RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por “resiliencia” en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Descargar (PDF, 391KB)

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Comunicaciones presentadas al IX Congreso Internacional de Estructuras de ACHE

Durante los días 25-27 de junio de 2025 tendrá lugar el IX Congreso Internacional de Estructuras (ACHE), que servirá una vez más para fortalecer los lazos nacionales e internacionales de profesionales y especialistas en el campo de las estructuras. Como en ocasiones anteriores, los objetivos fundamentales de este congreso son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en edificación y en ingeniería civil e industrial) y, por otro, exponer a sus miembros, amigos y a toda la sociedad las actividades de nuestra asociación, que realiza una labor de difusión técnica sin ánimo de lucro. La situación actual, marcada por la internacionalización y la competitividad, hace imprescindible la innovación tecnológica y el intercambio de experiencias y puntos de vista entre profesionales e investigadores de la edificación y la ingeniería civil, que el Congreso facilitará mediante coloquios y debates paralelos a las sesiones de ponencias.

La ciudad elegida en esta ocasión es Granada, que cuenta con una de las universidades más antiguas de Europa y una rica historia que ha dejado numerosos hitos en su paisaje urbano y cultural. Se trata de una ciudad cosmopolita, donde a lo largo de su historia se han dado cita varias culturas, y es un ejemplo de los valores e intereses compartidos de la Unión Europea. Cuenta, además, con lugares como la Alhambra, el Generalife o el Albaycín, declarados Patrimonio de la Humanidad por la Unesco. La ciudad ofrece, además, interesantes ofertas culturales. La ciudad ofrece, además, interesantes ofertas culturales en las fechas de celebración del Congreso, como el Festival Internacional de Música y Danza. El Congreso tendrá su sede en la Escuela de Ingeniería de Caminos, Canales y Puertos, que fue fundada como quinta escuela española en 1988. Una escuela situada en pleno centro de la ciudad, moderna, magníficamente comunicada a través de transporte público (metro y autobús) y con numerosos hoteles cercanos.

La Asociación Española de Ingeniería Estructural (ACHE), entidad de carácter no lucrativo y declarada de utilidad pública, tiene como fines fomentar el progreso en los ámbitos del hormigón estructural y de las estructuras de obra civil y edificación en general, y canalizar la participación española en asociaciones análogas de carácter internacional. Para ello, desarrolla líneas de investigación, docencia, divulgación, formación continua y prenormalización. Entre otras actividades, ACHE publica monografías técnicas, edita la revista cuatrimestral Hormigón y Acero y administra una página web con amplio contenido técnico. Entre los eventos que organiza, destacan el Congreso Trienal de Estructuras y numerosas jornadas técnicas. ACHE cuenta con centenares de miembros (ingenieros, arquitectos, químicos y otros profesionales vinculados al sector), muchos de los cuales participan generosamente en comisiones técnicas y en los más de 25 grupos de trabajo activos que elaboran documentos científicos sobre aspectos relevantes de las estructuras y que se difunden entre todos los asociados.

Nuestro grupo de investigación, dentro del proyecto de investigación RESILIFE, presenta varias comunicaciones. Además, tengo el honor de participar en Comité Científico del Congreso. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; NAVARRO, I.J.; YEPES, V. (2025). Resiliencia para la sostenibilidad de las estructuras de edificación mediante forjados con losas aligeradas biaxiales. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los Métodos Modernos de Construcción (MMC) están revolucionando la industria al ofrecer soluciones sostenibles que reducen el impacto ambiental en el ciclo de vida de los edificios. Un ejemplo son las losas aligeradas biaxiales de hormigón, que optimizan el uso de materiales. Sin embargo, la corrosión en entornos agresivos supone un desafío importante para la resiliencia de estas estructuras. Este estudio propone una metodología para evaluar estrategias de mantenimiento reactivo en MMC expuestas a cloruros, analizando seis alternativas de diseño y utilizando un modelo FUCOM-TOPSIS para integrar criterios de sostenibilidad económica y medioambiental.

YEPES, V.; ALCALÁ, J.; GARCÍA, J.A.; KRIPKA, J. (2025). Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los desastres naturales y humanos causan grandes pérdidas humanas y económicas. RESILIFE optimiza el diseño y construcción de estructuras híbridas modulares, sostenibles y resilientes a eventos extremos, equiparables en seguridad a las tradicionales. Utiliza inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos para evaluar y mejorar la resiliencia. Con técnicas multicriterio como lógica neutrosófica y redes bayesianas, optimiza diseño, mantenimiento y reparación, reduciendo costes y mejorando la recuperación social y ambiental.

YEPES-BELLVER, L.; NAVARRO, I.J.; ALCALÁ, J.; YEPES, V. (2025). Redes neuronales y Kriging para la optimización de la huella de carbono de puentes losa pretensados. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

El artículo compara el rendimiento de los modelos Kriging y de redes neuronales para optimizar las emisiones de CO₂ en puentes de losa pretensada. Las redes neuronales presentan un menor error medio, pero ambos modelos destacan por conducir hacia áreas prometedoras en el espacio de soluciones. Las recomendaciones incluyen maximizar la esbeltez y reducir el uso de hormigón y armaduras, compensando con un incremento controlado de estas. Aunque los modelos proporcionan superficies de respuesta precisas, es esencial realizar una optimización heurística para obtener mínimos locales más exactos, lo que contribuye a diseños más sostenibles y eficientes.

 

Jornada sobre infraestructuras resilientes al clima

El Colegio de Ingenieros de Caminos, Canales y Puertos organizó una jornada sobre Infraestructuras Resilientes al Clima el 4 de abril en el Auditorio Agustín de Betancourt. Estas jornadas tan interesantes se grabaron en un vídeo, que ahora os dejo.

El vídeo, titulado «Jornada sobre Infraestructuras Resilientes al Clima», es un recurso muy valioso que aborda la creciente necesidad de desarrollar infraestructuras que puedan resistir y adaptarse a los efectos del cambio climático.

Durante la jornada, se presentaron diferentes puntos de vista sobre cómo la ingeniería civil puede hacer frente a estos desafíos, resaltando la importancia de la resiliencia climática en la planificación y gestión de infraestructuras. Y ahora, vamos a echar un vistazo más de cerca a todo lo que se habló en la jornada.

 

 

 

1. Importancia de la resiliencia climática

La resiliencia climática se ha convertido en un concepto central en la planificación de infraestructuras, debido a la creciente vulnerabilidad de las comunidades ante eventos climáticos extremos.

Los impactos del cambio climático, tales como huracanes, inundaciones y sequías, han aumentado en frecuencia e intensidad. Estos fenómenos no solo afectan a las infraestructuras físicas, sino que también tienen repercusiones sociales y económicas significativas, que incluyen la pérdida de vidas, desplazamientos forzados y daños económicos.

A modo ilustrativo, en la jornada se expusieron ejemplos de comunidades que han adoptado soluciones resilientes, tales como sistemas de drenaje mejorados, infraestructura verde y edificaciones diseñadas para resistir eventos extremos. Estos ejemplos ponen de manifiesto los beneficios tangibles a largo plazo que conlleva la inversión en resiliencia.

2. Oportunidades profesionales en ingeniería civil

La jornada puso de manifiesto que la búsqueda de infraestructuras resilientes está generando nuevas oportunidades profesionales para los ingenieros civiles.

Se evidenció una demanda de especialistas debido a la necesidad imperante de adaptación al cambio climático, lo que ha generado una demanda de expertos en diversas áreas, tales como la gestión de recursos hídricos, la planificación urbana sostenible y la ingeniería de infraestructuras.

Se subrayó la relevancia de la educación continua y la formación especializada para que los profesionales puedan afrontar los desafíos emergentes en este campo. Los programas de capacitación y certificación en resiliencia climática son de vital importancia para la preparación de los ingenieros del futuro.

3. Retos normativos y de implementación

Uno de los asuntos más críticos que se ha planteado es la necesidad imperativa de adaptar las normativas vigentes para facilitar la implementación de infraestructuras resilientes.

Un número significativo de normativas vigentes no han sido concebidas para hacer frente a los riesgos asociados al cambio climático. Esta situación puede generar obstáculos para la implementación de soluciones innovadoras y efectivas.

En este sentido, se destacó la importancia de la colaboración interdisciplinaria entre ingenieros, urbanistas, arquitectos y responsables políticos. Un enfoque interdisciplinario puede ayudar a crear un marco normativo que apoye la resiliencia y facilite la implementación de proyectos.

Finalmente, se presentan ejemplos de mejores prácticas de otras regiones que han logrado adaptar sus normativas con éxito, lo que puede servir de modelo para otras comunidades.

4. Ingeniería humanitaria y adaptación a emergencias

En las jornadas también se subrayó el rol de la ingeniería humanitaria en el desarrollo de infraestructuras resilientes.

En lo que respecta a los denominados «Proyectos de respuesta rápida», se debatieron enfoques para el diseño de infraestructuras que puedan ser implantadas con celeridad en situaciones de emergencia, garantizando que las comunidades afectadas tengan acceso a servicios básicos de manera inmediata.

Por último, se abordó la importancia de la capacitación y los recursos, así como la formación de equipos de respuesta a emergencias y la disponibilidad de recursos adecuados, elementos esenciales para asegurar que las infraestructuras puedan soportar eventos extremos y facilitar la recuperación.

5. Educación y conciencia social

La jornada puso de manifiesto la importancia de la educación y la comunicación en la promoción de infraestructuras resilientes.

Es imperativo que la sociedad comprenda la relevancia de invertir en infraestructuras resilientes. En este sentido, la educación desempeña un papel crucial, ya que permite a las comunidades identificar los beneficios a largo plazo de tales inversiones.

Se propusieron programas de sensibilización que involucren a la comunidad en la planificación y diseño de infraestructuras, fomentando un sentido de propiedad y responsabilidad.

6. Financiación de infraestructuras resilientes

La financiación constituye uno de los desafíos más significativos en el desarrollo de infraestructuras resilientes.

En lo que respecta a las fuentes de financiación, se presentan diversas estrategias para asegurar fondos, tales como la colaboración entre los sectores público y privado, así como la búsqueda de fondos internacionales destinados a proyectos de adaptación y mitigación del cambio climático.

También se presentaron ejemplos de modelos de inversión exitosos que han permitido financiar proyectos de infraestructura resiliente, destacando la importancia de demostrar el retorno de inversión a largo plazo.

7. Implementación de directivas y normativas en España

La jornada abordó la implantación de la directiva de gestión de avenidas en España, cuyo objetivo es el de mejorar la preparación y respuesta ante inundaciones.

Se abordó la cuestión de las dificultades que enfrentan las autoridades para aplicar estas directivas de manera efectiva, así como las adaptaciones necesarias para enfrentar fenómenos climáticos inesperados.

Finalmente, se presentaron las lecciones aprendidas de la implantación de estas directivas, así como recomendaciones para mejorar la efectividad de las políticas existentes.

8. Innovaciones tecnológicas y soluciones sostenibles

La jornada destacó la importancia de la tecnología en el desarrollo de infraestructuras resilientes. También se abordó el tema de tecnologías emergentes, tales como la inteligencia artificial y el modelado predictivo, que tienen el potencial de ayudar a anticipar y gestionar los riesgos climáticos.

En lo que respecta a la Infraestructura Verde, se expusieron soluciones basadas en la integración de la naturaleza, como los techos verdes y los sistemas de drenaje sostenible, que se presentan como una estrategia eficaz para aumentar la resiliencia de las infraestructuras.

9. Perspectivas futuras y llamado a la acción

La jornada concluyó con una exhortación a la acción dirigida a todos los profesionales implicados en la planificación y gestión de infraestructuras.

Se hizo especial hincapié en que la responsabilidad de hacer frente al cambio climático es compartida y requiere la colaboración de todos los sectores de la sociedad.

Asimismo, se instó a los profesionales a adoptar una visión a largo plazo en la planificación de infraestructuras, contemplando no solo las necesidades actuales, sino también los desafíos futuros que plantea el cambio climático.

Conclusión

La jornada sobre infraestructuras resilientes al clima constituye un llamamiento a la acción dirigido a los profesionales de la ingeniería civil y otros actores implicados en la planificación y gestión de infraestructuras. La adaptación al cambio climático no solo es una responsabilidad, sino una oportunidad para innovar y crear un futuro más seguro y sostenible. Para ello, resulta imprescindible la colaboración, la educación y la inversión, que son pilares fundamentales para lograr infraestructuras que no solo resistan los desafíos actuales, sino que también estén preparadas para los retos del futuro. Este enfoque integral resulta imperativo para asegurar que las comunidades no solo sobrevivan, sino que prosperen en un mundo cada vez más afectado por el cambio climático.

Aquí tenéis un mapa conceptual de la jornada.

Pero creo que lo mejor es que, si tenéis un rato, oigáis de primera mano todas y cada una de las intervenciones en este vídeo. Espero que os sea de interés.

Glosario de términos clave

  • Adaptación al Cambio Climático: Proceso de ajuste a los impactos actuales o esperados del cambio climático. En el contexto de las infraestructuras, implica modificar su diseño, construcción y operación para soportar condiciones climáticas extremas.
  • Resiliencia (Climática): Capacidad de un sistema, comunidad o infraestructura para anticipar, resistir, adaptarse y recuperarse de eventos adversos del clima.
  • Dana (Depresión Aislada en Niveles Altos): Fenómeno meteorológico que puede causar lluvias torrenciales e inundaciones severas, mencionado en el texto como causa de trágicas consecuencias.
  • Niveles Preindustriales: Periodo de referencia (antes de la Revolución Industrial) utilizado para medir el aumento de la temperatura global debido a las actividades humanas.
  • Fenómenos Meteorológicos Extremos: Eventos climáticos de intensidad inusual, como olas de calor, sequías, inundaciones torrenciales y tormentas severas.
  • Infraestructuras Críticas: Infraestructuras esenciales para el funcionamiento de la sociedad y la economía, como las de transporte, energía, agua y telecomunicaciones, cuya afectación tiene consecuencias significativas.
  • Plan Nacional de Adaptación al Cambio Climático (PNACC): Marco de acción en España para integrar el cambio climático en la planificación sectorial, incluyendo las infraestructuras.
  • Ley de Cambio Climático y Transición Energética (2021): Ley española que establece objetivos de reducción de emisiones y promueve la adaptación al cambio climático en diversos sectores.
  • Directiva de Resiliencia de Infraestructuras Críticas: Normativa de la Unión Europea que obliga a los Estados miembros a adoptar estrategias para mejorar la resiliencia de sus infraestructuras esenciales.
  • Seopán: Asociación de Empresas Constructoras y Concesionarias de Infraestructuras, mencionada por su análisis de inversión en infraestructuras prioritarias.
  • CEDEX (Centro de Estudios y Experimentación de Obras Públicas): Organismo técnico español que realiza estudios y análisis relacionados con la ingeniería civil y el medio ambiente.
  • Cuencas Hidráulicas: Áreas geográficas donde el agua drena hacia un río principal, mencionadas en relación con la planificación hidrológica y la gestión de inundaciones.
  • Soluciones Basadas en la Naturaleza: Enfoques para abordar los desafíos ambientales que utilizan o imitan procesos naturales para proporcionar beneficios tanto para el medio ambiente como para la sociedad.
  • Sistemas de Saneamiento: Infraestructuras urbanas destinadas a la recogida y tratamiento de aguas residuales y pluviales.
  • Vías Separativas: Sistemas de saneamiento en los que las aguas residuales y las aguas pluviales se recogen y transportan por redes de tuberías separadas.
  • Resiliencia Estructural: Capacidad de una estructura para mantener su función y recuperarse después de ser sometida a eventos extremos o perturbaciones.
  • Robustez: Capacidad de una infraestructura o sistema para resistir un evento adverso sin una pérdida significativa de funcionalidad.
  • Rapidez (en Resiliencia): Velocidad con la que un sistema o infraestructura puede recuperarse y restaurar su funcionalidad después de una perturbación.
  • Análisis de Riesgos Climáticos: Evaluación de la probabilidad e impacto potencial de los eventos climáticos adversos sobre las infraestructuras.
  • Marco de Sendai para la Reducción del Riesgo de Desastres (2015-2030): Acuerdo internacional que establece un marco global para la reducción del riesgo de desastres, incluyendo la importancia de invertir en resiliencia.
  • Predicción y Modelos Predictivos: Uso de datos y herramientas para anticipar futuros eventos climáticos y sus posibles impactos.
  • Incertidumbre Profunda: Situación en la que hay una falta de conocimiento sobre las probabilidades o los posibles resultados de un evento.
  • Cisne Negro (Teoría): Término utilizado para describir eventos altamente improbables, de gran impacto y que solo se pueden explicar o predecir en retrospectiva.
  • Disponibilidad: Capacidad de una infraestructura para estar operativa y proporcionar su servicio.
  • Capacidad (en Infraestructura): Volumen o nivel de servicio que una infraestructura puede soportar o manejar.
  • Vulnerabilidad: Susceptibilidad de una infraestructura a sufrir daños o perder funcionalidad debido a un evento climático adverso.
  • Exposición: Grado en que una infraestructura está situada en un área propensa a eventos climáticos adversos.
  • Sensibilidad: Grado en que una infraestructura se ve afectada por un evento climático adverso una vez expuesta a él.
  • Escenarios de Cambio Climático: Proyecciones de posibles futuras condiciones climáticas basadas en diferentes supuestos sobre las emisiones de gases de efecto invernadero.
  • Trayectorias Socioeconómicas Compartidas (SSP): Marcos utilizados en la investigación del cambio climático para describir posibles futuros socioeconómicos y sus implicaciones para las emisiones y la adaptación.
  • Análisis Coste-Beneficio: Método para evaluar la rentabilidad de diferentes opciones de inversión, comparando los costos y beneficios esperados.
  • Gobernanza: Procesos y estructuras para tomar decisiones e implementar acciones, en este contexto, relacionadas con la resiliencia de las infraestructuras.
  • Inventario de Activos: Base de datos que contiene información detallada sobre las infraestructuras y sus componentes.
  • Sistemas de Ayuda a la Decisión: Herramientas informáticas y modelos que asisten en la toma de decisiones complejas, como la gestión de inundaciones o sequías.
  • Llanuras de Inundación Controlada: Áreas designadas para ser inundadas de manera planificada durante eventos de crecida para reducir el riesgo en otras zonas.
  • Probable Maximum Flood (PMF) / Avenida Máxima Probable: Estimación del evento de inundación más severo que es razonablemente posible en un lugar dado.
  • Flash Floods / Crecidas Repentinas: Inundaciones rápidas y violentas que ocurren con poca o ninguna advertencia, a menudo causadas por lluvias torrenciales intensas.
  • Six Sigma: Metodología de gestión de procesos que busca reducir al mínimo la probabilidad de defectos o errores.
  • Poka-yoke: Sistemas a prueba de errores diseñados para prevenir o detectar errores humanos.
  • Consorcio Administrativo: Entidad legal formada por varias administraciones públicas para coordinar y ejecutar acciones conjuntas.
  • Gemelos Digitales: Réplicas virtuales de sistemas o infraestructuras físicas que permiten la simulación y el análisis.
  • Big Data: Conjuntos de datos muy grandes y complejos que pueden ser analizados para revelar patrones y tendencias.
  • Ingeniería Humanitaria: Aplicación de principios y habilidades de ingeniería para abordar crisis humanitarias y promover el bienestar humano.
  • Estacionariedad Climática: Suposición de que las propiedades estadísticas del clima (como las distribuciones de precipitación o temperatura) permanecen constantes a lo largo del tiempo.
  • Análisis Probabilístico: Enfoque para evaluar la probabilidad de ocurrencia de eventos y sus posibles consecuencias.
  • Métodos Semiprobalísticos: Métodos de diseño estructural que utilizan factores de seguridad parciales basados en consideraciones probabilísticas.
  • Trayectorias Adaptativas: Secuencias de medidas de adaptación que se pueden implementar a lo largo del tiempo para hacer frente a los impactos cambiantes del cambio climático.
  • KPIs Financieros (Indicadores Clave de Rendimiento Financiero): Métricas utilizadas para evaluar el desempeño financiero, que pueden incorporarse en el análisis de la resiliencia de las infraestructuras.

Conferencia: Gestión de riesgos en infraestructuras. Estrategias y medidas de resiliencia

Os anuncio mi participación como ponente en la jornada inaugural del curso «Infraestructuras resilientes al clima», que se celebrará el 4 de abril de 2025, de forma presencial y telemática. Se celebrará a las 10:30 h en el Auditorio Agustín de Betancourt de la institución. Este curso está organizado por el Colegio de Ingenieros de Caminos, Canales y Puertos y está patrocinado por FCC Construcción y el Ministerio para la Transición Ecológica y el Reto Demográfico.

La inscripción es gratuita y se puede seguir por streaming. El enlace de inscripción es: Inscripción a la jornada (acceso gratuito)

Durante este acto, de acceso libre, los directores del curso presentarán los contenidos que se abordarán a lo largo de las diversas sesiones formativas. Además, se debatirán los riesgos de las infraestructuras frente al cambio climático, así como las estrategias y medidas de resiliencia que pueden adoptarse.

Esta formación, organizada por el Comité Técnico de Agua, Energía y Cambio Climático del Colegio, tiene como objetivo analizar el impacto del cambio climático y explorar enfoques que faciliten la planificación, diseño, construcción y operación de infraestructuras resilientes al clima.

Os paso mi participación en este vídeo. Espero que os sea de interés.

El impacto del cambio climático en las infraestructuras

DANA OCTUBRE 2024 – Vías del Metro entre Picanya y Paiporta. https://commons.wikimedia.org/

El diseño y la planificación de infraestructuras se han basado históricamente en el análisis de datos climáticos pasados para definir criterios estructurales de seguridad. Sin embargo, la aceleración del cambio climático ha puesto en cuestión la validez de esta metodología y ha obligado a reconsiderar los fundamentos sobre los que se establecen los códigos de construcción y las normativas de diseño. El carácter no estacionario del clima, la creciente magnitud de los eventos meteorológicos extremos y la necesidad de infraestructuras más resilientes han convertido la adaptación al cambio climático en un imperativo técnico y social.

Las estructuras deben garantizar la seguridad de sus ocupantes en condiciones tanto ordinarias como extremas, así como su funcionalidad a lo largo de su ciclo de vida. Es preciso tener en cuenta que la frecuencia y severidad de ciertos fenómenos, como tormentas, inundaciones y variaciones térmicas, ya no pueden preverse con precisión únicamente mediante datos históricos. La integración de modelos de análisis probabilístico y enfoques basados en la fiabilidad estructural representa una vía fundamental para mitigar los riesgos asociados al cambio climático y asegurar la estabilidad y operatividad de infraestructuras críticas en el futuro.

El fin de la estacionariedad climática y sus implicaciones en el diseño estructural

El diseño estructural se ha desarrollado bajo la premisa de que las condiciones climáticas permanecen relativamente estables a lo largo del tiempo, lo que ha permitido definir cargas normativas basadas en registros históricos. No obstante, el cambio climático ha invalidado esta hipótesis al introducir una variabilidad que altera tanto la frecuencia como la intensidad de los fenómenos atmosféricos y compromete la fiabilidad de los métodos de predicción empleados en el ámbito de la ingeniería.

Las estructuras diseñadas bajo códigos convencionales pueden experimentar cargas superiores a las previstas en su diseño original, lo que resulta en un aumento del riesgo estructural y la necesidad de reevaluaciones constantes para garantizar su seguridad. La acumulación de efectos derivados de condiciones climáticas extremas no solo afecta a la estabilidad estructural inmediata, sino que acelera los procesos de deterioro de los materiales y compromete la capacidad de servicio de la infraestructura a largo plazo.

El análisis de la no estacionariedad climática requiere el desarrollo de nuevas herramientas de modelado que permitan proyectar escenarios de carga climática futura con mayor precisión. La variabilidad espacial y temporal de las alteraciones climáticas obliga a establecer criterios de diseño diferenciados según la localización geográfica, la exposición a determinados fenómenos y la importancia funcional de cada infraestructura. En este contexto, la colaboración entre científicos del clima e ingenieros estructurales se erige como un componente esencial para la elaboración de mapas de cargas dinámicos que reflejen las condiciones cambiantes del entorno.

Aumento de cargas climáticas y su impacto en la estabilidad estructural

El cambio climático incide directamente en la magnitud y distribución de las cargas climáticas, lo que supone un desafío significativo para el diseño estructural. El incremento de la temperatura media global y la intensificación de eventos meteorológicos extremos tienen un impacto directo en la resistencia y durabilidad de los materiales de construcción, lo que requiere una revisión exhaustiva de los criterios de diseño para adaptarlos a condiciones más exigentes.

El aumento de la carga de viento, debido a la mayor frecuencia de tormentas severas y huracanes, plantea desafíos particulares para estructuras expuestas a esfuerzos aerodinámicos, tales como rascacielos, puentes y torres de telecomunicaciones. La variabilidad en la dirección y velocidad de los vientos extremos introduce incertidumbre en el diseño convencional, lo que requiere la aplicación de metodologías de análisis probabilístico que permitan anticipar los efectos acumulativos de estas fuerzas sobre los elementos estructurales.

Ciertamente, la carga de nieve y hielo constituye un factor de riesgo cuya evolución en un clima cambiante requiere especial atención. En climas fríos, la combinación de precipitaciones extremas y ciclos de congelación y deshielo genera esfuerzos adicionales sobre cubiertas y soportes, lo que puede ocasionar la fatiga de los materiales y aumentar el riesgo de fallos estructurales. La acumulación de hielo en líneas de transmisión eléctrica y otros elementos de infraestructura crítica puede comprometer su funcionalidad, lo que resalta la necesidad imperante de implementar estrategias de adaptación en el diseño de dichos sistemas.

El aumento del nivel del mar y la intensificación de tormentas costeras representan amenazas crecientes para las infraestructuras situadas en zonas litorales. La erosión del suelo y la intrusión salina pueden afectar la estabilidad de las cimentaciones y las estructuras de contención, mientras que el aumento en la magnitud de las marejadas ciclónicas aumenta el riesgo de colapso en las edificaciones expuestas. Por lo tanto, es esencial adoptar enfoques probabilísticos para estimar las cargas de inundación y considerar criterios de adaptación costera en el diseño estructural, con el fin de mitigar estos efectos y garantizar la seguridad y estabilidad de las infraestructuras en zonas litorales.

Resiliencia estructural y continuidad operativa en escenarios de riesgo creciente

En lo que respecta a la resistencia inmediata de las infraestructuras a eventos climáticos extremos, su capacidad de recuperación y continuidad operativa tras un desastre constituye un aspecto de suma importancia en el contexto del cambio climático. La resiliencia estructural implica no solo garantizar que las edificaciones y redes de transporte soporten cargas excepcionales sin fallar, sino también que puedan volver a estar plenamente operativas en un tiempo razonable tras una interrupción.

La planificación de infraestructuras resilientes requiere un enfoque basado en la funcionalidad tras el desastre, estableciendo criterios de diseño que permitan minimizar los tiempos de inactividad y optimizar los procesos de reparación y reconstrucción. Este enfoque cobra especial relevancia en infraestructuras críticas, tales como hospitales, plantas de tratamiento de agua y redes de energía, cuya operatividad continua resulta esencial para la estabilidad de las comunidades.

El diseño basado en rendimiento (Performance-Based Design, PBD) surge como una herramienta clave para integrar la resiliencia en la ingeniería estructural. A diferencia de los enfoques convencionales basados en requisitos normativos predeterminados, el PBD permite establecer objetivos concretos de rendimiento para cada tipo de estructura, considerando tanto su resistencia ante cargas extremas como su capacidad de recuperación tras eventos disruptivos.

Conclusión: La adaptación de las infraestructuras al cambio climático como una necesidad inaplazable

La evidencia científica sobre el impacto del cambio climático en la infraestructura es concluyente y requiere una revisión exhaustiva de los criterios de diseño estructural. La dependencia exclusiva de datos históricos ya no constituye una estrategia viable en un contexto donde la frecuencia e intensidad de eventos extremos están en constante aumento. Por ello, es necesario implementar análisis probabilísticos, actualizar periódicamente los mapas de cargas climáticas y adoptar estrategias de resiliencia estructural. Estos cambios son fundamentales para garantizar la seguridad y funcionalidad de las infraestructuras en el futuro.

La ingeniería estructural debe evolucionar hacia un enfoque basado en la adaptación y la gestión del riesgo, integrando modelos de predicción climática en el diseño y planificación de nuevas construcciones. La colaboración entre ingenieros, científicos del clima y responsables de políticas públicas será esencial para desarrollar normativas que reflejen la realidad cambiante del entorno y permitan la creación de infraestructuras más seguras y sostenibles.

La adaptación al cambio climático no es únicamente una cuestión técnica, sino una necesidad económica y social que determinará la capacidad de las comunidades para hacer frente a los desafíos del siglo XXI. El diseño estructural del futuro debe asumir este reto con un enfoque proactivo, asegurando que las infraestructuras no solo resistan el clima cambiante, sino que también contribuyan a la estabilidad y el bienestar de la sociedad en su conjunto.

Referencias:

  • ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.
  • ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.
  • ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.
  • Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.
  • Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.
  • Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.
  • Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.
  • Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.
  • IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.
  • McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209
  • O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025
  • Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.
  • Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cambio climático y resiliencia comunitaria

En los artículos de este blog sobre resiliencia y cambio climático que estoy escribiendo, me centraré en los aspectos relacionados con la resiliencia comunitaria.

Acontecimientos como las inundaciones catastróficas ocurridas en la provincia de Valencia el 29 de noviembre de 2024 ponen de manifiesto la importancia de estas ideas.

Estas reflexiones se enmarcan dentro del proyecto RESILIFE que desarrollo en la actualidad como investigador principal, y se han basado en algunas ideas desarrolladas en el trabajo reciente de Ellingwood et al. (2024).

Este artículo trata sobre la resiliencia comunitaria y cómo incorporar los efectos del cambio climático en la planificación y diseño de edificios e infraestructuras a nivel comunitario. Se discuten los desafíos y consideraciones clave para lograr una mayor resiliencia de las comunidades frente a eventos climáticos extremos.

La resiliencia comunitaria es la capacidad para adaptarse a las situaciones adversas, adaptarse a condiciones cambiantes y mantener sus funciones e infraestructuras fundamentales, así como recuperarse rápidamente ante eventos extremos. En este contexto, «comunidad» se refiere a un lugar delimitado por fronteras geográficas que opera bajo la jurisdicción de una estructura de gobernanza, como una ciudad, área metropolitana o región. Es dentro de esta gobernanza local donde se identifican, aprueban, financian y ponen en marcha las decisiones, acciones y proyectos relacionados con la resiliencia. Este concepto subraya la importancia de guiar los procesos adaptativos dentro de la comunidad para preservar su identidad básica y permitir los cambios necesarios con el tiempo. La identidad de una comunidad la forman los valores y prioridades de sus miembros, por lo que los esfuerzos para aumentar la resiliencia deben implicarles en la definición de lo que valoran colectivamente y lo que pretenden proteger (Ellingwood et al., 2024).

Las repercusiones económicas del cambio climático varían mucho, con beneficios potenciales en las regiones templadas a niveles más bajos de calentamiento, pero con pérdidas crecientes a medida que aumentan las temperaturas. Los hogares y los países más pobres pueden experimentar efectos desproporcionados sobre su bienestar, aun cuando sus contribuciones económicas sean menos significativas. Las respuestas de adaptación efectivas, como el desarrollo de infraestructuras resilientes y tecnologías climáticamente inteligentes, pueden ayudar a mitigar estos impactos y mejorar la resiliencia de las comunidades (O’Neill et al., 2022).

Proceso para la planificación de la resiliencia comunitaria. https://www.nist.gov/community-resilience/planning-guide

El éxito de la resiliencia comunitaria no solo se centra en la recuperación de eventos relacionados con el cambio climático, sino que también abarca una variedad más amplia de retos, incluidos los sociales y económicos. Este concepto influye en las decisiones relativas al entorno construido, que abarca desde instalaciones individuales hasta sistemas de infraestructura regional. Para que la planificación de la resiliencia sea efectiva, es crucial incluir diversas perspectivas de las partes interesadas y comprender los sistemas sociales, políticos y económicos de la comunidad, así como sus vulnerabilidades inherentes (Eisenhauer et al., 2024). El entorno construido abarca todos los sistemas diseñados en una comunidad o región, como edificios, instalaciones y redes de infraestructura. Aunque muchas viviendas unifamiliares no son diseñadas por ingenieros, deben tenerse en cuenta en la evaluación de la resiliencia comunitaria. Este enfoque integrado permite identificar los objetivos de rendimiento de los edificios e infraestructuras y garantizar que las estrategias de resiliencia se adapten a las necesidades específicas de la comunidad.

Para lograr resiliencia a nivel comunitario, los edificios y sistemas de infraestructura deben cumplir los criterios de resiliencia establecidos a nivel local. Esta interdependencia entre escalas diferentes de resiliencia conecta la planificación regional con el diseño de infraestructuras individuales. Para que las instalaciones y los sistemas den un paso adelante y alcancen un desempeño resiliente, es necesario ir más allá de los requisitos de códigos y normas actuales, que se centran principalmente en la seguridad de las personas y en limitar el fallo estructural, especialmente en la recuperación de la funcionalidad. Los edificios e infraestructuras proporcionan refugio, servicios básicos y otros recursos, como escuelas y hospitales, y respaldan instituciones sociales y económicas esenciales para el bienestar de la comunidad.

Para desarrollar planes sólidos de resiliencia comunitaria, es fundamental involucrar a las partes interesadas. Una oficina dedicada a la resiliencia puede garantizar un liderazgo firme y un compromiso coherente entre los agentes locales. Es crucial comprender la identidad y los recursos únicos de la comunidad, así como fomentar la participación de los líderes sociales (Eisenhauer et al., 2024). Incluir las voces de todos los miembros de la comunidad en el proceso de planificación hace que los esfuerzos de resiliencia sean más equitativos y eficaces.

La resiliencia comunitaria se enfrenta a diversas limitaciones que deben abordarse para mejorar su capacidad de adaptación. Entre estas dificultades se encuentran las barreras económicas, los factores sociales y culturales, las limitaciones de capacidad humana, los problemas de gobernanza, los recursos financieros, la accesibilidad a la información, los obstáculos físicos y las influencias climáticas (O’Neill et al., 2022). Reconocer y superar estas limitaciones es fundamental para que las comunidades desarrollen su capacidad de adaptación ante amenazas actuales y emergentes.

Los sectores vulnerables dentro de las comunidades suelen verse afectados de manera desproporcionada por los peligros derivados del cambio climático, como las inundaciones, debido a políticas de uso del suelo, desventajas económicas y otros factores demográficos, como la raza/etnia, el género y la edad. Por lo tanto, los objetivos de resiliencia pueden variar de una comunidad a otra debido a diferencias en las características sociodemográficas, la edad y el estado de los edificios e infraestructuras, así como a los enfoques adoptados para abordar la equidad en los objetivos de resiliencia.

El cambio climático no solo afecta a los medios de subsistencia físicos, sino que también amenaza las estructuras sociales y las prácticas culturales. La erosión del capital social, exacerbada por la degradación de los recursos y la competencia, puede provocar un aumento de la tensión en el seno de las comunidades y entre ellas, lo que puede dar lugar a conflictos y migraciones forzosas. Los grupos vulnerables, como las personas mayores y con discapacidad, se ven afectados de forma desproporcionada por estos cambios, lo que subraya la necesidad de estrategias de adaptación específicas (IPCC, 1997) .

Consideraciones de proyecto para la resiliencia y los impactos climáticos

La consideración de eventos climáticos extremos futuros (como huracanes, olas de calor y precipitaciones intensas) está cobrando una importancia cada vez mayor para las comunidades. Aunque actualmente no se tienen en cuenta en los códigos o normas de construcción, muchas comunidades locales exigen que los efectos climáticos se integren en los proyectos. (Vogel et al., 2016). Además, el cambio climático puede agravar los impactos de los eventos de peligro extremo con el tiempo, no solo al modificar las cargas sobre las estructuras, sino también al afectar a su capacidad debido a procesos de envejecimiento y deterioro. Por ello, es fundamental tener en cuenta la resiliencia y los problemas climáticos en la planificación comunitaria, especialmente en el diseño de edificios e infraestructuras civiles.

El impacto de eventos extremos compuestos (como un tsunami posterior a un terremoto, o marejadas ciclónicas e inundaciones fluviales tras vientos de huracán) también puede intensificarse debido a los efectos climáticos (Bruneau et al., 2017). Actualmente, existe una falta de guías o herramientas suficientes para considerar estos eventos compuestos y su impacto en el entorno construido. Además de predecir peligros futuros, la no estacionariedad de los efectos climáticos en los eventos de peligro requerirá nuevos enfoques para abordar y comunicar la incertidumbre (Cooke, 2015).

El concepto de resiliencia se basa en la funcionalidad, que puede medirse a nivel de edificios, sistemas de infraestructura o comunidades. Por ello, los análisis de resiliencia deben adaptarse a la escala evaluada y utilizar métodos claros para agregar y desagregar información entre diferentes escalas. Las múltiples escalas de análisis de resiliencia también tienen implicaciones para las proyecciones climáticas regionales, en las que pueden ser necesarias proyecciones correlacionadas en lugares específicos.

Los edificios y los sistemas de infraestructura civil se diseñan y mantienen según diversas regulaciones, códigos y mejores prácticas, cada uno con su propia base de diseño y fiabilidad para evaluar el rendimiento (McAllister et al., 2022). Cada sistema tiene distintos objetivos de rendimiento, como la seguridad en edificios frente a eventos poco frecuentes o la interrupción en los servicios de electricidad y agua ante eventos frecuentes. La falta de coordinación genera disparidades en el rendimiento del entorno construido ante un mismo evento de peligro, que aumentan aún más al considerar el desempeño en términos de recuperación. Aunque la fiabilidad mide si se logran los objetivos de rendimiento, se requieren métricas diferentes para evaluar la recuperación de la funcionalidad.

En algunos sistemas, la fase de recuperación se mide en horas (por ejemplo, en los sistemas de distribución eléctrica), mientras que en otros puede medirse en meses (por ejemplo, en la reparación de un puente o túnel dañado). Estas disparidades se identifican y abordan mejor con una evaluación a nivel comunitario que permita identificar las necesidades específicas de cada proyecto. Una herramienta comúnmente utilizada es la denominada tabla de resiliencia, introducida por primera vez en San Francisco (Poland, 2009). En estas tablas, la comunidad establece el tiempo deseado para alcanzar un conjunto de métricas de desempeño de diversas infraestructuras (por ejemplo, el 75 % de las carreteras funcionales en 3 meses). Estas metas se comparan con el tiempo de recuperación previsto, evaluado por expertos técnicos. Los sectores donde la discrepancia entre la recuperación deseada y la prevista es mayor son aquellos donde más se necesitan intervenciones.

Tabla 1. Plazos para los objetivos de reconstrucción en un seísmo (Poland, 2009).

Fase Marco temporal Condición del entorno construido
1 1 a 7 días Respuesta inicial y preparación para la reconstrucción
Inmediato El alcalde ha declarado una emergencia local y ha abierto el Centro de Operaciones de Emergencia. Los hospitales, las comisarías, los parques de bomberos y los centros de operaciones de los departamentos de la ciudad están operativos.
Dentro de 4 horas Las personas que salgan o regresen a la ciudad para llegar a sus hogares pueden hacerlo
Dentro de 24 horas Los trabajadores de respuesta a emergencias pueden activarse y sus operaciones están completamente operativas. Los hoteles designados para alojar a estos trabajadores son seguros y están operativos. Los refugios están abiertos. Todos los hogares ocupados son inspeccionados por sus ocupantes y menos del 5 % de las viviendas son consideradas inseguras para ser ocupadas. Los residentes se refugiarán en edificios con daños superficiales, aunque los servicios públicos no funcionen.
Dentro de 72 horas El 90 % de los sistemas de servicios públicos (energía, agua, aguas residuales y comunicación) están operativos y prestan apoyo a las instalaciones de emergencia y a los vecindarios. Asimismo, el 90 % de las principales rutas de transporte, incluidos los cruces de la bahía y los aeropuertos, están abiertos al menos para la respuesta a emergencias. Los esfuerzos de recuperación inicial y reconstrucción se centrarán en reparar viviendas, escuelas y oficinas de proveedores médicos para que puedan utilizarse, además de restablecer los servicios públicos necesarios. Los servicios esenciales de la ciudad están completamente restablecidos.
2 30 a 60 días Viviendas restauradas – necesidades sociales continuas cubiertas
Dentro de 30 días Todos los sistemas de servicios públicos y las rutas de transporte que atienden a los vecindarios han recuperado el 95 % de los niveles de servicio previos al evento. El transporte público funciona al 90 % de su capacidad. Las escuelas públicas están abiertas y en funcionamiento. El 90 % de los negocios del barrio están abiertos y atendiendo a la fuerza laboral.
Dentro de 60 días Los aeropuertos están operativos y se pueden utilizar con normalidad. El transporte público funciona al 95 % de su capacidad. Las rutas de transporte menores se están reparando y reabriendo.
3 Varios años Reconstrucción a largo plazo
Dentro de 4 meses Los refugios temporales se han cerrado. Todos los hogares desplazados han regresado a sus hogares o han sido reubicados de forma permanente. El 95 % de los servicios minoristas de la comunidad han reabierto. El 50 % de los negocios de apoyo que no forman parte de la fuerza laboral están reabiertos.
Dentro de 3 años Todas las operaciones comerciales, incluidos todos los servicios de la ciudad que no estén relacionados con la respuesta a emergencias o la reconstrucción, se han restablecido a los niveles previos al seísmo.

Esta herramienta sencilla se utiliza para representar posibles efectos de los riesgos en un conjunto de escenarios posibles. Actualmente, estos se identifican para cada comunidad en función de los riesgos previstos y de las directrices disponibles. Los efectos del cambio climático pueden incorporarse seleccionando un conjunto de escenarios de eventos extremos que representen el clima futuro. Para avanzar en los análisis y resultados de resiliencia, es necesario un enfoque estandarizado para identificar estos escenarios de riesgo.

Los edificios, puentes y otras infraestructuras tienden a diseñarse para vidas útiles de entre 50 y 100 años. Sin embargo, muchos edificios e infraestructuras se utilizan más allá de su vida útil y su desempeño depende de rehabilitaciones, actualizaciones y mantenimiento. Por lo tanto, la vida útil de edificios, puentes y otras infraestructuras abarca un período en el que el clima puede cambiar sustancialmente, por lo que dichos sistemas se ven expuestos a condiciones y acciones climáticas diferentes a las especificadas en su proyecto. Esta misma consideración se aplica a las evaluaciones de resiliencia.

Todo el proceso de evaluación de la resiliencia comunitaria, desde la selección de peligros hasta la evaluación de escenarios y las evaluaciones cuantitativas del rendimiento, debe tener en cuenta la no estacionariedad de los efectos climáticos. Al evaluar el impacto del cambio climático en el diseño, el mantenimiento y la remodelación, la propiedad desempeña un papel crucial. Cuando los edificios e infraestructuras tienen el mismo propietario durante su vida útil, hay incentivos más fuertes para incluir consideraciones de resiliencia y cambio climático en la planificación y el mantenimiento. En cambio, los sistemas diseñados y mantenidos por diferentes entidades suelen cumplir solo con los requisitos mínimos, a menos que la demanda de resiliencia, consideraciones climáticas o mejoras que se puedan trasladar a los usuarios sea clara.

Las dependencias e interdependencias entre los sistemas de infraestructura de una comunidad requieren la coordinación de múltiples propietarios, lo que puede resultar difícil. Mejorar la resiliencia de un sistema frente a los efectos climáticos futuros puede ser menos efectivo de lo planeado si los propietarios o administradores de los sistemas de infraestructura interdependientes no realizan mejoras similares.

Desempeño funcional del entorno construido

Los objetivos de desempeño comunitario suelen expresarse como aspiraciones a largo plazo para la funcionalidad de los sistemas físicos, sociales y económicos. La incorporación del cambio climático en la funcionalidad a largo plazo de los sistemas comunitarios debe abordarse urgentemente. Los proyectistas necesitan objetivos cuantitativos de desempeño y criterios de diseño para evaluar instalaciones y sistemas individuales que puedan apoyar los objetivos comunitarios y hacer frente a la considerable incertidumbre asociada al cambio climático y a los eventos futuros.

Un entorno construido con un desempeño aceptable es necesario, pero no suficiente, para establecer la resiliencia comunitaria. Esta resiliencia abarca metas sociales y económicas, así como objetivos relacionados con los servicios físicos. Para vincular la respuesta de los sistemas de infraestructura a los objetivos de resiliencia, es fundamental cuantificar su rendimiento colectivo mediante métricas de funcionalidad y recuperación. Desarrollar métricas que respalden los objetivos sociales es crucial para abordar la resiliencia comunitaria a nivel nacional. A continuación, se muestran algunos ejemplos de metas y métricas de resiliencia comunitaria en la Tabla 2. Las métricas de resiliencia para los servicios de infraestructura son más relevantes para los ingenieros estructurales, pero el rendimiento resiliente del entorno construido también contribuye a los objetivos sociales y económicos. Por lo tanto, estos objetivos deben tenerse en cuenta al evaluar soluciones para el diseño, el mantenimiento o las mejoras estructurales.

Tabla 2. Ejemplos de metas de desempeño comunitario y métricas de resiliencia

Metas de rendimiento comunitario Ejemplos de métricas de resiliencia
Estabilidad poblacional Desplazamiento y migración; disponibilidad de viviendas.
Estabilidad económica Cambio en el empleo, impuestos e ingresos (recursos), presupuesto comunitario (necesidades).
Estabilidad de servicios sociales Acceso a atención médica, educación, comercio minorista, banca.
Estabilidad de servicios físicos Funcionalidad de edificios, transporte, agua, aguas residuales, energía eléctrica, gas, comunicaciones.
Estabilidad gubernamental Acceso a protección policial y contra incendios; servicios gubernamentales públicos esenciales.

Fuente: Ellingwood et al. (2020).

La recuperación funcional se refiere al restablecimiento de las funciones básicas del edificio o sistema de infraestructura tras un evento adverso. Desde la perspectiva de la resiliencia, el diseño de estos sistemas debe tener en cuenta el daño potencial y la forma en que se recuperarán durante el proceso de diseño. Este aspecto se aborda en parte en instalaciones críticas como hospitales y refugios, donde se aumentan los requisitos de carga y deformación para construir estructuras más sólidas.

Desde la perspectiva de la resiliencia comunitaria, otros edificios también pueden considerarse críticos según su función, como residencias de personas mayores y escuelas. Sin embargo, los códigos actuales se centran en la seguridad de las personas en edificios e infraestructuras individuales, sin considerar explícitamente las formas de fallo ni las reparaciones necesarias para restaurar la funcionalidad en un tiempo determinado. Para establecer normas que incluyan objetivos de desempeño en términos de funcionalidad y resiliencia, además de la seguridad, será necesario cambiar el proceso regulatorio, pasando de un diseño basado en componentes a un enfoque sistémico.

Se necesitan orientaciones sobre mejores prácticas y criterios de proyecto con objetivos que respalden las metas de resiliencia comunitaria para incluir la recuperación funcional. Se requieren objetivos funcionales y criterios para abordar mejor el papel de las infraestructuras, incluidos los niveles esperados de daño, el impacto en la funcionalidad de los edificios y otras infraestructuras, las reparaciones necesarias para restablecer la funcionalidad e impactos potenciales en la recuperación social y económica de la comunidad.

A medida que la ingeniería se esfuerza por incorporar los conceptos de resiliencia y recuperación funcional en su práctica, es necesario abordar el cambio climático en paralelo. La ASCE (2015) destacó un dilema clave para los ingenieros en ejercicio: «Aunque la comunidad científica está de acuerdo en que el clima está cambiando, existe una incertidumbre significativa sobre las distribuciones espaciales y temporales de los cambios durante la vida útil de los diseños y planes de infraestructura. La necesidad de que la infraestructura de ingeniería satisfaga las necesidades futuras y la incertidumbre sobre el clima futuro plantean un dilema para los ingenieros».

Los cambios en las condiciones climáticas pueden afectar a las infraestructuras y a su resiliencia de diversas maneras. ASCE (2018) identificó los tipos de impactos relacionados con el clima que deben abordarse, en particular, los relacionados con las inundaciones (el aumento de los niveles, de las velocidades de flujo y de las alturas de las olas), con las precipitaciones (las acciones de lluvia y nieve en los techos y el aumento de las acciones de las heladas en las estructuras) y con el viento (la mayor intensidad y frecuencia de tormentas y huracanes). El Manual de Práctica 144 de ASCE (ASCE, 2021) utiliza métodos probabilísticos para el análisis y la gestión de riesgos en los proyectos para abordar las incertidumbres dentro de un horizonte temporal. Este enfoque incluye la identificación y el análisis de riesgos, fallos del sistema, probabilidades asociadas y consecuencias, incluyendo pérdidas directas e indirectas, cuantificación de fallos y recuperación para la resiliencia, efectos en las comunidades, la economía de la resiliencia y las tecnologías para mejorar la resiliencia tanto en infraestructuras nuevas como existentes.

La resiliencia incorpora la dimensión temporal a través del proceso de recuperación y reconstrucción, pero los modelos de recuperación aún se encuentran en una etapa inicial de desarrollo. Además, durante la recuperación es necesario tener en cuenta las interdependencias, por ejemplo, cuando un edificio o sistema es funcional, pero otro sistema del que depende (por ejemplo, servicios públicos) aún no puede proporcionar el servicio necesario.

Cuando los edificios no son funcionales debido a retrasos en la financiación de reparaciones u otras causas, los efectos son enormes. En efecto, los retrasos en la recuperación de la funcionalidad de los edificios afectan directamente a la población, que se ve obligada a desplazarse y aumenta la probabilidad de emigrar, lo que repercute negativamente en las métricas de estabilidad poblacional (Tabla 2). La emigración también depende de la cohesión social y de factores como la fuente de refugio, empleo y educación de los niños en un hogar.

Desafíos para la resiliencia comunitaria en un clima cambiante

En la próxima década, probablemente evolucionen las mejores prácticas de los profesionales del diseño y las decisiones de los planificadores urbanos y las autoridades reguladoras para apoyar la forma en que se aborda el cambio climático en lo que respecta a la resiliencia comunitaria. El Diseño Basado en el Desempeño (PBD) ofrece una forma de abordar este conflicto y resolver los desafíos inherentes que surgirán al atender tanto las necesidades de las instalaciones como las de la comunidad. Desarrollar e incorporar enfoques PBD que aborden los peligros e impactos del cambio climático en las mejores prácticas, estándares y códigos es una necesidad urgente para la profesión de la ingeniería y la sociedad.

Los desafíos para los ingenieros estructurales incluyen los siguientes (Ellingwood et al., 2020):

  • Identificación de metas comunes de resiliencia comunitaria que aborden los futuros impactos del cambio climático, las cuales deberían ser establecidas por un grupo amplio de partes interesadas.
  • Objetivos de desempeño para los edificios, según categorías funcionales o agrupaciones (por ejemplo, edificios residenciales, instalaciones comerciales, gubernamentales) o instituciones socioeconómicas (por ejemplo, educación, atención médica), deben expresarse como requisitos compatibles con la práctica de ingeniería y ser prácticos de implementar desde una perspectiva de ingeniería.
  • Objetivos de fiabilidad para los edificios individuales en la práctica de diseño estructural actual (por ejemplo, ASCE 7-22, Sección 1.3) identifican requisitos mínimos de rendimiento a nivel de componente para la mayoría de las acciones, excepto las sísmicas. Se necesitan fiabilidades objetivo y criterios de desempeño a nivel de sistema para todas las cargas, con el fin de apoyar las metas de resiliencia comunitaria.
  • Códigos, normas y regulaciones para los sistemas de infraestructura (por ejemplo, edificios, puentes, comunicaciones críticas) deben coordinarse para apoyar las metas de resiliencia comunitaria e impactos del cambio climático, y para abordar la funcionalidad y recuperación de la infraestructura civil, así como la seguridad de las personas.

En resumen, la resiliencia comunitaria se refiere a la capacidad de las comunidades para adaptarse a situaciones adversas, mantener sus funciones esenciales y recuperarse rápidamente después de eventos extremos. Para desarrollar estrategias de adaptación eficaces, especialmente frente al cambio climático, es crucial que los miembros de la comunidad participen activamente en la identificación de sus valores y prioridades. Las comunidades vulnerables suelen sufrir impactos desproporcionados debido a factores socioeconómicos y demográficos, lo que subraya la necesidad de enfoques equitativos en la planificación de la resiliencia. Además, es fundamental tener en cuenta las interdependencias entre los sistemas de infraestructura y la coordinación entre múltiples propietarios para mejorar la resiliencia. La planificación debe incluir objetivos de rendimiento claros y métricas que aborden tanto la funcionalidad como la recuperación de los sistemas, para que las comunidades puedan hacer frente a los desafíos climáticos futuros de manera efectiva.

Aquí tenéis un mapa mental sobre el contenido de las reflexiones anteriores, que espero, os sea útil.

Dejo a continuación un documento que creo que os puede interesar sobre este tema.

Descargar (PDF, 3.82MB)

Referencias:

ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.

ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.

ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.

Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.

Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.

Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.

Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.

Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.

IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.

McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209

O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025

Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.

Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión del riesgo de inundación en infraestructuras críticas: estrategias y medidas de resiliencia

Las inundaciones suponen una amenaza significativa para las infraestructuras críticas (IC), como el suministro de electricidad, las telecomunicaciones, el agua potable, el tratamiento de aguas residuales y el gas. La gestión del riesgo de inundación en las infraestructuras críticas cobra mayor importancia en un contexto de cambio climático, en el que los eventos extremos son más frecuentes e intensos. Este informe aborda la gestión del riesgo de inundación en las infraestructuras críticas y expone medidas específicas para incrementar su resiliencia, la aplicación de modelos para evaluar el impacto de estos eventos y la implementación de estrategias para mejorar la capacidad de recuperación.

Infraestructuras críticas y el riesgo de inundación: marco de referencia

Las infraestructuras críticas son sistemas esenciales para el funcionamiento de una sociedad, que incluyen sectores clave como la energía, las telecomunicaciones, el agua y los servicios de saneamiento. Estos sectores son interdependientes y se organizan en redes complejas, por lo que una interrupción en uno de ellos puede desencadenar efectos en cascada que afecten a múltiples sistemas, comprometiendo la seguridad y el bienestar de la población. La gestión del riesgo de inundación (GRI) en estas infraestructuras es fundamental, pues permite reducir la vulnerabilidad y mejorar la capacidad de recuperación ante eventos adversos.

Papel de las infraestructuras hidráulicas en la gestión del riesgo de inundación

Las infraestructuras hidráulicas, como las presas, los tanques de tormenta, las canalizaciones y los corredores verdes, desempeñan un papel crucial en la gestión de inundaciones y en la protección de las infraestructuras críticas (IC). Estas infraestructuras ayudan a gestionar el flujo de agua y evitan que las lluvias torrenciales y las crecidas de los ríos afecten directamente a las IC y a las áreas urbanas densamente pobladas.

  1. Presas y embalses: Estas estructuras permiten almacenar grandes volúmenes de agua y controlar el caudal de los ríos, además de regular el flujo hacia áreas vulnerables. Durante una tormenta, las presas pueden retener el exceso de agua y liberarla de forma gradual una vez que los niveles han disminuido, lo que reduce el riesgo de desbordamientos y minimiza el impacto aguas abajo.
  2. Tanques de tormenta: Son estructuras de almacenamiento subterráneo que recogen el agua de lluvia durante eventos intensos. Actúan como amortiguadores temporales, evitando que el sistema de alcantarillado se sature y se reduzca el riesgo de inundaciones en las áreas urbanas. Posteriormente, el agua acumulada puede liberarse de manera controlada hacia los sistemas de tratamiento o directamente a los cuerpos de agua cuando el caudal ha disminuido.
  3. Canalizaciones y sistemas de drenaje: Canalizar los ríos y desarrollar sistemas de drenaje bien planificados es esencial para redirigir el agua de inundación de manera segura, reduciendo la velocidad del flujo y mitigando el riesgo de erosión y daños estructurales en las áreas urbanas..
  4. Corredores verdes y zonas de retención natural: Estos espacios, a menudo ubicados en áreas urbanas o suburbanas, están diseñados para absorber y retener el exceso de agua de lluvia, y funcionan como «esponjas» naturales que reducen el caudal de agua que llega a los sistemas de alcantarillado. Además, estas zonas verdes actúan como amortiguadores, reteniendo el agua y liberándola lentamente, lo cual es particularmente útil para proteger infraestructuras sensibles a las inundaciones.
  5. Áreas de infiltración y pavimentos permeables: En las ciudades, los pavimentos permeables y las áreas de infiltración permiten que el agua de lluvia penetre en el suelo, recargando los acuíferos y reduciendo la escorrentía superficial. Esto alivia la presión sobre los sistemas de drenaje y evita que el agua llegue rápidamente a las áreas de IC, lo que disminuye el riesgo de inundación.

Ciclo de gestión de riesgos de desastres (GRD) en infraestructuras críticas

El proceso de GRI en IC suele estructurarse en cinco fases, que permiten implementar medidas específicas en cada etapa:

  1. Preparación: Incluye todas las acciones de planificación y recursos necesarios para reducir el impacto de las inundaciones, incluyendo la incorporación de infraestructuras hidráulicas y la capacitación del personal.
  2. Prevención y mitigación: Consiste en la implementación de infraestructuras hidráulicas, medidas de control y sistemas de drenaje para minimizar la vulnerabilidad de las IC frente a las inundaciones.
  3. Impacto: Se refiere a la capacidad de las infraestructuras para soportar los efectos de una inundación y a cómo estas protegen a las IC regulando el flujo de agua.
  4. Respuesta: Acciones de emergencia implementadas para reducir los daños y restaurar los servicios críticos.
  5. Recuperación y rehabilitación: Estrategias para devolver a las IC su estado funcional o mejorado, integrando lecciones aprendidas y mejorando la infraestructura para incrementar su resistencia a futuros eventos.

Impacto de las inundaciones en las infraestructuras críticas y la función de las infraestructuras hidráulicas

Las infraestructuras críticas, al depender de una red de servicios interconectados, son especialmente vulnerables a las inundaciones. Las infraestructuras hidráulicas desempeñan un papel esencial en la mitigación de estos efectos, ya que protegen los sistemas de IC de daños directos o indirectos:

  • Electricidad: El contacto con el agua puede provocar cortocircuitos, daños en estaciones de transformación y la interrupción del suministro a gran escala. Esto no solo afecta al servicio eléctrico, sino que también genera riesgos para la salud debido a la posibilidad de descargas eléctricas en áreas inundadas.
  • Telecomunicaciones: La infraestructura de telecomunicaciones incluye componentes activos (como nodos de red y antenas) que dependen de la electricidad y, por tanto, son altamente vulnerables a las interrupciones de suministro eléctrico. La interrupción de las comunicaciones complica la coordinación de emergencias y la respuesta rápida.
  • Suministro de agua: Las inundaciones pueden introducir contaminantes en el sistema de suministro de agua, especialmente en instalaciones de captación de agua cercanas a ríos u otras fuentes de agua superficial. Además, los sistemas de bombeo pueden verse interrumpidos, lo que afecta a la presión y la calidad del agua suministrada.
  • Tratamiento de aguas residuales: Este sector es especialmente vulnerable, ya que las inundaciones pueden dañar las plantas de tratamiento y provocar que las aguas residuales no tratadas se liberen al medio ambiente, con consecuencias ambientales y para la salud pública.
  • Gas: Aunque los sistemas de tuberías de gas suelen estar más protegidos, las estaciones de regulación y control pueden verse afectadas por las inundaciones, lo que interrumpiría el servicio y supondría posibles riesgos de seguridad.

Estrategias y medidas de resiliencia en la gestión del riesgo de inundación

Una estrategia integral de resiliencia frente a las inundaciones para infraestructuras críticas abarca una combinación de medidas estructurales y no estructurales. Estas medidas se estructuran de acuerdo con el ciclo de gestión del riesgo de desastre, como se detalla a continuación:

1. Preparación

La fase de preparación incluye la planificación y el equipamiento para mejorar la respuesta ante una emergencia. Algunas medidas clave son:

  • Planes de contingencia: Crear planes detallados para responder a situaciones de emergencia, incluyendo la designación de roles y responsabilidades para cada tipo de infraestructura.
  • Almacenamiento de equipos de emergencia: Disponer de generadores, bombas y otras unidades de repuesto listas para usar en caso de interrupciones.
  • Entrenamiento y simulacros: Capacitar al personal para que lleve a cabo los planes de emergencia y realizar simulacros periódicos de inundación.
  • Monitoreo y colaboración meteorológica: Establecer una estrecha colaboración con los servicios meteorológicos para monitorizar el riesgo de inundaciones en tiempo real, utilizando sistemas avanzados de alerta.

2. Prevención y mitigación

Las medidas de prevención y mitigación incluyen la infraestructura necesaria para controlar el flujo de agua y proteger las IC:

  • Construcción de infraestructuras resilientes: Elevar o construir instalaciones en áreas con menor riesgo de inundación, y utilizar materiales resistentes al agua en instalaciones críticas.
  • Barreras físicas: Instalar barreras móviles o permanentes alrededor de infraestructuras clave para protegerlas de las aguas de inundación.
  • Redundancia de sistemas: Desarrollar redundancias en la red para que, si un componente falla, otros puedan compensar la pérdida de servicio.
  • Planificación territorial y zonificación: Garantizar que las infraestructuras críticas se sitúen fuera de las zonas de alto riesgo de inundación, siempre que sea posible.

3. Impacto

La fase de impacto contempla la reducción de los efectos de una inundación mediante infraestructuras hidráulicas que controlen y disminuyan el caudal en zonas urbanas.

  • Gestión de flujos con presas y embalses: Control de la liberación de agua en embalses, asegurando que no se libere de manera repentina y que el flujo se distribuya para minimizar el impacto en las áreas críticas.
  • Desviación del flujo en canalizaciones: Redirigir el agua de inundación mediante canalizaciones y drenajes que la alejen de áreas vulnerables, como plantas de tratamiento y subestaciones eléctricas.
  • Evaluación de vulnerabilidad: Identificar los puntos más débiles en las infraestructuras para priorizar las medidas de protección y mitigación.
  • Medición y control de los niveles de agua: Implementar sensores para controlarlos en tiempo real, lo que permite respuestas más informadas y rápidas.

4. Respuesta

La respuesta es clave para minimizar el tiempo de interrupción de los servicios críticos y reducir los posibles daños adicionales. Las medidas que se deben tomar en esta etapa son:

  • Despliegue de unidades de reemplazo: Utilizar generadores móviles, bombas y sistemas de comunicación alternativos para restaurar  temporalmente los servicios mientras se repara la infraestructura dañada.
  • Prioridades en la restauración: Establecer listas de prioridades para el despliegue de recursos en las áreas de mayor impacto y donde se vean afectadas poblaciones vulnerables.
  • Comunicación pública: Informar a la comunidad sobre las interrupciones y los tiempos estimados de restauración, ofreciendo recomendaciones de seguridad.

5. Recuperación y rehabilitación

La fase de recuperación y rehabilitación se centra en restaurar los servicios de infraestructura de manera eficaz y reforzar su resiliencia futura. Las medidas en esta etapa incluyen:

  • Reparación y sustitución de componentes dañados: Restablecer los servicios lo antes posible mediante la reparación de las instalaciones dañadas y la sustitución de componentes.
  • Evaluación posterior al evento: Realizar un análisis detallado del impacto de la inundación y de la eficacia de las medidas implementadas, documentando lecciones aprendidas para mejorar los planes futuros.
  • Mejoras en la infraestructura: Donde sea posible, aplicar el principio de «reconstruir mejor», introduciendo mejoras en la infraestructura para aumentar su resistencia frente a futuros eventos.
  • Revisión y mantenimiento de las infraestructuras hidráulicas: Evaluar el estado de las presas, los tanques de tormenta y los sistemas de drenaje, y realizar mejoras en función de los eventos recientes.
  • Evaluación de la eficacia de las medidas implementadas: Análisis del impacto de las infraestructuras hidráulicas en la contención del flujo y ajuste del sistema de almacenamiento y drenaje según los datos recopilados.

Modelado del riesgo y evaluación de medidas hidráulicas

Para optimizar la planificación de la resiliencia, el modelado de redes de infraestructura crítica permite evaluar el impacto potencial de las inundaciones y probar diferentes medidas de mitigación. Este tipo de modelado incluye:

  • Análisis de impacto en redes: Representación de las interdependencias entre sectores críticos mediante modelos de red que simulan cómo los fallos en un sector pueden afectar a otros.
  • Evaluación de vulnerabilidades: Determinar los componentes más sensibles a las inundaciones dentro de cada red, como estaciones de bombeo o transformadores eléctricos, para priorizar su protección.
  • Simulación de medidas de resiliencia: Implementar simulaciones que muestran cómo diferentes medidas (como barreras de contención o sistemas de redundancia) pueden reducir los daños y acelerar la recuperación.
  • Cálculo de riesgo poblacional: Integrar datos de densidad poblacional para cuantificar el impacto de las interrupciones en términos de personas afectadas y tiempo de recuperación, lo que facilita la toma de decisiones informadas para la implementación de medidas.
  • Simulación de impacto y respuesta: Permite simular diferentes escenarios de inundación y evaluar la eficacia de las infraestructuras hidráulicas para proteger las IC, comparando opciones de almacenamiento, liberación controlada y desviación de agua.
  • Optimización del sistema de retención y almacenamiento: Determina la cantidad óptima de agua que debe almacenarse en embalses y tanques de tormenta para minimizar el riesgo de desbordamiento y daños a las IC.

Desafíos y recomendaciones para la resiliencia ante inundaciones

La gestión del riesgo de inundación en infraestructuras críticas plantea varios desafíos, entre los cuales se encuentran:

  • Interdependencias complejas: La dependencia mutua entre diferentes sectores hace que el fallo en uno de ellos pueda generar efectos en cascada que agraven el impacto global.
  • Cambio climático y eventos extremos: La mayor frecuencia e intensidad de las inundaciones requieren que las infraestructuras se diseñen y operen considerando escenarios extremos.
  • Disponibilidad de datos: La falta de datos integrados y fiables sobre las características de las infraestructuras y su vulnerabilidad ante las inundaciones limita la precisión de los modelos y la planificación de resiliencia.

Para enfrentar estos desafíos, se recomienda:

  1. Fortalecer la colaboración intersectorial: Establecer redes de cooperación entre operadores de infraestructura crítica para mejorar la planificación y la respuesta.
  2. Integrar herramientas de predicción y alerta temprana: Aprovechar tecnologías avanzadas de monitoreo y modelado climático para anticipar inundaciones y activar respuestas más eficaces.
  3. Aumentar la inversión en infraestructura resiliente: Priorizar la construcción y adaptación de infraestructuras críticas con materiales y diseños capaces de soportar inundaciones.
  4. Desarrollar políticas de zonificación y regulación más estrictas: Promover la construcción fuera de zonas de riesgo y fomentar diseños urbanos que integren espacios de absorción de agua.

Conclusión

La gestión del riesgo de inundación en infraestructuras críticas es fundamental para la resiliencia de las ciudades y la seguridad de la población. Al implementar un enfoque integral basado en el ciclo de gestión del riesgo de desastre (GRD), es posible identificar y aplicar medidas específicas en cada fase, desde la preparación hasta la recuperación. Los modelos de red permiten evaluar y mejorar la capacidad de respuesta de las infraestructuras ante las inundaciones, y ayudan a los operadores y a los gobiernos a tomar decisiones informadas que minimicen el impacto de estos eventos. Al integrar infraestructuras hidráulicas, como presas, tanques de tormenta y zonas de retención natural, en el ciclo de gestión del riesgo de desastres, es posible aumentar la protección de los servicios esenciales y reducir el impacto de las inundaciones. Además, combinar infraestructuras hidráulicas con medidas de resiliencia específicas para cada sector refuerza la capacidad de respuesta y recuperación, minimizando los efectos en cascada y garantizando la continuidad de los servicios esenciales y el bienestar de la población.

Os dejo un domuento denominado “Principios para la infraestructura resiliente”, de Naciones Unidas. Espero que os resulte de interés.

Descargar (PDF, 909KB)

Este otro, del Ministerio para la Transición Ecológica, trata de la “Evaluación de la resiliencia de los núcleos urbanos frente al riesgo de inundación: redes, sistemas urbanos y otras infraestructuras”.

Descargar (PDF, 44.85MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Impacto social y económico de los resultados previstos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

Entre los Objetivos de Desarrollo Sostenible (ODS) para 2030, destaca la necesidad de construir infraestructuras resilientes. Entre 2003 y 2013, los desastres naturales y humanos causaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y generaron pérdidas de 1,5 billones de dólares. Los apagones en las redes eléctricas por condiciones meteorológicas adversas costaron entre 18 000 y 33 000 millones de dólares entre 2003 y 2012. Los errores de construcción y diseño indujeron el 65 % de los casos de colapso progresivo. En Europa, solo la mitad de las reparaciones de los edificios de hormigón fueron efectivas, a pesar de que los costes de rehabilitación suponen casi la mitad de las inversiones anuales en construcción. El mercado mundial de construcción de infraestructuras, valorado en 2,242 mil millones de dólares en 2021, se proyecta a 3,267 mil millones para 2027, con un crecimiento anual del 6,48 %.

Ante este panorama, un diseño adecuado y medidas preventivas locales son cruciales para salvar vidas e infraestructuras, pero, además de reducir el riesgo, son una fuente de creación de empleo especializado que debe formarse en estas técnicas. Por tanto, se espera un impacto social y económico relevante del proyecto RESILIFE. Publicaciones previas del grupo de investigación centradas en la optimización multiobjetivo (sin considerar la toma de decisiones multicriterio derivada de la participación social) muestran ahorros de entre el 10 y el 50 % en costes, ahorro de materiales, reducción de emisiones de CO₂ y consumo de energía. Por otra parte, en proyectos anteriores se hizo hincapié en los aspectos sociales de la optimización de las infraestructuras. Ello supuso incluir aspectos relativos a la seguridad de las personas, la equidad social intergeneracional, aspectos relacionados con la salud, la educación, la integración del análisis de género, etc., que ahora se incluyen en este proyecto. El grupo dispone de la metodología para su inclusión en la construcción industrializada modular y las estructuras híbridas. En este sentido, la construcción modular industrializada (también llamada off-site) ofrece ventajas significativas, ya que permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Además, la pandemia ha demostrado, por ejemplo, en la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días, que este tipo de construcción modular puede solucionar graves problemas de alto impacto social y económico en situaciones de crisis futuras. También, existe una creciente demanda social de vivienda que, en países como Suecia o Japón, ha utilizado la construcción modular de forma masiva.

Los resultados del proyecto RESILIFE pretenden profundizar en las ventajas sociales y económicas. Basta con observar cómo los desastres naturales y, por desgracia, los conflictos bélicos actuales están destruyendo las viviendas e infraestructuras de forma masiva, afectando principalmente a las mujeres y los niños. El esfuerzo por diseñar estructuras capaces de resistir alguno de estos eventos extremos, o en su caso, facilitar la reparación de forma rápida y eficaz, permite reducir considerablemente el sufrimiento de las personas. Además, optar por soluciones que minimicen el colapso progresivo de los edificios y mejoren la eficiencia de la rehabilitación puede tener un impacto significativo. Mejorar el diseño resiliente de las infraestructuras para reducir el impacto en un 10 % supondría una disminución de al menos 15 000 millones de dólares y 10 000 muertes anuales a nivel mundial. Asimismo, los resultados obtenidos por la optimización resiliente vendrían a completar la línea de investigación realizada en el ICITECH por el profesor José M. Adam y su equipo para evitar el colapso progresivo de las estructuras, investigación que cuenta con una fuerte inversión en modelización física y numérica. Esta especialización en la investigación del ICITECH sitúa a nuestro país en una posición tecnológica de gran importancia en el ámbito de la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Salto cualitativo del proyecto de investigación RESILIFE respecto a resultados previos

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

El equipo de investigación presenta una trayectoria que respalda su capacidad para abordar este nuevo reto, con experiencia en proyectos previos. En efecto, el IP1 del proyecto RESILIFE también fue IP en los 4 proyectos anteriores y dirigió 17 tesis doctorales relacionadas. El IP2 participó en todos estos proyectos. Los resultados obtenidos han sido consistentemente significativos y progresivos. El proyecto HORSOST (BIA2011-23602) generó 15 artículos JCR, 5 Q1, y de ellos, 2 D1. BRIDLIFE (BIA2014-56574-R) produjo 20 artículos JCR, 15 de ellos en la categoría Q1 y, de estos, 7 en la categoría D1. DIMALIFE (BIA2017-85098-R) produjo 33 artículos JCR, 20 de ellos Q1 y, de estos, 12 D1. HYDELIFE (PID2020-117056RB-I00) ha producido hasta ahora 42 artículos JCR, 26 de ellos Q1 y 15 D1. En estos proyectos se concedieron cuatro contratos predoctorales, tres de los cuales culminaron con éxito y el último está en ejecución. También existe una patente (Alcalá y Navarro, 2020) sobre vigas en cajón mixtas de acero y hormigón.

Objetivos y resultados ya alcanzados en proyectos previos

Antes de resumir los resultados de proyectos previos, queremos destacar que nuestra línea de investigación va más allá de la simple optimización económica del hormigón estructural, un objetivo atractivo a corto plazo para las empresas constructoras o de prefabricados. En proyectos anteriores, se abordó el diseño eficiente de estructuras con hormigones no convencionales, utilizando criterios sostenibles multiobjetivo y técnicas de minería de datos. También se analizó la toma de decisiones en la gestión del ciclo de vida de puentes pretensados, priorizando la eficiencia social y medioambiental con presupuestos ajustados. Para ello, se emplearon metamodelos, diseño óptimo robusto y fiabilidad para generar diseños automáticos de puentes e infraestructuras, considerando hormigones con baja huella de carbono y abordando aspectos de durabilidad, consumo energético, huella de carbono y seguridad a lo largo del ciclo de vida. Se utilizaron técnicas de decisión multicriterio para elegir la mejor tipología constructiva de un puente y decidir entre las opciones resultantes de la frontera de Pareto. Se incorporaron técnicas emergentes de aprendizaje profundo (DL) en la hibridación de metaheurísticas y se exploró la construcción industrializada modular en edificación y obra civil. Además, se analizaron en detalle puentes mixtos y estructuras híbridas frente a soluciones de hormigón en un análisis de ciclo de vida completo que incluye la sostenibilidad social y medioambiental.

La producción científica de estos proyectos fue significativa (ver algunos artículos en las referencias aportadas). Se abordó la optimización multiobjetivo (coste, CO2 y energía) en puentes con vigas artesa y cajón, así como en el mantenimiento de puentes y redes de pavimento. También se exploró la sostenibilidad social de las infraestructuras y se aplicaron metodologías innovadoras, como la lógica neutrosófica y las redes bayesianas en la toma de decisiones. La optimización se respaldó en metamodelos de redes neuronales, modelos kriging y análisis de fiabilidad. Se propusieron indicadores para evaluar la sostenibilidad social y ambiental. Además, se aplicó diseño robusto a puentes, se analizó la resiliencia de las infraestructuras y se realizaron análisis del ciclo de vida para estructuras óptimas. Se obtuvo la patente «Viga en cajón mixta de acero y hormigón, P202030530».

Sin embargo, para avanzar es necesario abordar las limitaciones y el alcance de estos proyectos. El proyecto RESILIFE busca dar un salto cualitativo en nuestra línea de investigación y superar algunas de las limitaciones actuales en cuanto al alcance. Para respaldar la innovación propuesta y plantear este nuevo proyecto, nuestro grupo llevó a cabo seis estudios sobre el estado del arte en relación con BIM en estructuras (Fernández-Mora et al., 2022), la aplicación de la inteligencia artificial a la construcción (García et al., 2022), sobre estructuras modulares (Sánchez-Garrido et al., 2023), sobre estructuras prefabricadas frente a sismo (Guaygua et al., 2023), sobre estructuras híbridas de acero (Terreros-Bedoya et al., 2023) y sobre metamodelos (Negrín et al., 2023). Esto ha permitido detectar la oportunidad de optimizar el ciclo de vida de las estructuras incorporando, desde el diseño, la ocurrencia de eventos extremos, de forma que dichas estructuras pudieran recuperar su funcionalidad en el menor tiempo posible y con el menor coste social y ambiental. Tanto las estructuras híbridas de acero como las basadas en MMC tienen el potencial de mejorar la resiliencia estructural, siendo estos campos de investigación fecundos y de gran repercusión social. Además, el uso de la inteligencia artificial, la toma de decisiones multicriterio que consideran incertidumbres, el uso de metamodelos, la incorporación de la teoría de juegos en la optimización multiobjetivo y el empleo del BIM y la realidad virtual en la modelización suponen barreras que superar en la investigación de estas estructuras. A ello hay que añadir el uso de técnicas no destructivas para detectar daños en dichas estructuras (Hadizadeh-Bazaz et al., 2023), así como tecnologías de reparación eficiente de estructuras (Ortega et al., 2018).

Por tanto, RESILIFE pretende superar una serie de limitaciones en la investigación:

  • Análisis del ciclo de vida de estructuras híbridas de acero basadas en Modernos Métodos de Construcción (MMC) ante situaciones extremas (aumento de temperatura, explosiones, seísmos, etc.), de forma que aumente la resiliencia.
  • En el diseño óptimo, prever la reparación y el mantenimiento de las MMC ante eventos extremos, de forma que los elementos estructurales no se dañen o se puedan reparar de manera eficiente y rápida, centrándose en los problemas sociales y ambientales.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial, metamodelos y la teoría de juegos para mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generada en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo resiliente y basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundizar en el estudio de la distribución de los impactos sociales y ambientales en las estructuras MMC.
  • Analizar la sensibilidad de las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras.

Lo indicado hasta ahora se podría sintetizar en los siguientes aspectos:

  1. El tema de la investigación se ha ido profundizando en cada uno de los proyectos realizados, de acuerdo con los objetivos previstos.
  2. Los estudios anteriores se basaban en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida, el diseño robusto y basado en la fiabilidad y la incorporación del aprendizaje profundo. Ahora es el momento de ampliar la investigación a nuevas construcciones industrializadas modulares y estructuras híbridas optimizando su resiliencia ante eventos extremos.

Referencias

  • ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
  • CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
  • DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
  • FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
  • FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
  • GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
  • HAO, H.; BI, K.; CHEN, W.; PHAM, T.M.; LI, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Struct., 277:115477.
  • HAO, H.; LI, J. (2019). Sustainable High-Performance Resilient Structures. Engineering, 5(2):197-198.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Struct., 266:114607.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
  • MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
  • MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
  • MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
  • SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
  • TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
  • ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Metodología del proyecto de investigación RESILIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores ya presentamos el resumen, la justificación, las hipótesis de partida y los objetivos del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la metodología de este proyecto.

El análisis del estado de la técnica, desarrollado específicamente por el grupo para formular este proyecto, reveló la existencia de importantes lagunas de investigación. Por un lado, no se ha abordado de manera integral la optimización del diseño de estructuras híbridas y basadas en MMC que incorporan daños por eventos extremos, lo que dificulta una recuperación rápida y la minimización de impactos sociales y ambientales. Estas estructuras presentan un alto potencial (Terreros-Bedoya et al., 2023; Sánchez-Garrido et al., 2023), pero aún no se han explorado metaheurísticas híbridas con DL y teoría de juegos en la optimización de su resiliencia. Además, la lógica neutrosófica y las redes bayesianas abren puertas en el ámbito de la decisión multicriterio. Estas innovaciones se fusionan en nuestra metodología con técnicas, como el análisis del ciclo de vida, el análisis basado en la fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. La metodología propuesta busca priorizar el diseño de estructuras, su reparación o mantenimiento, considerando criterios de sostenibilidad social y ambiental dentro de restricciones presupuestarias, teniendo en cuenta la variabilidad inherente a los desafíos prácticos.

La Figura 2 muestra el esquema metodológico propuesto para RESILIFE, vinculando las fases con los objetivos específicos. Se adopta un enfoque mixto e interactivo en el que el decisor proporciona información sobre sus preferencias al analista. Posteriormente, mediante una optimización multiobjetivo basada en la fiabilidad y los metamodelos, el analista genera un conjunto de soluciones eficientes que el decisor evalúa antes de tomar una decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, en las que el decisor (grupos de interés) informa de las preferencias al analista, abarcando métodos constructivos, reparación, conservación, etc. La optimización multiobjetivo, apoyada en la variabilidad de parámetros, variables y restricciones, produce alternativas eficientes. La última fase implica un proceso de información a posteriori para que el decisor considere aspectos no contemplados en la optimización, que da como resultado la solución final completa.

Figura 2. Esquema metodológico diseñado para RESILIFE en relación con los objetivos

La metodología se aplicará, como mínimo, a los siguientes casos de estudio. En primer lugar, a la optimización de pórticos de edificios altos con estructura de acero híbrido y de hormigón armado sometida a un incremento fuerte de temperatura. De hecho, Keles et al. (2024) optimizan estructuras de acero tradicional, en las que la temperatura altera las propiedades mecánicas, y Negrín et al. (2023a) comparan las ventajas de las estructuras híbridas frente a las tradicionales. El segundo caso se aplica a pórticos de edificios, tanto de hormigón armado como de estructuras híbridas, donde se optimiza suponiendo el fallo completo de uno o varios de los soportes, de forma que el entramado siga manteniendo su funcionalidad. Esto permite, con ligeros cambios en el diseño, mantener cierta funcionalidad estructural capaz de evacuar a las personas con seguridad y, a su vez, realizar tareas de reparación o mantenimiento de los elementos dañados. El objetivo es mejorar no solo la optimización, sino también los aspectos de diseño que impidan el colapso progresivo. Un aspecto similar ha sido estudiado por Negrín et al. (2023c) para el caso de fuertes interacciones suelo-estructura. Otro caso de estudio es la optimización resiliente de viviendas sociales prefabricadas en zonas sísmicas, que deben resistir acciones extremas y, además, poder reparar rápidamente los daños (Guaygua et al., 2023). Otro caso previsto es la optimización resiliente del mantenimiento y la reparación de patologías resultantes de eventos extremos. Los casos anteriores, que se centran en gran medida en viviendas, también se extenderán en este proyecto a otras estructuras, como puentes híbridos o estructuras modulares, en consonancia con la experiencia previa del equipo de investigación. La optimización siempre es multiobjetivo y se apoya en técnicas de deep learning a lo largo del ciclo de vida, con la novedad del uso de la teoría de juegos.

Referencias

  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.