisis de esa rentabilidad en forma de porcentaje.

Os dejo algunos vídeos donde se explica cómo calcular el VAN y el TIR.

Referencias:

LIDÓN, J. (1998). Economía en la construcción I. Editoral de la Universidad Politécnica de Valencia, 366 pp.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 784 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 166 pp. Ref. 402. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de remuneración por incentivos

En un artículo anterior introdujimos el concepto de incentivo en el sector de la construcción. Se trata de intentar aumentar la productividad sin menoscabo de la calidad de las tareas realizadas.

Ahora vamos a centrar nuestra atención en diversos sistemas que existen, con sus ventajas e inconvenientes. Hay que tener en cuenta que los incentivos no siempre provocan un aumento de la productividad. La realidad es que las presiones del grupo sobre las personas que tienen un mayor rendimiento a veces consiguen diluir los efectos deseados en el incremento de la producción.

Los sistemas habituales de remuneración por incentivos dividen el salario por tarea realizada en dos partes, la remuneración por el tiempo de trabajo y la prima por producción. Por tanto, por cada tarea, el salario S que recibirá un trabajador será:

donde s0 es la tarifa horaria (u.m./u.t.), t es el tiempo necesario para completar la tarea (u.t.), I es el incentivo (u.m./u.t.) y T es el tiempo estándar previsto para realizar la tarea (u.t.). Todo ello en unidades monetarias (u.m.) y unidades de tiempo (u.t.).

Según se defina el valor del incentivo I, se tendrán diferentes sistemas de remuneración. Veamos los más comunes.

Sistema de destajo

En este sistema el trabajador recibe una remuneración proporcional al tiempo estándar previsto por realizar la tarea. Como se puede ver, da lo mismo el tiempo que tarde, que recibirá siempre lo mismo. En este caso I = s0, y por tanto, el salario es el siguiente:

Se trata del sistema de incentivos más antiguo, pues el salario está directamente vinculado al trabajo que realiza. Es decir, se paga una tarifa por unidad terminada. En este caso, es muy importante vigilar la calidad del producto acabado. Por otra parte, existe el riesgo que la empresa eleve arbitrariamente los criterios de producción si descubre que los trabajadores reciben un salario excesivo.

Sistema Hasley

Aquí se reparte el valor que se ahorra al disminuir el tiempo de ejecución estándar de la tarea. Supongamos que al trabajador le corresponde un porcentaje 1/m del reparto, es decir, I=s0/m, entonces:

Por tanto, si m = 2, entonces el porcentaje que se lleva el trabajador es del 50%.

Sistema Rowan

Es un sistema donde el incentivo es proporcional a la tarifa horaria y a la relación entre el tiempo empleado y el asignado para hacer la tarea, es decir, I = s0·t/T. En este caso, el salario será:

Se puede observar que, si bien el incentivo es proporcional al ahorro de tiempo realizado, hay un límite. En efecto, conforme baja el tiempo empleado en realizar la tarea, aunque el salario crece, en el límite vale 2·s0·t, es decir, el máximo salario total teórico, imposible de alcanzar, sería aquel en el que la prima fuera igual al salario base. Por tanto, el objetivo es limitar el exceso de esfuerzo por querer obtener más prima.

Sistema York

Este es un sistema donde el incentivo es proporcional a la tarifa horaria y a la relación entre el tiempo asignado y el ahorro de tiempo conseguido, es decir, I = s0·T/(Tt). Es fácil deducir que:

En este caso se puede ver que, a mayor horas de trabajo, mayor remuneración. Esto permite compensar económicamente las horas extras fuera de la jornada laboral prevista. Desde el punto de vista del trabajador, es lo más justo. Cuanto más trabaja, más cobra. Hay que pensar si este sistema es el que conviene para aumentar la productividad.

Os dejo algunos vídeos explicativos sobre estos sistemas.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 784 pp.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 166 pp. Ref. 402. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Suplementos para el cálculo del tiempo básico de una operación

https://www.pxfuel.com/
Figura 1. https://www.pxfuel.com/

Aunque tengamos un método eficaz para realizar una tarea, es necesario añadir un tiempo suplementario al tiempo normal o básico de una tarea para el cálculo del tiempo tipo. Las necesidades personales, la fatiga, las demoras o las interferencias son, entre otros, motivos que justifican el cálculo de estos suplementos. El estudio del trabajo se encarga del cálculo de estos tiempos adicionales. Sin embargo, no es sencillo determinar con precisión qué tiempo hay que añadir a las tareas.

Los motivos de estos suplementos pueden deberse a varias circunstancias, destacando las siguientes:

  • Condiciones del operario: sexo, monotonía o repetición de los trabajos, cargas excesivas, posturas incómodas, necesidades fisiológicas, etc.
  • Condiciones ambientales: temperatura, humedad, ruido, iluminación excesiva o insuficiente, etc.
  • Condiciones de la tarea: peligrosidad o riesgo de accidentes, esperas a máquinas u otros operarios, etc.

La parte más importante de los suplementos son por descanso, que trata de reponer al operario de la fatiga. El resto de componentes solo se aplican bajo determinadas condiciones. En la Figura 2 se muestra un modelo básico para el cálculo de los suplementos.

Figura 2. Modelo básico para el cálculo de los suplementos (Caso, 2006)

El suplemento por descanso presenta una parte fija por necesidades personales y fatiga, y otra variable que se añade cuando las condiciones de trabajo difieren de las habituales. Para las necesidades personales (ir al baño, beber agua, etc.) se suele aplicar un suplemento entre un 5 y un 7 %. La fatiga y monotonía de un trabajo se valora en un 4 %.

El suplemento por contingencias incluye los retrasos inevitables y pequeños trabajos ocasionales que se producen esporádicamente. Los suplementos por política de empresa se motivan por por diversas razones organizativas o de producción propias. Se añaden suplementos especiales cuando hay actividades que no forman parte del ciclo del trabajo pero que son imprescindibles para su correcta ejecución. También se podría justificar unos suplementos por comienzo o cierre de la actividad, por herramientas, por montaje o desmontaje, por aprendizaje o formación, etc.

Os paso un vídeo del profesor Cristóbal Miralles, de la Universitat Politècnica de València, donde se explica el cálculo del suplemento de fatiga para la definición de estándares de trabajo. Espero que os sea útil.

En el documento que adjunto, correspondiente a la Organización Internacional del Trabajo (OIT), se recoge un sistema de suplementos por descanso como porcentajes de los tiempos básicos.

Descargar (PDF, 17KB)

En este artículo se propone una revisión de las tablas de suplementos de la OIT.

Descargar (PDF, 78KB)

Referencias:

CASO, A. (2006). Técnicas de medición del trabajo. FC Editorial, 2ª edición, Madrid, 231 pp. ISBN: 978-84-96169-89-8.

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.