El valor social que aporta la ingeniería civil

Entre los buenos momentos de la inauguración de la XXV Semana de la Ingeniería Civil y el Medio Ambiente 2019 #SICMA ayer estuvo la proyección, durante la presentación realizada por el Vicerrector de alumnado, cultura y deportes, José Luis Cueto, de este vídeo que nos dejó sin palabras: “He construido un puente”.

Se trata de una escena de la película Margin Call, en la que un responsable, entre otros, de la gran caída del sistema financiero mundial, un broker, tras ser despedido se plantea lo absurdo del trabajo que ha estado realizando, comparándolo con un trabajo anterior, de ingeniero con el que en lugar de hundir en la miseria a las personas, las ayudó a ahorrar tiempo en sus vidas.

Creo que vale la pena ver estos casi dos minutos impagables.

 

 

 

Método acelerado de optimización de puentes en cajón

 

Acaban de publicarnos en Engineering Structures, revista de ELSEVIER indexada en el primer cuartil del JCR, un artículo en el que hemos propuesto un novedoso método de optimización que acelera los cálculo al emplear Kriging como metamodelo en los cálculos intermedios de las iteraciones de un proceso de optimización heurística. Se ha aplicado en la optimización de la energía requerida para la construcción de un puente en cajón de hormigón pretensado, pero la metodología es aplicable al cálculo de cualquier estructura. Este artículo forma parte del proyecto de investigación DIMALIFE. Como se ha publicado en abierto, os puedo pasar el artículo completo, que os podéis descargar también en la propia revista.

ABSTRACT:

Structural optimization is normally carried out by means of conventional heuristic optimization due to the complexity of the structural problems. However, the conventional heuristic optimization still consumes a large amount of time. The use of metamodels helps to reduce the computational cost of the optimization and, along these lines, kriging-based heuristic optimization is presented as an alternative to carry out an accelerated optimization of complex problems. In this work, conventional heuristic optimization and kriging-based heuristic optimization will be applied to reach the optimal solution of a continuous box-girder pedestrian bridge of three spans with a low embodied energy. For this purpose, different penalizations and different initial sample sizes will be studied and compared. This work shows that kriging-based heuristic optimization provides results close to those of conventional heuristic optimization using less time. For the sample size of 50, the best solution differs about 2.54% compared to the conventional heuristic optimization, and reduces the computational cost by 99.06%. Therefore, the use of a kriging model in structural design problems offers a new means of solving certain structural problems that require a very high computational cost and reduces the difficulty of other problems.

KEYWORDS: Low-embodied energy; Post-tensioned concrete; Box-girder bridge; Structural optimization; Metamodel; Kriging

REFERENCE:
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

 

Esto me suena… ¿Son seguros nuestros puentes?

Puente de la Constitución de 1812, Cádiz, en agosto de 2015. TCadizwiki [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Os dejo en esta presentación una nueva entrevista que me ha realizado el periodista José Antonio García Muñoz, conocido como Ciudadano García, sobre temas de ingeniería. Como ya he comentado en alguna entrada anterior, la labor de divulgación de las ciencias, y en particular de la ingeniería, resulta una tarea agradable y enriquecedora.

La entrevista, en este caso, se ha centrado en la seguridad y el mantenimiento de nuestros puentes. En efecto, una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras.

Tener la oportunidad de comunicar aspectos de nuestra profesión a más de 300.000 oyentes supone todo un reto, más si lo que se busca es transmitir de forma sencilla y para todo el mundo, aspectos técnicos que, a veces, solo somos capaces de hacerlo con colegas o estudiantes. Insisto, todo un reto y una oportunidad que se agradece.

Pues de todo ello hablamos el pasado viernes 14 de diciembre de 2018. Os dejo la entrevista, realizada en directo. Espero que os guste.

Cuantificación del estado de conservación de los puentes: índices de estado o condición

Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado. Ministerio de Fomento (2012)

Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras. Además, este desasosiego se acentúa cuando, por una parte, la grave crisis económica que ha sufrido nuestro país ha reducido significativamente los presupuestos dedicados al mantenimiento de las infraestructuras y cuando, además, los datos que el Ministerio de Fomento dispone sobre el estado de los puentes, extraídos de su Sistema de Gestión de Puentes (SGP), no es suficientemente transparente, a diferencia de otros países, como Alemania. La que he denominado como “crisis de las infraestructuras“, en efecto, no es un problema solo de España, sino que afecta de forma generalizada a muchos países de nuestro entorno.

Pues bien, la noticia del 9 de diciembre nos decía que 66 puentes presentan graves problemas de seguridad. La justificación es que, tras la valoración de su estado por expertos, se calculan unos índices (extensión, gravedad y evolución) a los que se aplican algoritmos para obtener una clasificación final que va de 0 a 100. Esos 66 puentes obtenían más de 81 puntos, lo cual significa que presentan “patologías potencialmente graves que pueden afectar a su comportamiento resistente” y son objeto de un seguimiento especial. Teniendo en cuenta que el parque de las obras de paso en España son de casi 23000 puentes, ello supone que un 0,28% de ellos superan el umbral de los 81 puntos. Parecerían pocos puentes, pero bastaría el colapso de uno solo de ellos para que se pudiese reproducir una tragedia como la ocurrida en Génova este verano. Por tanto, no debemos restar importancia a estas cifras. De hecho, nuestro grupo de investigación, a través del proyecto DIMALIFE, está muy preocupado por investigar estos tema.

¿Significa esto que en España nuestros puentes no son seguros? En absoluto. No hay que alarmarse, pero hay que tomar medidas. Lo que le ocurre a cualquier infraestructura (puente, presa, puerto, túnel, hospital, etc.) es que todas ellas, sin excepción, presentan una disminución de sus prestaciones y funcionalidades que, pasado cierto umbral, hace que dejen de ser útiles, finalizando su vida útil. La vida de las infraestructuras se puede prolongar con un adecuado mantenimiento y acometiendo reparaciones, pero llega un momento que el coste de alargar la vida útil puede ser insostenible. Por tanto, los puentes “envejecen”.

Todo el mundo está de acuerdo en que los aviones deben someterse a exámenes periódicos y revisiones profundas, realizadas por expertos, que garanticen la seguridad en vuelo de estos aparatos. Asimismo, también resulta evidente que todas las personas deberíamos someternos a chequeos médicos periódicos para detectar a tiempo enfermedades que, sin una detección precoz, son inevitablemente mortales. Pues lo mismo le pasa a las infraestructuras, que deben acudir de vez en cuando al “médico de cabecera”, que si detecta algún problema grave, manda al paciente al “médico especialista” y éste, en caso necesario, opera al paciente o le somete al tratamiento correspondiente. Pues lo mismo le ocurre a los puentes, donde existen inspecciones básicas o rutinarias, inspecciones principales e inspecciones especiales. De ello ya hablamos en una entrada anterior. Siguiendo con la analogía médica, la “analítica” realizada a los puentes ha mostrado que su “colesterol” está por encima de 250. Ello no significa la muerte inmediata del paciente, pero sí que es necesario un cambio de hábitos (ejercicio físico, dieta alimentaria, etc.) o medicación para reducir dicho índice. En caso de no hacer nada, nuestro puente puede tener un “problema coronario” que puede acabar en un “ataque al corazón”. Por tanto, la buena noticia es que hemos detectado los problemas y ahora se trata de poner a nuestros puentes bajo un “tratamiento médico” estricto.

Para aclarar alguno de los conceptos sobre los que se ha basado la noticia de El País, voy a recoger aquí los aspectos básicos. Están basados en una monografía del Ministerio de Fomento denominada “Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado“. Tal y como indica la guía, para cada uno de los daños que existan en un determinado elemento de un puente, se recogen en campo los índices de extensión, gravedad y evolución (apartado 4.5.3). Con estos datos se obtiene, en primer lugar, un Índice de Deterioro para cada daño, que puede tomar un valor entre 0 y 100. Con todos los índices de los deterioros existentes en un puente, se puede valorar el estado de conservación con el Índice de Estado o Condición de la Estructura, que también tiene un valor entre 0 y 100. Existen también índices intermedios para valorar los elementos, componentes y zonas de la estructura, de esta forma se puede localizar rápidamente el origen de la causa de determinado índice en la condición de la estructura.

Los índices de deterioro se dividen en cinco intervalos, con los significados siguientes:

  • Índice entre 0 y 20: Deterioro sin consecuencias importantes “a priori”
  • Índice entre 21 y 40: Deterioro que puede tener una evolución patológica o reducir las condiciones de servicio o de durabilidad del elemento si no se repara en el tiempo adecuado.
  • Índice entre 41 y 60: Deterioro que indica una patología que supone una reducción de las condiciones de servicio o de la durabilidad del elemento.
  • Índice entre 61 y 80: Deterioro que se puede traducir en una modificación del comportamiento resistente o funcional.
  • Índice entre 81 y 100: Deterioro que compromete la seguridad del elemento.

De la misma forma, el Índice de Estado de la Estructura se divide en cinco intervalos:

  • Índice entre 0 y 20: Estructura sin patologías evidentes o con deterioros sin consecuencias relevantes para la durabilidad, condiciones de servicio o seguridad de la estructura.
  • Índice entre 21 y 40: Estructura con deterioros que pueden tener una evolución patológica que afecte a la durabilidad o a las condiciones de servicio de la estructura. Es conveniente seguir su evolución temporal para su determinación objetiva.
  • Índice entre 41 y 60: Estructura con deterioros que evidencian una patología que puede suponer una reducción de las condiciones de servicio o de la durabilidad de la estructura. Será necesario seguir la evolución de la patología en las posteriores inspecciones. Puede requerir una actuación a medio plazo para mejorar la durabilidad de la estructura.
  • Índice entre 61 y 80: Estructura con deterioros o patologías que se pueden traducir en una modificación del comportamiento resistente o una reducción importante de los niveles de servicio. Requiere una actuación a corto-medio plazo. En función de la naturaleza del daño puede requerir una inspección especial.
  • Índice entre 81 y 100: Estructura con deterioros o patologías que comprometen la seguridad del elemento/estructura. Requiere una inspección especial y una actuación urgente. En algunos casos puede ser necesario una limitación del uso.

Como vemos, los índices establecen pautas para que el gestor decida intervenir en una estructura, realizar estudios especiales, programar actuaciones a medio plazo o asignar presupuestos. Con todo, los inspectores tiene capacidad de ir más allá de esta cuantificación cuando detectan problemas o imponderables difíciles de cuantificar, como por ejemplo, el grado de “actualización” de la estructura a las normas vigentes.

La conclusión es clara. Al igual que los aviones requieren inspecciones periódicas minuciosas para garantizar la seguridad en el vuelo y las personas debemos realizar chequeos médicos periódicos, las infraestructuras (puentes, presas, túneles, puertos, hospitales, estadios de fútbol, etc.) deben someterse a inspecciones programadas y, sobre todo, se debe disponer de un presupuesto suficiente que garantice el mantenimiento y la rehabilitación si fuera necesario. Todo lo que no sea eso, será poner en riesgo no solo la seguridad de las personas, sino el estado de bienestar.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización heurística de pilas rectangulares huecas de hormigón armado

Figura. Geometría de la pila objeto de estudio

RESUMEN: 

El trabajo se centra en optimizar los costes de pilas rectangulares huecas de viaductos pretensados mediante métodos heurísticos y metaheurísticos, demostrando su efectividad. La evaluación de cada una de las soluciones se lleva a cabo mediante un módulo de comprobación según la instrucción EHE y Eurocódigo 2. El cálculo de esfuerzos se realiza aplicando las cargas de la IAP-98 y la comprobación frente a inestabilidad se hace por el método de Arenas y Villegas. Los métodos heurísticos utilizados son la búsqueda de aceptación por umbrales y las colonias de hormigas. Todos los métodos de búsqueda han sido aplicados a una pila tipo de 23.97 m de altura. Se concluye que la colonia de hormigas es la metaheurística más eficiente de las 4 comparadas.

PALABRAS CLAVE:

Optimización heurística, puentes, pilas rectangulares huecas, hormigón armado.

REFERENCIA: 

MARTÍNEZ, F.; PEREA, C.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2007). Optimización heurística de pilas rectangulares huecas de hormigón armado. Hormigón y Acero, 244: 67-80. ISBN: 0439-5689. (link)

Descargar (PDF, 2.99MB)

Morfología de tableros aligerados de canto constante postesados para puentes carreteros y ferroviarios

Prueba de carga en puente de canto constante postesado

RESUMEN: En el trabajo se aborda una caracterización estadística de una muestra de 82 tableros reales tipo losa pretensada de canto constante para carreteras y ferrocarriles. El objetivo principal es encontrar fórmulas de predimensionamiento con el mínimo número de datos posible que permita mejorar el diseño previo de estas estructuras. Para ello se ha realizado un análisis exploratorio y otro multivariante de las variables geométricas determinantes, de las cuantías de materiales y del coste de los tableros. Los modelos de regresión han permitido deducir que el canto queda bien explicado por la luz y el aligeramiento exterior. El canto es la variable que mejor explica el coste por unidad de superficie de tablero en losas para carreteras (51,9%), mientras que en las de ferrocarriles sólo lo explica en un 23,4%, por lo que se necesitan más variables para su explicación. La luz principal y los voladizos bastan para el diseño previo de losas para carreteras; si además se incluye el número de vanos y la longitud total, se pueden predimensionar las losas de ferrocarril, con errores razonables en la estimación económica.

PALABRAS CLAVE: Puentes pretensados, Puentes carreteros, Puentes ferroviarios, Análisis multivariante, Predimensionamiento económico.

REFERENCIA:

YEPES, V.; ALCALÁ, J.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F. (2011). Morfología de tableros aligerados de canto constante postesados para puentes carreteros y ferroviarios. Ingeniería Civil, 161:61-72. [Post-stressed constant depth beam concrete road and railway bridge voided decks morphology].

Descargar (PDF, 332KB)

El puente de madera de Cofrentes (Valencia)

Puente de madera de Cofrentes, sobre el río Cabriel, junto al puente nuevo construido en 1911 (Sanchis, 1993).

Dentro de cierta labor de arqueología de la ingeniería civil, vamos a recuperar en esta entrada vamos un puente de madera por la que pasaba el camino antiguo de Cofrentes, o camino de Alicante, sobre el río Cabriel. Hoy correspondería a la actual carretera N-330 de Alicante a Somport. Se trataba de un puente de madera apoyado sobre pilares de manpostería y troncos, de la cual se pueden ver algunas imágenes de principios del siglo XX. En la fotografía vemos este puente y, al fondo, el puente nuevo en celosía construido en el año 1911.

El diccionario de Madoz nos habla del puente diciendo que “es de cuatro arcos y suele destruirse con frecuencia en las desbordaciones. Se cobra 4 mrs. por persona o caballería como arbitrio municipal“. Hay noticias de su reconstrucción en 1850 y en 1863.

Esta tipología de puente de madera sobre pilas de mampostería debe haberse repetido numerosas veces a lo largo de la historia. Sería reconstruido en numerosas ocasiones y acabaría con un puente más robusto de piedra, tal y como ocurriría en los primeros puentes sobre el Turia a su paso por la ciudad de Valencia (Yepes, 2013).

Puente sobre el río Cabriel en la carretera de Requena a Cofrentes : Balneario de cofrentes. (s.a.) – Anónimo.http://bivaldi.gva.es/es/consulta/registro.cmd?id=10436

Referencias:

SANCHIS, C. (1993). Els ponts valencians antics. Col·lecció “Els valencians i el territori”, Generalitat Valenciana, 167 pp.

YEPES, V. (2013). Conjetura sobre la existencia de puentes romanos sobre el Turia a su paso por Valencia. Cuadernos de diseño en la obra pública, 5:14-19.

Las fiebres tifoideas y los puentes de altura estricta de Carlos Fernández Casado

Carlos Fernández Casado (1905-1988)

No hay nada como un retiro obligado para que las mentes más brillantes reluzcan con todo su esplendor. Así, cuando en 1665 cerró la Universidad de Cambridge debido a la peste, Isaac Newton (1642-1727) tuvo que volver a casa natal de Woolsthorpe y, durante ese retiro, sentó las bases de sus teorías de cálculo y las leyes del movimiento y la gravitación. Algo similar ocurrió con uno de los ingenieros españoles más destacados y singulares del siglo XX, D. Carlos Fernández Casado. Recomiendo leer su biografía y obras a las nuevas generaciones de ingenieros, pues es todo un referente. Ingeniero de Caminos, Canales y Puertos con 19 años, también fue Ingeniero de Telecomunicaciones, Licenciado en Filosofía y Letras, Licenciado en Derecho a los 68 años, e incluso inició los estudios universitarios de Psicología. Con todo, su faceta humana y generosidad sobrepasan su inteligencia privilegiada y sus extraordinarios logros profesionales.

Pero la entrada de hoy tiene que ver con la relación existente entre el tiempo disponible forzado por un retiro, enfermedad o cualquier otra circunstancia, y la creación. Carlos Fernández Casado tuvo su primer destino profesional como ingeniero de caminos en Granada (1928-1932), lo que le permitió entrar en contacto con la intelectualidad de la época, cuya figura más visible fue Federico García Lorca, y con la Naturaleza en sus primeros trabajos, lo cual contribuyó a conformar su planteamiento intelectual y vital. Pues bien, al final de sus años en Granada enfermó con fiebres tifoideas, lo que le obligó a guardar cama durante varias semanas, propiciando esta situación la reflexión personal sobre lo que había hecho hasta el momento. Este hecho fue fundamental en su vida, pues significó un cambio de rumbo en su vida.

Fruto de estas reflexiones, a la temprana edad de 25 años, en 1930, Fernández Casado desarrolla la conocida “Colección de Puentes de Altura Estricta” (Manterola, 1988). El objetivo de esta colección era el diseño de puentes que pudieran salvar las luces prácticas más corrientes con la mínima pérdida de altura. Se trata de una de las mejores y más queridas obras realizadas por D. Carlos. Se refleja en esta colección la manera de concebir la ingeniería y el afán por lo estricto como planteamiento ético y estético. En una referencia recogida por su hijo, Leonardo Fernández Troyano (2007) publicada en la Revista de Obras Públicas, definía claramente esta concepción de lo estricto, concepción que ha calado en numerosas generaciones de ingenieros:

Este sentido de lo estricto -supresión de lo accesorio de la obra definitiva y a lo largo del proceso constructivo- elimina radicalmente lo decorativo, partiendo de lo funcional llegamos directamente a lo estructural” (Fernández-Casado, 1933).

La colección destila una simplicidad absoluta de sus elementos, con el uso exclusivo del plano y la línea recta, con la única excepción de las columnas cilíndricas, que encajan a la perfección al ser también ellos elementos estrictos, pues su forma interfiere mínimamente con el flujo hidráulico.

Pero esta simplicidad se hermana directamente con el amor que procesaba a la Naturaleza. El paradigma actual de la sostenibilidad, y que también tiene mucho que ver con mi pasión por la optimización multiobjetivo de los puentes, a la que tanto esfuerzo he dedicado. Todo un adelantado a su tiempo. En sus propias palabras:

Que se arranque lo menos posible el material de la mina, que la menor cantidad de piedra y arena se desvíen de su proceso evolutivo, que se consuma el mínimo de combustible en los transportes y se introduzcan las menos ideas nuevas en el paisaje” (Fernández-Casado,  1951).

La colección, muy ambiciosa morfológicamente, incluye pórticos sencillos (series I y II), pórticos en pi (series III y IV), puentes continuos de tres vanos (series V y VI), puentes continuos de tres vanos con articulaciones intermedias a media ladera (series VII y VIII). La sección transversal, por su parte, podía ser en losa, o en vigas T en la zona central del vano y cajones cerrados en las zonas laterales.

Los primeros tres puentes de esta colección se realizaron en Jaén, por encargo del ingeniero José Acuña y Gómez de la Torre. El primero fue el de Santo Tomé, el segundo el del río Onsares, y el tercero, el del río Guadalimar, construidos el primero en 1934 y los dos últimos, un año más tarde (Burgos et al., 2012). Se construyeron más de 50 puentes de la colección, tanto por Fernández Casado como por otros ingenieros. Como dice Javier Manterola en un artículo publicado a los pocos meses del fallecimiento de D. Carlos, (justo en el año en el que esto escribe terminó su carrera de Ingeniero de Caminos): “estos puentes son historia y en ellos nos reconocemos los que nos dedicamos a este quehacer” (Manterola, 1988).

Puente en Santo Tomé sobre el río de La Vega. Vista del puente en construcción. http://www.cehopu.cedex.es/cfc/pict/I-FC001-003.htm

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El puente de San Miguel, en Jaca, hace 75 años que fue declarado Monumento Nacional

Figura 1. Arco apuntado del puente de San Miguel (Jaca). http://www.aspejacetania.com/lugares.php?Id=89

Siempre que tenemos un aniversario de algún evento relacionado con la ingeniería civil, aprovecho la oportunidad para escribir una pequeña entrada en mi cuaderno de bitácora. Ese es el caso del puente de San Miguel (Jaca), que en 1943, ahora hace 75 años, se declaró Monumento Nacional y actualmente es Bien de Interés Cultural.

Sobre el río Aragón, en el camino antiguo a que une Jaca con Ainsa, se encuentra un puente de perfil alomado, muy pronunciado (Figura 1), que delata su origen medieval. Era una época donde, a lo que se refiere a puentes, eran las ciudades quienes decidían la necesidad de su construcción. Aunque la fecha de su construcción no se conoce con exactitud, es muy probable que se erigiera en el siglo XV, aunque fue restaurado en 1608 y en 1816, debido a los daños de las habituales avenidas del río Aragón. En la década de 1950, el puente fue restaurado por el arquitecto Miguel Fisac, aunque la última ya se realizó en los años 2002 y 2003.

El puente facilitó durante siglos la comunicación entre Jaca y los valles occidentales del Pirineo aragonés, perteneciendo al ramal del Camino de Santiago que penetra en España por el puerto oscense de Canfranc.

Figura 2. Puente de San Miguel (Jaca). En rouge [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

La obra consiste en tres bóvedas de sillería, de las cuales dos son de cañón, con una luz libre de 9,4 m, y la tercera apuntada, con una luz libre de 21,6 m. Los arcos más pequeños funcionan como aliviaderos en caso de avenidas. El resto de la fábrica es de mampostería, reforzada a base de sillería en los tajamares triangulares, rematados con un sombrerete escalonado. Se aprecian materiales usados en diferentes épocas; así los tímpanos presentan huellas de las diferentes rasantes superpuestas , y que al corresponder a fábricas de distintos momentos históricos se han separado abriendo importantes juntas entre ellas. Se trata de un puente asimétrico, de 97,5 m de longitud, con espesores de pilas de  5,0 m y 3,2 m y una altura máxima de la rasante de 18,6 m. El tablero, que apenas presenta una anchura de 4,0 m, se encuentra empedrado con cantos rodados rejuntados con mortero de cemento.

Os dejo algunos vídeos sobre el puente. Espero que os gusten.

 

 

 

 

¿Es suficiente diseñar un puente para una vida útil de 100 años?

Man-Chung Tang, Dr., P.E. T.Y. Lin International, USA

Durante el último congreso IALCCE, que tuvo lugar en Gante en octubre de 2018, tuve la oportunidad de escuchar la lección magistral (Fazlur R. Khan Lecture) del doctor Man-Chung Tang, denominada “Durability of bridges“. Fue una conferencia brillante, donde la gran experiencia y conocimiento de este gran ingeniero de puentes, dejó muy claros algunos conceptos de gran importancia.

El doctor Tang, nacido en Zhaoqing (China), en 1938, es el Presidente del Consejo de Administración y el Director Técnico de la firma T.Y. Lin International ubicada en San Francisco (Estados Unidos). Se trata de una empresa multinacional en el ámbito de las infraestructuras e ingeniería de todo tipo, que emplea a más de 2500 ingenieros, arquitectos y científicos. Además, recibió el premio Senior Award del IALCCE del 2018 (al igual que Tatiana García Segura recibió el Junior Award).

 

 

La lección magistral, tal y como la introduce el propio Congreso, se presentaba de la siguiente forma:

In the past, life cycle cost of a bridge is usually defined as the sum of initial costs, operation costs, maintenance costs, rehabilitation costs and disposal costs. Today, we may add environmental costs and social costs to arrive at a more realistic “total life cycle cost”. But the total life cycle cost of a bridge by itself does not have much meaning unless we also know the service life of the bridge. The economic efficiency of the bridge is the total life cycle cost divided by the service life of the bridge. The main factor affecting the service life is the durability of the bridge.

Lo que más me llamó la atención es la llamada internacional a que los puentes se diseñen para una vida útil de 300 años. Se trata de una opinión que suscribo plenamente y que se debería llevar lo antes posible a los foros correspondientes. Son muchos ya los problemas de durabilidad y los accidentes que presentan estas estructuras para no tomar esta valiente decisión. Para ello hay que entender lo que significa la gestión del puente a lo largo de su ciclo de vida.

En efecto, muchas normas e instrucciones prescriben actualmente para la mayoría de los puentes una vida útil de 100 años para los grandes puentes y de 75 años para el resto. En España, la vida útil nominal indicada en la Instrucción de Hormigón Estructural EHE-08 es de 100 años para puentes de longitud total igual o superior a 10 metros y otras estructuras de ingeniería civil de repercusión económica alta.

Durante su lección magistral, el doctor Tang diferenció claramente la vida de servicio (service life) de un puente de lo que sería la vida útil para la que fue diseñada la estructura (design life). La vida de servicio se considera como el tiempo durante el cual un puente se puede utilizar de forma segura, de acuerdo con los criterios de diseño establecidos. Sin embargo, cuando se proyecta un puente, es difícil saber a ciencia cierta cuánto tiempo realmente dicho puente podrá estar en servicio. La vida de servicio, por tanto, no tiene por qué coincidir con la vida útil de diseño puesto que es evidente que un puente se puede encontrar en perfectas condiciones el día posterior a la caducidad de su vida de servicio, y no por ello debe procederse a su demolición. También es posible que, antes de alcanzar el fin de su vida útil, el puente quede fuera de servicio por múltiples motivos.

Por otra parte, un puente es durable si su vida de servicio es suficientemente larga. Como un puente debe ser seguro, funcional, económico y tener una buena presencia, ello implica que un puente será durable si es durable en cuanto a su seguridad, funcionalidad, economía y buena presencia. Este concepto de durabilidad, como es fácil de entender, está asociado a la probabilidad de incumplimiento de alguna de las funciones señaladas.

Además, hoy día el concepto de sostenibilidad implica un cambio radical en la forma de proyectar, construir y mantener los puentes. Si los romanos fueron capaces de construir puentes que han durado más de dos mil años, hoy es inconcebible que se proyecten puentes para una vida útil de 100 años.

El doctor Tang, basándose en sus observaciones y experiencia, expuso claramente su propuesta de elevar a 300 años la vida útil en el proyecto de los puentes. Ello no incrementaría en exceso el coste del puente. Además, muchos de los materiales empleados pueden durar esos 300 años si se realiza un mantenimiento conveniente. Nuestro grupo de investigación ha comprobado cómo realizando una optimización multiobjetivo de un puente se puede incrementar su vida útil muy por encima de los 100 años con incrementos muy pequeños en los costes (García-Segura et al., 2017).

Habrá quien argumente que antes de lo que esperamos la tecnología cambiará tanto que no tenga sentido el aumentar la vida útil de los puentes (coches voladores, por ejemplo). Sin embargo, ya hemos visto que desde el punto de vista de la sostenibilidad de los recursos naturales, desde el punto de vista económico, y sobre todo, para tratar de evitar tragedias como las que se han vivido recientemente, está más que justificada la revisión de la vida útil de diseño de las infraestructuras (no solo puentes, sino viviendas, obras hidráulicas, carreteras, puertos, etc.).

Por tanto, suscribo plenamente la opinión bien argumentada del doctor Tang: la vida útil de los puentes debe modificarse en las normas e instrucciones para subirla a un mínimo de 300 años.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

TANG, M.C. (2018). Durability of bridges, in Caspeele, Taerwe and Frangopol (eds.): Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision. CRC Press, Taylor & Francis Group, London, UK, pp. 3-7.