Evaluación del desarrollo sostenible de la industria de la construcción

Nos acaban de publicar en la revista Sustainable Cities and Society (1/68, CONSTRUCTION & BUILDING TECHNOLOGY, primer decil del JCR) un artículo relacionado con la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se corresponde con la colaboración internacional que mantiene nuestro grupo de investigación con la Hunan University of Science and Engineering, de China. El primer autor, Prof. Zhou, sigue perteneciendo a nuestro grupo de investigación, pues desarrolló con nosotros su tesis doctoral.

Los datos de la investigación muestran que la industria de la construcción en China alcanzará su pico más alto de emisiones, según la evaluación del ciclo de vida en 2030 y tendrá emisiones nocivas entre 2061 y 2098. La evaluación del impacto social indica que se alcanzará su punto máximo en 2048.

Las contribuciones más relevantes de esta investigación son las siguientes:

  • El artículo innova modelos teóricos, como la «ponderación de la sensibilidad de la respuesta estructural», a través de una investigación interdisciplinaria, que aborda las limitaciones de la precisión de la iteración multifactorial, multidiscreta, con múltiples restricciones y con un bajo acoplamiento.
  • La investigación proporciona un sistema integral de teoría de la investigación y estándares de referencia para el cálculo científico y la evaluación precisa del desarrollo sostenible de la industria de la construcción en varios países del mundo.
  • El documento presenta un modelo, el «peso de sensibilidad a la respuesta estructural (SRSW)», que determina de forma precisa e intuitiva los resultados de la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.
  • La investigación incluye estudios de casos para demostrar la solidez del modelo, y muestra el pico de emisiones y las emisiones nocivas más altas de la industria de la construcción en China según la evaluación del ciclo de vida más alto.
  • La investigación contribuye al campo de la investigación sobre sostenibilidad en la industria de la construcción, ya que proporciona información y datos para que los responsables políticos y los profesionales tomen decisiones informadas con respecto al entorno ecológico.

ABSTRACT:

Sustainability research in the construction industry is of great strategic significance to the ecological environment of countries worldwide. This paper innovates theoretical models such as “structural response sensitivity weight” through interdisciplinary research on advanced mathematics, engineering science, computer science, environmental management and economic sociology. The model solves the limitations of multi-factor, multi-discrete, multi-constraint and low coupling iteration accuracy. The article shows the robustness of the model through case studies. The research data shows that the construction industry in China will reach its highest life cycle assessment emission peak of 2.73 GT in 2030 and will have harmful emissions of -2.78 GT between 2061 and 2098. The social impact assessment will peak at 4.26 GT in 2048 and harmful emissions of −3.75 GT per year from 2061 to 2098. This research provides a comprehensive research theory system and reference standards for scientific calculation and accurate assessment of the sustainable development of the construction industry in various countries around the world.

KEYWORDS:

Gross domestic product; Life cycle cost; Life cycle assessment; Social impact assessment; Topology optimization.

REFERENCE:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

La editorial ELSEVIER permite el acceso directo y gratuito a este artículo hasta el 8 de marzo de 2024. El enlace para la descarga es: https://authors.elsevier.com/c/1iRse7sfVZE2dg

 

Trabajo Fin de Máster sobre análisis del ciclo de vida y optimización del puente de la Bahía de Zhanjiang (China)

Acaba de defender su Trabajo Fin de Máster el estudiante Zijian Cao para obtener el Máster Universitario en Planificación y Gestión en Ingeniería Civil. Se trata del análisis del ciclo de vida y optimización aplicado al puente de la Bahía de Zhanjiang en China. He tenido la oportunidad de ser su director de máster, aunque ha sido un verdadero reto debido a la dificultad del idioma. Al cabo de unos años, Zijian ya habla español de forma fluida. Ha obtenido la calificación de sobresaliente. Mi más sentida enhorabuena.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Os paso el resumen de su trabajo. Espero que os sea de interés.

En la actualidad, el mundo está avanzando hacia un modelo de desarrollo más sostenible para hacer frente al grave impacto ambiental. En este sentido, los investigadores tienen que enfocarse en la innovación de materiales, el manejo de personal y el uso de maquinarias con el fin de controlar y reducir la contaminación ambiental mediante métodos científicos y medidas eficaces de optimización, logrando así un desarrollo sostenible y respetuoso con el medio ambiente en las construcciones.

Puente de la Bahía de Zhanjiang. https://megaconstrucciones.net/?construccion=puente-bahia-zhanjiang

Para llevar a cabo este trabajo, se ha realizado una investigación exhaustiva de los factores que influyen en el impacto ambiental de las construcciones, analizando la información actual de los impactos ambientales en China y países europeos. Posteriormente, se ha establecido un modelo teórico efectivo que permita aplicar un Análisis de Ciclo de Vida (ACV) y utilizado modelos de cálculo y software de análisis para lograr los objetivos de la investigación.

El enfoque principal del trabajo es el análisis teórico y el estudio de casos. A través del modelo teórico establecido, se efectúa un análisis detallado de los impactos de los materiales, la planificación y el diseño, la instalación, el mantenimiento, la operación y la demolición de puentes complejos. Sobre la base del modelo teórico original, se han contemplado métodos en diseño, métodos de construcción y gestión, que se benefician del ahorro de costos y la reducción de emisiones. Este trabajo no solo contribuye con resultados concretos, sino que también establece un marco para futuras investigaciones en este campo. Además, proporciona datos, modelos y métodos de investigación para la sostenibilidad en la construcción.

Tesis doctoral: Life cycle optimization analysis of bridge sustainable development

Hoy 13 de enero de 2023 ha tenido lugar la defensa de la tesis doctoral de D. Zhi Wu Zhou titulada “Life cycle optimization analysis of bridge sustainable development“, dirigida por Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la máxima calificación de sobresaliente “cum laude”. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

En el núcleo de la industria mundial de la construcción radica el uso excesivo de materiales, especialmente de combustibles fósiles. En esta línea de investigación, muchos investigadores y diseñadores han reducido significativamente la proporción de materiales y han minimizado la cantidad destinada al diseño en función de los criterios de investigación y las especificaciones de diseño. Teniendo en cuenta que las medidas anteriores pueden reducir los materiales de manera efectiva, es necesario investigar más a fondo algunas cuestiones: a) ¿En qué etapas del ciclo de vida de los materiales de construcción se consumen más?, b) ¿Cómo utilizar el método científico más adecuado para reducir el consumo de materiales en la fase de mayor uso?, c) ¿Cómo completar científicamente la evaluación de la optimización del consumo de materiales bajo la influencia de la superación de muchos eventos discretos y factores de influencia externos durante la etapa de diseño?, d) En la fase de construcción, ¿cómo optimizar al máximo el proceso de gestión del proyecto y lograr el mayor ahorro de material para garantizar la calidad, la seguridad y el coste?, e) ¿Cuánto material se puede ahorrar mediante la optimización del diseño y la gestión del proyecto?, f) ¿Cuál es el impacto final del sistema teórico de investigación y de los datos de análisis mencionados en el desarrollo sostenible de la industria de la construcción?
Al examinar publicaciones relevantes sobre el ciclo de vida completo de la industria de la construcción (Capítulo 2), la tesis encontró que las etapas de diseño y construcción son clave para reducir efectivamente el consumo de materiales. El objetivo principal de esta tesis es resolver los problemas de optimización propuestos. Mediante el establecimiento de un marco de modelo de investigación multidimensional y un modelo de optimización de gestión de proyectos sistemático, la tesis reduce el peso de varios componentes estructurales del puente estáticamente indeterminado y realiza la optimización ligera de la estructura del puente.

La tesis establece varios modelos teóricos básicos de innovación en el marco del modelo de investigación: el modelo de acoplamiento bibliométrico, el modelo matemático ComplexPlot; el modelo matemático integral multifactorial; el modelo de optimización de acoplamiento micro y macrodimensional de elementos finitos, y el modelo de evaluación de optimización de la gestión de proyectos dominó del método de la entropía. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y analiza la solidez de la evaluación y la mejora. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y consigue la solidez de la evaluación y la mejora. Asimismo, mejora ampliamente la resistencia del modelo a los factores naturales, humanos, accidentales e inciertos y el problema de la interferencia externa de las emergencias. Por último, el sistema formó un conjunto completo de sistemas de modelos de optimización de prevención y control conjuntos maduros y alcanzó los objetivos y enfoques de la investigación.

El estudio de caso demuestra la solidez del sistema del modelo teórico establecido, que reduce el coste del ciclo de vida (LCC) = 1.081.248,68 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 212.566,94 tonelada (t); Evaluación del impacto social (SIA) = 17.783.505,12 hora de riesgo medio (Mrh) del análisis del estudio de impacto económico. Reducción del coste del ciclo de vida (LCC) = 739.612,19 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 278.455,12 tonelada (t); Evaluación del impacto social (SIA) = 23.262.239,52 hora de riesgo medio (Mrh) del análisis del impacto en el desarrollo sostenible. Las preguntas formuladas en esta tesis están correctamente planteadas desde la perspectiva teórica y están fuertemente respaldadas por los datos.

El valor de la investigación de esta tesis: a) llena el vacío de la investigación en este campo. b) innova en una variedad de nuevos modelos teóricos de investigación. c) resuelve los problemas de discreción, incertidumbre e interferencia de factores externos en la optimización de la topología y la optimización de la gestión de proyectos. Las interferencias de los factores externos de mutación y la sensibilidad de las emergencias se compensan y corrigen. d) La investigación mejora la captura de datos discretos y la escasez de compensación del sistema de análisis de software Monte Carlo. En esta tesis, se aplican varios tipos de métodos avanzados de gestión de proyectos y esquemas de construcción avanzados en el caso de estudio, lo que proporciona un importante valor de referencia para la optimización de puentes estáticamente indeterminados del mismo tipo. Hay algunas dificultades para los lectores sin una experiencia práctica para comprender y aplicar el modelo. El lector debe leer atentamente este caso, que es también una de las limitaciones de este trabajo.

La futura dirección de la investigación del autor es continuar investigando en profundidad el desarrollo sostenible de los puentes de gran tamaño y la optimización de la prevención de problemas, los materiales avanzados y la investigación de recuperación de energía renovable en el desarrollo sostenible de los puentes y otros campos.

Referencias:

  1. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering (accepted, in press)
  2. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645
  3. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914
  4. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047
  5. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633
  6. ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916
  7. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122
  8. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

Impacto del desarrollo sostenible regional a través de la optimización de puentes

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de establecer un modelo para evaluar el impacto del desarrollo sostenible regional a través de la optimización de puentes. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València y de la dirección de la tesis doctoral de Zhi Wu Zhou.

Este artículo describe un modelo óptimo para medir y calcular los datos de impacto de la evaluación del desarrollo sostenible relacionados con la construcción de infraestructuras en cualquier lugar. El artículo utiliza una revisión bibliográfica y un estudio de caso como métodos de investigación: la revisión bibliográfica analiza la importancia, el significado práctico y el estado actual de la investigación en este campo. La aplicación del estudio de caso establece un programa de algoritmos y un modelo del entorno interactivo de optimización de la topología estructural tridimensional. Se analiza la optimización de la curva de influencia del desarrollo sostenible de los puentes atirantados de gran escala de China y de las infraestructuras regionales. Esta investigación llena un vacío al resolver el tedioso y complejo trabajo de las empresas del sector y la evaluación del desarrollo sostenible. Al mismo tiempo, proporciona una base teórica y métodos de cálculo científicos para que los gobiernos y países puedan formular leyes y reglamentos y estudien los efectos climáticos regionales.

El artículo completo lo puedes descargar aquí: https://authors.elsevier.com/sd/article/S2352-0124(22)00409-X

Abstract:

This paper describes a regional optimal model curve equation to measure and calculate sustainable development assessment impact data related to infrastructure construction in any world region. The article uses a literature review and a case study as research methods—the literature review analyses the importance, practical significance, and current research status of this field. The case study application establishes a scientific algorithm program and a three-dimensional structural topology optimization interactive environment research model. The optimality of the influence equation curve and the sustainable development influence curve of China’s large-scale cable-stayed bridges and regional infrastructure is analysed. This research will fill a gap by solving construction industries’ tedious and complicated work and sustainable development assessment. Simultaneously, it will provide a theoretical basis and scientific calculation methods for governments and countries to formulate relevant laws and regulations and study regional climate effects.

Keywords:

Construction; algorithm program; structure; topology; LCA; SIA

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimization. Structures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

 

Estudio de los puentes de las cinco mayores regiones económicas de China

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR, en el primer cuartil) donde se estudia el ciclo de vida completo de seis puentes atirantados en las más importantes regiones económicas de China.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

ABSTRACT

The construction industry of all countries in the world is facing the issue of sustainable development. How to make effective and accurate decision-making on the three pillars (Environment; Economy; Social influence) is the key factor. This manuscript is based on an accurate evaluation framework and theoretical modelling. Through a comprehensive evaluation of six cable-stayed highway bridges in the entire life cycle of five provinces in China (from cradle to grave), the research shows that life cycle impact assessment (LCIA), life cycle cost assessment (LCCA), and social impact life assessment (SILA) are under the influence of multi-factor change decisions. The manuscript focused on the analysis of the natural environment over 100 years, material replacement, waste recycling, traffic density, casualty costs, community benefits and other key factors. Based on the analysis data, the close connection between high pollution levels and high cost in the maintenance stage was deeply promoted, an innovative comprehensive evaluation discrete mathematical decision-making model was established, and a reasonable interval between gross domestic product (GDP) and sustainable development was determined.

KEYWORDS

sustainable development; LCIA; LCCA; SILA; cable-stayed bridge; GDP.

REFERENCE:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Descargar (PDF, 3.24MB)

La prefabricación revoluciona los procedimientos constructivos

Hábitat 67. Moshe Safdie, Montreal 1967

En ocasiones asociamos la prefabricación con una baja calidad cuando pensamos en los típicos barracones de obra. Sin embargo esta visión se encuentra alejada de la realidad. Lo cierto es que el control de calidad en fábrica y las modernas técnicas constructivas permiten realizar construcciones prefabricadas con una fiabilidad igual o mayor que la conseguida con la construcción tradicional.

Después de la II Guerra Mundial las necesidades de reconstrucción llevaron a diversos países a intentos sucesivos de dar el salto para industrializar la propia construcción. De este modo se desarrolla la prefabricación, con el objeto de reproducir en la edificación lo que en los años veinte había conseguido Ford con los automóviles, si bien los primeros antecedentes hay que buscarlos en el año 1905, cuando los establecimientos Edmond Coignet iniciaron la prefabricación de piezas moldeadas de hormigón. Hacia el año 1925 hizo su aparición el procedimiento de fabricación de tubos por centrifugación. En la Unión Soviética y en los países de su órbita, aunque también en Israel y, en menor medida, en países occidentales, como Francia, se desarrolló una prefabricación pesada, cerrada en sí misma, que consiguió racionalizar procesos y abaratar costes, con el inconveniente generalizado de caer en la repetición y la monotonía. En España se vieron ejemplos en la proliferación de pasos superiores de vigas prefabricadas con la construcción de las primeras autopistas de pago en la década de los 70 y 80. Más inteligente y con más posibilidades fue el desarrollo de una prefabricación abierta, donde diversos componentes pueden utilizarse en sistemas abiertos y variados.

Os dejo algunos vídeos donde se han conseguido batir récords constructivos con la prefabricación, como el que ha conseguido realizar un hotel en sólo dos días en China. Espero que os gusten.