Tendencias futuras y retos de la inteligencia artificial en la ingeniería civil

La ingeniería civil se encuentra inmersa en un proceso de transformación profunda, impulsada por los avances en inteligencia artificial (IA) y tecnologías digitales emergentes. Estas innovaciones están redefiniendo los procesos de diseño y la gestión y operación de las infraestructuras, lo que permite la implementación de soluciones más eficientes, sostenibles y seguras. En este contexto, resulta imperativo explorar las principales tendencias que delinearán el futuro del sector en los próximos años, así como los desafíos que deberán superarse para lograr una adopción exitosa y generalizada.

Este artículo examina el impacto transformador de la IA y las tecnologías digitales en la ingeniería civil. Se destacan tendencias futuras clave como la creación de infraestructuras inteligentes con monitorización en tiempo real, el diseño generativo y la planificación asistida por inteligencia artificial. También se aborda el uso de la IA para la construcción sostenible, la proliferación de máquinas autónomas y robótica, y la mejora de la colaboración entre humanos y máquinas mediante la inteligencia aumentada. El documento también detalla los principales desafíos para la adopción exitosa de la IA, como la calidad de los datos, la integración con sistemas existentes, las consideraciones éticas y la escasez de talento. Por último, se destaca la importancia de abordar estos desafíos para lograr una transformación integral y sostenible del sector.

Tendencias futuras

La primera gran línea de evolución es la de las infraestructuras inteligentes, donde la IA combinada con el Internet de las Cosas (IoT) permitirá monitorizar en tiempo real el estado de puentes, túneles y redes de transporte, y adaptar automáticamente parámetros como la iluminación, el drenaje o la ventilación según la demanda.

El diseño generativo y la planificación asistida por IA tienen el potencial de transformar significativamente las etapas iniciales del proceso de diseño. Mediante algoritmos capaces de explorar un amplio espectro de alternativas, se optimizarán los criterios de costo, consumo de material y rendimiento estructural, reduciendo la subjetividad y acelerando la toma de decisiones.

En el ámbito de la construcción sostenible, la IA aportará análisis avanzados de consumo energético y huella de carbono, facilitando la selección de materiales y métodos constructivos de menor impacto ambiental, así como el dimensionado óptimo de sistemas de climatización y redes de servicios.

El despliegue de las máquinas autónomas y la robótica de obra continuará su curso: excavadoras, camiones y drones operarán con escasa supervisión humana, ejecutando movimientos precisos y recolectando datos topográficos que retroalimentan modelos predictivos de rendimiento y seguridad.

La colaboración entre humanos y máquinas se potenciará a través de la inteligencia aumentada, permitiendo a los profesionales liberarse de tareas repetitivas para enfocarse en la supervisión e interpretación de los resultados generados por sistemas de IA, combinando intuición y rigor analítico.

Las analíticas predictivas alcanzarán nuevas cotas de sofisticación, ofreciendo a los gestores de proyecto visibilidad temprana de desviaciones de costes, plazos y riesgos, y sugiriendo medidas preventivas basadas en patrones históricos.

La tecnología blockchain se explorará como garante de la trazabilidad, la transparencia y la inmutabilidad de los registros de obra, contratos y certificaciones, mitigando fraudes y disputas al proteger la integridad de los datos.

El edge computing permitirá procesar la información localmente en la obra —por ejemplo, en drones o en nodos IoT—, reduciendo la latencia y garantizando una respuesta inmediata en aplicaciones críticas, como la detección de fallos estructurales.

Los gemelos digitales, réplicas virtuales permanentemente actualizadas de activos reales, se consolidarán para simular escenarios de mantenimiento, rehabilitación y operación, optimizando ciclos de vida y costes asociados.

Por último, la personalización de soluciones IA permitirá adaptar herramientas y modelos a las necesidades específicas de cada proyecto, lo que facilitará una adopción más ágil y homogénea.

Retos asociados

No obstante, la plena materialización de estas tendencias se enfrenta a múltiples desafíos. En primer lugar, es preciso señalar que la calidad y la disponibilidad de los datos siguen siendo insuficientes. Los proyectos de gran envergadura generan información dispersa y heterogénea, lo que dificulta el entrenamiento fiable de modelos.

La integración con sistemas existentes, tales como software de gestión, bases de datos heredadas o flujos de trabajo manuales, puede ocasionar interrupciones en la operativa y en los cronogramas establecidos. Por lo tanto, se hace necesario implementar estrategias de migración y adaptación progresiva.

Las consideraciones éticas y el sesgo algorítmico obligan a implementar mecanismos de transparencia y gobernanza que garanticen la rendición de cuentas y la equidad en decisiones críticas.

La escasez de talento experto en IA y construcción limita la creación, el despliegue y el mantenimiento de estas soluciones, apuntando a la necesidad de planes de formación duales en ingeniería y ciencia de datos.

La ausencia de marcos regulatorios y legales claros genera incertidumbre en cuanto a las responsabilidades, licencias y cumplimiento normativo en caso de fallos o litigios.

El coste inicial de adquisición e implementación de tecnologías IA puede resultar prohibitivo para las pequeñas y medianas empresas (PYMES) y proyectos con márgenes ajustados. Por ello, es importante demostrar el retorno de la inversión a medio y largo plazo.

La privacidad y la seguridad de los datos, cada vez más extensos y sensibles, requieren arquitecturas robustas que eviten fugas y ciberataques, especialmente cuando se integran sensores IoT y servicios en la nube.

Los problemas de interoperabilidad entre plataformas, estándares y formatos de datos comprometen la colaboración multidisciplinar y el intercambio fluido de información.

La adaptación al ritmo vertiginoso de la evolución tecnológica exige un aprendizaje continuo y revisiones frecuentes de las infraestructuras de TI para no quedarse obsoletos.

Finalmente, la resistencia al cambio por parte de profesionales y directivos puede frenar la adopción, subrayando la importancia de campañas de sensibilización y casos de éxito tangibles.

Conclusión

El futuro de la IA en ingeniería civil se perfila como un escenario de grandes oportunidades para la creación de infraestructuras más inteligentes, eficientes y sostenibles. No obstante, es imperativo que se aborden con éxito los desafíos técnicos, éticos y organizativos para evitar que la implementación de estas tecnologías se limite a proyectos aislados y, en cambio, promueva una transformación integral y sostenible del sector.

Glosario de términos clave

  • Inteligencia artificial (IA): Sistemas o máquinas que imitan la inteligencia humana para realizar tareas, aprendiendo de la información que procesan.
  • Internet de las cosas (IoT): Red de objetos físicos (“cosas”) integrados con sensores, software y otras tecnologías que les permiten recopilar e intercambiar datos.
  • Infraestructuras inteligentes: Estructuras físicas (puentes, túneles, redes) equipadas con tecnología para monitorear y adaptar su funcionamiento en tiempo real.
  • Diseño generativo: Proceso de diseño que utiliza algoritmos para explorar múltiples soluciones basadas en un conjunto de parámetros y restricciones definidos.
  • Construcción sostenible: Prácticas de construcción que minimizan el impacto ambiental, optimizan el uso de recursos y consideran el ciclo de vida completo de las estructuras.
  • Máquinas autónomas: Equipos o vehículos capaces de operar sin supervisión humana directa, utilizando sensores y software para tomar decisiones.
  • Robótica de obra: Uso de robots para ejecutar tareas en el sitio de construcción, a menudo repetitivas o peligrosas para los humanos.
  • Inteligencia aumentada: Enfoque que combina las capacidades de la inteligencia artificial con la inteligencia humana para mejorar el rendimiento y la toma de decisiones.
  • Analíticas predictivas: Empleo de datos históricos, algoritmos y técnicas de aprendizaje automático para identificar la probabilidad de resultados futuros.
  • Blockchain: Tecnología de registro distribuido que permite transacciones transparentes, seguras e inmutables.
  • Edge Computing: Procesamiento de datos cerca de donde se generan (en el “borde” de la red) en lugar de enviarlos a un centro de datos central.
  • Gemelos digitales: Réplicas virtuales de activos físicos, procesos o sistemas que se actualizan en tiempo real y pueden usarse para simulación y análisis.
  • Sesgo algorítmico: Error sistemático en un algoritmo que produce resultados injustamente discriminatorios o sesgados.
  • Interoperabilidad: Capacidad de diferentes sistemas, plataformas o software para trabajar juntos e intercambiar datos sin problemas.
  • Resistencia al cambio: Falta de disposición de individuos u organizaciones para adoptar nuevas tecnologías, procesos o formas de trabajar.

Referencias:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. DOI: https://doi.org/10.4995/INRED2024.2024.18365

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíosIC Ingeniería Civil, 642:20-23.

Gemelo digital para la gestión predictiva de infraestructuras civiles

El artículo presenta un marco conceptual para el desarrollo de gemelos digitales aplicados a estructuras de ingeniería civil que combina modelos basados en la física con técnicas avanzadas de aprendizaje profundo. Se propone una integración dinámica entre el sistema físico y su representación digital mediante redes bayesianas dinámicas, lo que permite la toma de decisiones informada y la optimización continua. Entre las contribuciones destacadas, se encuentra la implementación de modelos de aprendizaje profundo para diagnosticar el estado estructural en tiempo real a partir de datos de sensores. Además, el enfoque incluye un proceso de aprendizaje previo fuera de línea para optimizar las políticas de mantenimiento.

La investigación presenta casos de estudio que validan la viabilidad del marco propuesto: una viga en voladizo en forma de L y un puente ferroviario. En estos ejemplos, se demuestra la capacidad del sistema para predecir el deterioro estructural y sugerir las acciones de mantenimiento adecuadas. El uso de modelos de orden reducido permite gestionar el coste computacional de manera eficiente y garantizar la aplicabilidad práctica del enfoque.

Introducción

La gestión eficiente de estructuras de ingeniería civil, como puentes, edificios y otras infraestructuras críticas, es un desafío constante debido al envejecimiento, el uso intensivo y los cambios en las condiciones ambientales. Un mantenimiento inadecuado puede provocar fallos catastróficos con consecuencias sociales, económicas y medioambientales significativas. En este contexto, los gemelos digitales han emergido como una tecnología prometedora para mejorar la supervisión, el mantenimiento y la toma de decisiones.

Un gemelo digital es una réplica virtual de un activo físico que se actualiza continuamente con datos obtenidos de sensores instalados en el activo real. Esto permite simular su comportamiento, predecir su evolución y planificar intervenciones de manera óptima. El concepto se ha explorado ampliamente en sectores como el aeroespacial y el manufacturero, pero su aplicación en el ámbito de la ingeniería civil es relativamente reciente.

En el campo de los gemelos digitales para ingeniería civil, las investigaciones previas han abordado diferentes aspectos del monitoreo estructural, como la detección de daños mediante métodos de análisis modal y la integración de técnicas avanzadas de procesamiento de señales. Se han utilizado modelos físicos basados en elementos finitos para representar el comportamiento estructural y técnicas de aprendizaje automático para detectar y clasificar anomalías. Sin embargo, la mayoría de estos enfoques tienen limitaciones relacionadas con la precisión de las predicciones y la gestión de la incertidumbre en condiciones operativas variables.

Un enfoque emergente consiste en integrar modelos probabilísticos, como las redes bayesianas, con técnicas de aprendizaje profundo. Esto permite incorporar la variabilidad y la incertidumbre inherentes a los datos estructurales. No obstante, aún es necesario mejorar la capacidad de realizar predicciones precisas de manera continua en tiempo real.

Teniendo en cuenta las limitaciones identificadas en los trabajos previos, este estudio busca responder a la siguiente pregunta de investigación: ¿cómo se puede desarrollar un marco de gemelo digital que combine modelos físicos y aprendizaje profundo para mejorar la predicción y la toma de decisiones en el mantenimiento de estructuras de ingeniería civil, teniendo en cuenta la incertidumbre y la variabilidad operativa?

El artículo examina un enfoque innovador basado en modelos físicos y técnicas de aprendizaje profundo, y propone un sistema de toma de decisiones apoyado en redes bayesianas dinámicas. Este marco permite una interacción continua entre el activo físico y su representación digital, lo que mejora significativamente los procesos de mantenimiento preventivo y correctivo.

Gemelos digitales predictivos para estructuras de ingeniería civil: abstracción gráfica del flujo de información de extremo a extremo habilitada por el modelo gráfico probabilístico (Torzoni et al., 2024)

Metodología

La metodología propuesta combina modelos matemáticos basados en la física y técnicas de aprendizaje profundo para crear un gemelo digital capaz de gestionar estructuras de ingeniería civil. El enfoque consta de tres fases principales:

  1. Modelo numérico basado en la física:
    • Se emplean modelos de elementos finitos para representar el comportamiento estructural bajo diferentes condiciones operativas y de daño.
    • Los modelos son simplificados mediante técnicas de reducción de orden, utilizando descomposición en bases propias (POD), para hacer viable el análisis computacional en tiempo real.
  2. Asimilación de datos mediante aprendizaje profundo:
    • Los datos estructurales recopilados por sensores se procesan mediante redes neuronales profundas.
    • Un modelo de clasificación identifica la ubicación y severidad del daño, mientras que un modelo de regresión cuantifica la magnitud del deterioro.
  3. Toma de decisiones basada en redes bayesianas dinámicas:
    • Los resultados se integran en un modelo probabilístico que permite la predicción de estados futuros y la planificación de intervenciones de mantenimiento.
    • El sistema optimiza decisiones considerando incertidumbres operativas y costos asociados a las acciones de mantenimiento.

Resultados

Los resultados obtenidos evidencian que el gemelo digital propuesto puede rastrear con precisión la evolución del estado estructural y generar recomendaciones de mantenimiento en tiempo real. La precisión global alcanzada en la clasificación de estados digitales fue del 93,61 %, lo que destaca su capacidad para manejar datos ruidosos y condiciones operativas variables. Sin embargo, se observaron algunas limitaciones en la detección de daños en regiones alejadas de los sensores, lo que subraya la necesidad de mejorar la sensibilidad de los dispositivos de monitorización.

Otro aspecto relevante es la capacidad de predicción del sistema. Las simulaciones muestran que el gemelo digital puede prever de manera efectiva el deterioro futuro, lo que permite planificar de manera proactiva las intervenciones. Esto supone una mejora significativa con respecto a los enfoques tradicionales de mantenimiento reactivo.

Desde un punto de vista metodológico, la integración de modelos probabilísticos y aprendizaje profundo proporciona una solución robusta y adaptable a diferentes estructuras. No obstante, el éxito del sistema depende en gran medida de la calidad y la cantidad de datos disponibles para el entrenamiento inicial.

El estudio responde a la pregunta de investigación mediante la implementación exitosa de un marco de gemelo digital que combina modelos físicos y aprendizaje profundo. El sistema propuesto gestiona la incertidumbre mediante redes bayesianas dinámicas y mejora la toma de decisiones en mantenimiento al proporcionar predicciones precisas y recomendaciones basadas en datos en tiempo real. Los experimentos confirmaron su capacidad para gestionar estructuras complejas, lo que demuestra una mejora tangible en comparación con los enfoques tradicionales.

Conclusiones y recomendaciones

En conclusión, el desarrollo de un gemelo digital que integre modelos físicos y técnicas de aprendizaje profundo supone un avance significativo en la gestión de infraestructuras críticas. La metodología propuesta permite realizar un seguimiento continuo, realizar predicciones proactivas y tomar decisiones informadas.

El trabajo plantea varias líneas de investigación para el futuro:

  1. Mejora de los modelos predictivos: Explorar técnicas avanzadas de aprendizaje automático para aumentar la precisión y reducir el sesgo en la estimación de estados estructurales.
  2. Optimización de redes de sensores: Investigar configuraciones óptimas de sensores para mejorar la cobertura y sensibilidad del monitoreo.
  3. Aplicaciones a gran escala: Desarrollar estudios de caso adicionales que incluyan estructuras complejas como puentes de gran envergadura y edificios multifuncionales.
  4. Integración con tecnologías emergentes: Incorporar técnicas de computación en el borde y redes 5G para facilitar la transmisión y procesamiento de datos en tiempo real.
  5. Estudio de costos y beneficios: Evaluar la relación costo-beneficio del sistema para su implementación en proyectos reales, considerando factores económicos y de sostenibilidad.

Estos pasos permitirán ampliar la aplicabilidad del sistema y mejorar su eficiencia en el mantenimiento de infraestructuras críticas. En resumen, el artículo establece una base sólida para el desarrollo de gemelos digitales en ingeniería civil, al proponer un enfoque integral y avanzado desde el punto de vista técnico que combina modelos físicos y aprendizaje automático. Las investigaciones futuras deben centrarse en ampliar su ámbito de aplicación y mejorar su rendimiento en contextos operativos complejos.

Referencia:

Torzoni, M., Tezzele, M., Mariani, S., Manzoni, A., & Willcox, K. E. (2024). A digital twin framework for civil engineering structuresComputer Methods in Applied Mechanics and Engineering418, 116584.

Os dejo el artículo completo, pues se encuentra en abierto:

Descargar (PDF, Unknown)

Diseño regenerativo y métodos modernos de construcción: La crisis del paradigma de la sostenibilidad

Figura 1. Edificio Media-TIC. Enric Ruiz Geli. El Poblenou, Barcelona. https://commons.wikimedia.org/wiki/File:Edificio_Media-TIC._Enric_Ruiz_Geli.jpg

La construcción y gestión de las infraestructuras constituye un sector económico clave, tanto por sí mismo como por su papel fundamental en el soporte de la actividad social. Sin embargo, la creciente conciencia sobre la necesidad de construir de manera sostenible ha impulsado la puesta en marcha de nuevas tecnologías y materiales. Entre las tecnologías clave para hacer más sostenibles las infraestructuras se encuentran el uso de materiales de construcción ecológicos y sostenibles, la adopción de energías renovables como paneles solares y aerogeneradores, la iluminación LED, sistemas urbanos de drenaje sostenible, materiales de aislamiento térmico y sistemas de sensorización y automatización. El empleo de estos materiales y tecnologías puede ayudar a reducir la huella de carbono de las infraestructuras, disminuir el consumo de energía y recursos no renovables, generar ahorros económicos y mejorar la calidad del agua. Además, estas opciones pueden favorecer la eficiencia de la infraestructura y la calidad de vida de los usuarios. Pero es claramente insuficiente.

El paradigma de la sostenibilidad está en crisis. Ya no se considera suficiente la reducción de los impactos ambientales asociados a la actividad humana, sino que se deben contemplar también los aspectos económicos y sociales. Alcanzar este equilibrio resulta complejo, pues a veces la sostenibilidad ambiental no es compatible con la social o la económica. No obstante, el reto es claro: preservar los recursos naturales, el patrimonio, la cultura, el equilibrio social, los ecosistemas y muchos otros aspectos más, para las generaciones futuras.

Por tanto, el paradigma actual se ve cuestionado cuando el antiguo canon de “reciclar, reducir y reutilizar” ya no es suficiente y debe ser reemplazado por otro que consiste en “restaurar, renovar y reponer”. Este enfoque representa un nuevo paradigma para mejorar el entorno construido: el Diseño Regenerativo (conocido como “regenerative design” en inglés). En la actualidad, reducir los impactos ambientales resulta insuficiente ante la aceleración del cambio, por lo que se hace necesario adoptar un enfoque de diseño regenerativo que genere impactos positivos a lo largo de todo el ciclo de vida de una infraestructura.

El diseño regenerativo implica la restauración de los ecosistemas y fomenta el desarrollo de los ecosistemas naturales y humanos. Para lograrlo, se requiere un cambio de pensamiento y de diseño, con un enfoque holístico e integrado. Además, este nuevo paradigma exige la incorporación de un alto nivel de conocimientos científicos que no se encuentran en el diseño convencional. No podemos ignorar la herencia de etapas anteriores, pero los proyectistas y los encargados de tomar decisiones necesitan expandir sus horizontes. El nuevo desafío requiere un profundo conocimiento de diversas áreas y, en algunos casos, la colaboración de varios especialistas y herramientas apropiadas, junto con nuevos métodos de investigación, pautas y estrategias de diseño.

Figura 2. Ciudad del Puerto de Malmö. Autor: Jorge Franganillo
https://www.flickr.com/photos/franganillo/43494905904

Los Métodos Modernos de Construcción (Modern Methods of Construction, en inglés) se refieren a un enfoque que utiliza tecnologías y procesos innovadores para mejorar la eficiencia y la calidad de la construcción. Incluyen la prefabricación de componentes en una fábrica, la utilización de materiales más ligeros y resistentes, y la adopción de técnicas constructivas más rápidas y precisas. Estos nuevos procedimientos se relacionan con el diseño regenerativo, pues ambos buscan promover prácticas más sostenibles y responsables con el medio ambiente. Este enfoque se basa en la comprensión de que los edificios y la infraestructura pueden tener un impacto positivo al proporcionar servicios ecosistémicos como la purificación del aire y del agua, la protección contra inundaciones y la mitigación del cambio climático.

Por tanto, estamos frente a un cambio de paradigma, ya que los métodos modernos de construcción pueden ser herramientas valiosas para el diseño regenerativo. Al emplear materiales más sostenibles, reducir los residuos de construcción y disminuir la huella de carbono, estos nuevos métodos pueden ayudar a crear edificios y comunidades más sostenibles y eficientes. Además, pueden contribuir a la creación de infraestructuras que promuevan la regeneración del medio ambiente y la salud de la comunidad.

La investigación y la innovación en este ámbito está siendo puntera en España, tanto en las universidades como en los institutos tecnológicos o las empresas. En el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València, el grupo de investigación que dirijo se enfoca en promover la sostenibilidad de las infraestructuras en todas las etapas de su ciclo de vida, desde el diseño hasta la demolición, a través de técnicas de optimización heurística multiobjetivo, toma de decisiones y análisis del ciclo de vida social y ambiental.

Figura 3. Puente de la Gran Belt, Dinamarca. https://commons.wikimedia.org/wiki/File:GreatBeltBridgeTRJ1-edit.JPG

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

“The asset time bomb”: La bomba de relojería de las infraestructuras, y en particular, de los puentes

Figura 1. Colapso del puente I-35W en Minneapolis. https://thestartupgrowth.com/2019/02/21/structural-health-monitoring-market-driven-by-rapid-expansion-in-the-infrastructure-sector-till-2024/

Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió en agosto de ese mismo año con el derrumbe de un puente en Génova (Italia). Pero los ejemplos no quedan aquí. Podríamos hablar de la sustitución de los cables del puente Fernando Reig, en Alcoy, o del Puente del Centenario, en Sevilla. O del derribo del puente Joaquín Costa, en Madrid. Ejemplos tenemos en todo el mundo. En cualquier caso, estamos hablando de cifras millonarias, de cortes de tráfico, pérdidas humanas, por poner algunas consecuencias sobre la mesa.

Los puentes son componentes críticos de las infraestructuras, pues su correcto funcionamiento es básico para la resiliencia de nuestros entornos urbanos. Sin embargo, un gran número de infraestructuras que están llegando al final de su vida útil al mismo tiempo. De hecho, la vida útil de muchos puentes se espera que sea menor a la proyectada debido al continuo deterioro provocado por el incremento del tráfico y de los impactos ambientales. Esto constituye una auténtica bomba de relojería (Thurlby, 2013), que junto al reto de la reducción de los impactos ambientales, son razones más que suficientes para preocuparnos de mejorar el mantenimiento de nuestros puentes. De hecho, ya hemos comentado en un artículo anterior un concepto totalmente relacionado con éste: la “crisis de las infraestructuras“. Yo me atrevería a afirmar algo que puede parecer muy duro: el derrumbe de nuestra civilización será paralelo al de las infraestructuras que les da soporte.

Hoy día los gestores de las infraestructuras tienen ante sí un reto importante consistente en mantenerlas en un estado aceptable con presupuestos muy limitados. De hecho, la inspección de los puentes, su mantenimiento y reparación constituyen tareas rutinarias necesarias para mantener dichas infraestructuras en buenas condiciones (Tong et al., 2019). Sin embargo, el problema pasa a ser grave cuando una parte significativa del parque de infraestructuras se encuentra cercano al final de su vida útil. Y lo que aún es peor, cuando existen riesgos de alto impacto y de baja probabilidad que pueden afectar gravemente a las infraestructuras. Resolver este problema es complicado, pues no se presta fácilmente a la exploración con los instrumentos analíticos y de previsión tradicionales.

El estado o deterioro de una infraestructura sigue un comportamiento similar, pero invertido, de la llamada “curva de la bañera“, que es una gráfica que representa los fallos durante el periodo de vida útil de un sistema o de una máquina. En este caso, según vemos en la Figura 2, el estado de condición o las prestaciones de la infraestructura permanece alto durante un periodo de tiempo hasta que empieza a decaer. Para los gestores es necesario conocer el comportamiento de las infraestructuras para tomar decisiones. Sin embargo, muchas veces desconocen en qué posición de la curva se encuentran y, lo que es peor, a qué ritmo se va a deteriorar. Por ejemplo, en la Figura 2 podemos ver que la caída en las prestaciones de A a B, o de B a C son similares, pero la velocidad de deterioro es muy diferente. Y lo que es peor de todo, llega un momento que la caída en las prestaciones ocurre de forma muy acelerada, sin capacidad de reacción por parte de los gestores. Por eso se ha utilizado el símil de la “bomba de relojería”.

Figura 2. Estado o prestaciones de una infraestructura (Thurlby, 2013)

La gestión y el mantenimiento de los puentes está empezando a ser un problema de una magnitud que está empezando a ser más que preocupante. Algunos datos son un ejemplo de ello: en el año 2019, 47000 puentes de los puentes en Estados Unidos, (más del 20% del total) presentan deficiencias estructurales (American Road & Transportation Builders Association, 2019); en Reino Unido, más de 3000 puentes estaban por debajo de los estándares y requerían reparación (RAC Foundation, 2019). Estos son buenos argumentos para aumentar la vida útil de los puentes.

Una de las tecnologías para mejorar la gestión y el mantenimiento de los puentes es la vigilancia de su estado estructural (structural health monitoring, SHM), que trata de mejorar el comportamiento de la estructura mediante el aprendizaje de los datos obtenidos durante su vida útil mediante su monitorización (Figura 3). Estos datos sirven para actualizar los modelos y comprobar el estado en que se encuentra la estructura, lo cual permite minimizar la incertidumbre de los parámetros empleados en los modelos. Sin embargo, aún no se ha resuelto completamente el paso de la obtención de los datos del puente en tiempo real a la toma de decisiones en la gestión y mantenimiento de los puentes.

Figura 3. Structural health monitoring. https://thestartupgrowth.com/2019/02/21/structural-health-monitoring-market-driven-by-rapid-expansion-in-the-infrastructure-sector-till-2024/

En un artículo anterior se explicó el concepto de gemelos digitales (digital twins). Estos modelos actualizados constantemente mediante la monitorización del puente, permitirían conocer en tiempo real el estado estructural del puente y también predecir su comportamiento en el caso de que ocurrieran determinadas circunstancias. Esta información sería clave a la hora de tomar decisiones en la gestión y el mantenimiento del puente.

Las preguntas clave que deberíamos responder serían las siguientes: ¿Es el puente seguro?, ¿cuánto tiempo será el puente seguro?, ¿cuál es el comportamiento estructural actual del puente?, ¿cuándo y cómo deberemos intervenir en el puente?

La respuesta a estas preguntas no es tan evidente como pudiera parecer a simple vista. Los gestores de las infraestructuras deberían ser capaces de entender y valorar en su justa medida los resultados estructurales de los modelos cuyos datos se actualizan en tiempo real. La dificultad estriba en conocer no solo los datos, sino las causas subyacentes a los cambios en el comportamiento estructural. Una ayuda son las técnicas procedentes de la inteligencia artificial, como el aprendizaje profundo, que permiten interpretar ingentes cantidades de datos e identificar patrones y correlaciones entre dichos datos. En un artículo anterior hablamos de este tema. Por otra parte, la actualización de los datos procedentes de la vigilancia de los puentes debería ser automática y en tiempo real. Aquí vuelve a cobrar importancia la inteligencia artificial, aunque nunca debería suplantar el conocimiento ingenieril que permite interpretar los resultados proporcionados por los algoritmos.

Por otra parte, la modelización del riesgo y la resiliencia es una labor necesaria para entender la vulnerabilidad de las infraestructuras. De esta forma seríamos capaces de desarrollar estrategias de mitigación, que podrían ser complementarias a las estrategias de gestión del deterioro que se han explicado anteriormente.

Por tanto, existe un auténtico salto entre la investigación dedicada a la monitorización en tiempo real de los puentes y la toma de decisiones para su gestión y mantenimiento. Los gemelos digitales apoyados en los actuales desarrollos tecnológicos como el “Internet de las cosas“, deberían permitir el paso de la investigación y el desarrollo a la innovación directamente aplicable a la realidad de la gestión de las infraestructuras.

Referencias:

AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/

RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows

THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 166(3):134-142.

TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring, Sensors 19(5):1222.

YEPES, V. (2020). Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación. https://victoryepes.blogs.upv.es/2019/10/30/computacion-cuantica-gemelos-digitales/

YEPES, V. (2020). La inteligencia artificial en la ingeniería civil. https://victoryepes.blogs.upv.es/2020/09/08/la-inteligencia-artificial-en-la-ingenieria-civil/

YEPES, V. (2020). El aprendizaje profundo (deep learning) en la optimización de estructuras. https://victoryepes.blogs.upv.es/2020/09/15/el-aprendizaje-profundo-deep-learning-en-la-optimizacion-de-estructuras/

YEPES, V. (2020). La resiliencia de las infraestructuras. https://victoryepes.blogs.upv.es/2020/09/17/la-resiliencia-de-las-infraestructuras/

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación

La ciudad Estado de Singapur desarrolla una copia virtual de sí misma, un proyecto basado en big data, IoT, computación en la nube y realidad virtual. https://www.esmartcity.es/2019/03/22/singapur-gemelo-digital-posibilidades-ofrece-ciudad-inteligente-tener-copia-virtual-exacta

En menos de una década, gran parte de los ingenieros dejarán de hacer proyectos, tal y como lo conocemos ahora, y pasarán a ser gestores de gemelos híbridos digitales de infraestructuras.

Este podría ser un buen titular periodístico que, incluso podría parecer ciencia ficción, pero que tiene todos los visos de convertirse en realidad en menos tiempo del previsto. Se podría pensar que las tecnologías BIM o los modelos digitales actuales ya son una realidad, es decir, se trata de dar un nuevo nombre a lo que ya conocemos y está en desarrollo, pero de lo que estamos hablando es de un nuevo paradigma que va a revolver los cimientos de la tecnología actual en el ámbito de la ingeniería. Voy a desgranar esta conclusión explicando cada uno de los avances y los conceptos que subyacen al respecto.

La semana pasada tuve la ocasión de escuchar la conferencia magistral, en el Congreso CMMoST, de Francisco Chinesta, catedrático en la ENSAM ParisTech e ingeniero industrial egresado por la Universitat Politècnica de València. Trataba de un nuevo paradigma en la ingeniería basada en datos y no era otra que la de los gemelos híbridos digitales, un paso más allá de la modelización numérica y de la minería de datos. Este hecho coincidió con el anuncio en prensa de que Google había publicado en la prestigiosa revista Nature un artículo demostrando la supremacía cuántica, un artículo no exento de polémica, pues parece ser que se diseñó un algoritmo que tiene como objetivo generar números aleatorios mediante un procedimiento matemático muy complejo y que obligaría al superordenador Summit, que es actualmente el más potente del mundo gracias a sus 200 petaflops, a invertir 10.000 años en resolver el problema, que que el procesador cuántico Sycamore de 54 qubits de Google habría resuelto en tres minutos y 20 segundos.

Si nos centramos en la supuesta supremacía cuántica de Google, se debería matizar la noticia al respecto. En efecto, IBM ya se ha defendido diciendo que su ordenador Summit no se encuentra tan alejado, pues se ha resuelto un problema muy específico relacionado con generar números aleatorios y que parece que Sycamore sabe resolver muy bien. De hecho, IBM afirma que ha reajustado su superordenador y que ahora es capaz de resolver ese mismo problema en 2,5 días con un margen de error mucho menor que el ordenador cuántico. Aquí lo importante es saber si esta computación cuántica estará, sin trabas o límites, accesible a cualquier centro de investigación o empresa para resolver problemas de altísima complejidad computacional (problemas NP-hard como pueden ser los de optimización combinatoria). Tal vez los superordenadores convencionales servirán para resolver unos problemas específicos en tareas convencionales, y los cuánticos, imparables en resolver otro tipo de problemas. Todo se andará, pero parece que esto es imparable.

Por tanto, parece que el hardware necesario para la una computación ultrarrápida está o estará a nuestro alcance en un futuro no muy lejano. Ahora se trata de ver cómo ha cambiado el paradigma de la modelización matemática. Para ello podríamos empezar definiendo al “gemelo digital”, o digital twin. Se trata de un modelo virtual de un proceso, producto o servicio que sirve de enlace entre un ente en el mundo real y su representación digital que está utilizando continuamente datos de los sensores. A diferencia del modelado BIM, el gemelo digital no representa exclusivamente objetos espaciales, sino que también podría representar procesos, u otro tipo de entes sin soporte físico. Se trata de una tecnología que, según todos los expertos, marcarán tendencia en los próximos años y que, según el informe “Beyond the hype“, de KPMG, será la base de la cuarta Revolución Industrial.

https://www.geofumadas.com/por-que-usar-gemelos-digitales-en-la-construccion/

Sin embargo, el gemelo digital no es una idea nueva, pues a principios de este siglo ya la introdujo Michael Grieves, en colaboración con John Vickers, director de tecnología de la NASA. Esta tecnología se aplica al Internet de las Cosas, que se refiere a la interconexión digital de objetos cotidianos con internet. Además, se encuentra muy relacionada con la inteligencia artificial y con la minería de datosdata-mining“. Empresas como Siemens ya están preparando convertir sus plantas industriales en fábricas de datos con su gemelo digital, o General Electric, que cuenta ya con 800.000 gemelos digitales para monitorizar virtualmente la cadena de suministro.

Con todo, tal y como explicó el profesor Chinesta (Chinesta et al., 2018), existe actualmente un cambio de paradigma hacia los gemelos digitales híbridos que, extrapolando su uso, va a significar la gran revolución en la forma de proyectar y gestionar las infraestructuras, tal y como avancé al principio del artículo.

En efecto, los modelos utilizados en ciencia y en ingeniería son muy complejos. La simulación numérica, la modelización y la experimentación han sido los tres pilares sobre los que se ha desarrollado la ingeniería en el siglo XX. La modelización numérica, que sería el nombre tradicional que se ha dado al “gemelo digital” presenta problemas prácticos por ser modelos estáticos, pues no se retroalimentan de forma continua de datos procedentes del mundo real a través de la monitorización continua. Estos modelos numéricos (usualmente elementos finitos, diferencias finitas, volumen finito, etc.) son suficientemente precisos si se calibran bien los parámetros que lo definen. La alternativa a estos modelos numéricos son el uso de modelos predictivos basados en datos masivos big-data, constituyendo “cajas negras” con alta capacidad de predicción debido a su aprendizaje automáticomachine-learning“, pero que esconden el fundamento físico que sustentan los datos (por ejemplo, redes neuronales). Sin embargo, la experimentación es extraordinariamente cara y lenta para alimentar estos modelos basados en datos masivos.

El cambio de paradigma, por tanto, se basa en el uso de datos inteligentes “smart-data paradimg“. Este cambio se debe basar, no en la reducción de la complejidad de los modelos, sino en la reducción dimensional de los problemas, de la retroalimentación continua de datos del modelo numérico respecto a la realidad monitorizada y el uso de potentes herramientas de cálculo que permitan la interacción en tiempo real, obteniendo respuestas a cambios paramétricos en el problema. Dicho de otra forma, deberíamos poder interactuar a tiempo real con el gemelo virtual. Por tanto, estamos ante otra realidad, que es el gemelo virtual híbrido.

Por tanto, estamos ahora en disposición de centrarnos en la afirmación que hice al principio. La nueva tecnología en gemelos digitales híbridos, junto con la nueva capacidad de cálculo numérico en ciernes, va a transformar definitivamente la forma de entender, proyectar y gestionar las infraestructuras. Ya no se trata de proyectar, por ejemplo, un puente. Ni tampoco estamos hablando de diseñar un prototipo en 3D del mismo puente, ni siquiera de modelar en BIM dicha estructura. Estamos hablando de crear un gemelo digital que se retroalimentará continuamente del puente real, que estará monitorizado. Se reajustarán los parámetros de cálculo del puente con los resultados obtenidos de la prueba de carga, se podrán predecir las labores de mantenimiento, se podrá conocer con antelación el comportamiento ante un fenómeno extraordinario como una explosión o un terremoto. Por tanto, una nueva profesión, que será la del ingeniero de gemelos virtuales híbridos de infraestructuras será una de las nuevas profesiones que reemplazarán a otras que quedarán obsoletas.

Se tratará de gestionar el gemelo durante el proyecto, la construcción, la explotación e incluso el desmantelamiento de la infraestructura. Se podrán analizar cambios de usos previstos, la utilización óptima de recursos, monitorizar la seguridad, y lo más importante, incorporar nuevas funciones objetivo como son la sostenibilidad económica, medioambiental y social a lo largo del ciclo de vida completo. Este tipo de enfoque es el que nuestro grupo de investigación tiene en el proyecto DIMILIFE. Proyectos como puentes, presas, aeropuertos, redes de carreteras, redes de ferrocarriles, centrales nucleares, etc. tendrán su gemelo digital. Para que sea efectivo, se deberá prever, desde el principio, la monitorización de la infraestructura para ayudar a la toma de decisiones. Además, servirá para avanzar en la aproximación cognitiva en la toma de decisiones (Yepes et al., 2015).

Os paso a continuación un vídeo sobre el uso de los gemelos digitales en la ciudad de Singapur.

A continuación os pongo un vídeo sacado de la página de Elías Cueto, de la Universidad de Zaragoza, en la que vemos cómo se interactúa con un gemelo virtual de un conejo.

 

En este otro vídeo, el profesor Chinesta explica el cambio de paradigma del que hemos hablado anteriormente en el artículo.

¿Qué es la computación cuántica? Aquí tenemos un vídeo de Eduardo Sáenz de Cabezón:

Referencias:

Chinesta, F.; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L. (2018). Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data. Archives of Computational Methods in Engineering, DOI: 10.1007/s11831-018-9301-4

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.