High Performance and Optimum Structures and Materials Encompassing Shock and Impact Loading HPSM/OPTI/SUSI 2022

This scientific event is a new edition of the High Performance and Optimum Design of Structures and Materials Conference and follows that originated in Southampton as long ago as 1989 and the Structures under Shock and Impact that started in Cambridge, Massachusetts, also in 1989.

The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. The conference addresses issues involving advanced types of structures, particularly those based on new concepts. Contributions will highlight the latest development in design and manufacturing issues.

Most high-performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis will be placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management.

The conference also addresses the topic of design optimisation. Contributions on numerical methods and different optimisation techniques are also welcome, as well as papers on new software. Optimisation problems of interest to the meeting involve those related to size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products, as the appearance of powerful commercial computer codes has created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines.

The performance of the structures under shock and impact loads is another objective of the meeting. The increasing need to protect civilian infrastructure and industrial facilities against unintentional loads arising from accidental impact and explosion events as well as terrorist attacks is reflected in the sustained interest worldwide. While advances have been made in the last decades, many challenges remain, such as developing more effective and efficient blast and impact mitigation approaches than those that currently exist or assessing the uncertainties associated with large and small scale testing and validation of numerical and analytical models. All of that aimed to a better understanding of critical issues relating to the testing behaviour, modelling and analyses of protective structures against blast and impact loading.

The meeting will provide a friendly and useful forum for the interchange of ideas and interaction amongst researchers, designers and scholars in the community to share advances in the scientific fields related to the conference topics.

All conference papers are archived in the Wessex Institute eLibrary (www.witpress.com/elibrary) where they are easily and permanently available in Open Access format to the international community.

Conference Topics

The following list covers some of the topics to be presented at HPSM/OPTI/SUSI 2022. Papers on other subjects related to the objectives of the conference are also welcome.

  • Composite materials
  • Material characterisation
  • Natural fibre composites
  • Nanocomposites
  • Green composites
  • Composites for automotive applications
  • Transformable structures
  • Environmentally friendly and sustainable structures
  • Reliability-based design optimisation
  • Non-deterministic approaches
  • Evolutionary methods in optimisation
  • Aerospace structures
  • Biomechanics application
  • Lightweight structures
  • Design for sustainability
  • Design for durability
  • Lifecycle assessment
  • Structural reliability
  • Smart materials and structures
  • Optimization of civil engineering structures
  • Optimization in mechanical engineering
  • Optimization in the car industry
  • Design optimization of tall buildings
  • Metaheuristic algorithms
  • New algorithms for size and topology optimisation
  • BIM tools for design optimization
  • Emerging materials
  • Impact and blast loading
  • Energy-absorbing issues
  • Computational and experimental results
  • Response of reinforced concrete under impact
  • Seismic behaviour
  • Protection of existing structures
  • Industrial accidents and explosions
  • Security issues
  • Response of composite structures to blast and impact
  • Vehicle impact
  • Ballistics analysis
  • Dynamic material behaviour
  • Fluid-structure interaction
  • Seismic soil-structure interaction
  • Case studies

More information: https://www.wessex.ac.uk/conferences/2022/hpsm-opti-susi-2022

Descargar (PDF, 198KB)

 

Hacia un mapa de conocimiento algorítmico de optimización de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial)

Acaban de publicarnos un artículo en la revista IEEE Access, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis conceptual macroscópico de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial). El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la arquitectura, la ingeniería y la construcción (AEC) constituye uno de los sectores productivos más relevantes, por lo que también produce un alto impacto en los equilibrios económicos, la estabilidad de la sociedad y los desafíos globales en el cambio climático. En cuanto a su adopción de tecnologías, aplicaciones y procesos también se reconoce por su status-quo, su lento ritmo de innovación, y los enfoques conservadores. Sin embargo, una nueva era tecnológica -la Industria 4.0 alimentada por la IA- está impulsando los sectores productivos en un panorama sociopolítico y de competencia tecnológica global altamente presionado. En este trabajo, desarrollamos un enfoque adaptativo para la minería de contenido textual en el corpus de investigación de la literatura relacionada con las industrias de la AEC y la IA (AEC-AI), en particular en su relación con los procesos y aplicaciones tecnológicas. Presentamos un enfoque de primera etapa para una evaluación adaptativa de los algoritmos de IA, para formar una plataforma integradora de IA en la industria AEC, la industria AEC-AI 4.0. En esta etapa, se despliega un método adaptativo macroscópico para caracterizar la “Optimización”, un término clave en la industria AEC-AI, utilizando una metodología mixta que incorpora el aprendizaje automático y el proceso de evaluación clásico. Nuestros resultados muestran que el uso eficaz de los metadatos, las consultas de búsqueda restringidas y el conocimiento del dominio permiten obtener una evaluación macroscópica del concepto objetivo. Esto permite la extracción de un mapeo de alto nivel y la caracterización de la estructura conceptual del corpus bibliográfico. Los resultados son comparables, a este nivel, a las metodologías clásicas de revisión de la literatura. Además, nuestro método está diseñado para una evaluación adaptativa que permita incorporar otras etapas.

Abstract:

The Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era – Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a first stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize “Optimization,” a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages.

Keywords:

Architecture, engineering and construction, AEC, artificial intelligence, literature corpus, machine learning, optimization algorithms, knowledge mapping and structure

Reference:

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

Descargar (PDF, 6.14MB)

Optimización de la estrategia de desarrollo sostenible en la gestión de proyectos de ingeniería internacionales

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. En este caso se ha desarrollado una aplicación para la optimización de una estrategia sostenible en la gestión de un proyecto de ingeniería internacional. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo de este artículo es establecer un marco internacional para la gestión sostenible de proyectos en ingeniería, completar la investigación en este campo y proponer una base teórica para el establecimiento de un nuevo sistema de gestión de proyectos. El artículo adopta como método de investigación la revisión de la literatura, un algoritmo de programación matemática y el estudio de casos. La revisión de la literatura analizó los resultados de 21 años de investigación en este campo. Como resultado, se constató que el sistema de gestión de proyectos presenta deficiencias. Se estableció un modelo matemático para analizar la composición y los elementos del sistema optimizado de gestión de proyectos internacionales. La investigación de casos seleccionó grandes puentes para su análisis y verificó la superioridad y viabilidad del sistema teórico propuesto. La aportación de esta nueva investigación radica en el establecimiento de un modelo de sistema de gestión de proyectos internacional completo; en la integración del desarrollo sostenible con la gestión de proyectos; y en la propuesta de nuevos marcos de investigación y modelos de gestión para promover el desarrollo sostenible de la industria de la construcción.

Abstract:

The aim of this paper is to establish an international framework for sustainable project management in engineering, to make up the lack of research in this field, and to propose a scientific theoretical basis for the establishment of a new project management system. The article adopts literature review, mathematical programming algorithm and case study as the research method. The literature review applied the visual clustering research method and analyzed the results of 21-year research in this field. As a result, the project management system was found to have defects and deficiencies. A mathematical model was established to analyze the composition and elements of the optimized international project management system. The case study research selected large bridges for analysis and verified the superiority and practicability of the theoretical system. Thus, the goal of sustainable development of bridges was achieved. The value of this re-search lies in establishing a comprehensive international project management system model; truly integrating sustainable development with project management; providing new research frames and management models to promote the sustainable development of the construction industry.

Keywords:

Bridge; project management; environmental impact; cost; optimization

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

Descargar (PDF, 4.59MB)

 

Análisis del ciclo de vida de puentes usando matemática difusa bayesiana

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el análisis del ciclo de vida de puentes usando redes bayesianas y matemática difusa. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En la actualidad, reducir el impacto de la industria de la construcción en el medio ambiente es la clave para lograr un desarrollo sostenible. Son muchos los que utilizan software para evaluar el impacto ambiental de los puentes. Sin embargo, debido a la complejidad y discreción de los factores medioambientales de la industria de la construcción, es difícil actualizarlos y determinarlos rápidamente, y se da el fenómeno de la pérdida de datos en las bases de datos. La mayoría de los datos perdidos se optimizan mediante la simulación de Monte Carlo, lo que reduce en gran medida la fiabilidad y precisión de los resultados de la investigación. Este trabajo utiliza la teoría matemática difusa avanzada bayesiana para resolver este problema. En la investigación, se establece una evaluación de matemática difusa bayesiana y un modelo de discriminación prioritaria de sensibilidad de varios niveles, y se definen los pesos y los grados de pertenencia de los factores de influencia para lograr una cobertura completa de los factores de influencia. Con el apoyo de la modelización teórica, se evalúan exhaustivamente todos los factores de influencia de las etapas del ciclo de vida de la estructura del puente. Los resultados muestran que la fabricación de materiales, el mantenimiento y el funcionamiento del puente siguen produciendo contaminación ambiental; la fuente principal de las emisiones supera el 53% del total de las emisiones. El factor de impacto efectivo alcanza el 3,01. Al final del artículo, se estableció un modelo de sensibilidad de “big data“. Optimizando con estas técnicas, las emisiones contaminantes del tráfico se redujeron en 330 toneladas. Se confirma la eficacia y la practicidad del modelo de evaluación integral de la metodología propuesta para tratar los factores inciertos en la evaluación del desarrollo sostenible en el caso de los puentes. Los resultados de la investigación contribuye a alcanzar los objetivos de desarrollo sostenible en la industria de la construcción.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/11/4916

ABSTRACT:

At present, reducing the impact of the construction industry on the environment is the key to achieving sustainable development. Countries all over the world are using software systems for bridge environmental impact assessment. However, due to the complexity and discreteness of environmental factors in the construction industry, they are difficult to update and determine quickly, and there is a phenomenon of data missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which greatly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modelling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate all the influencing factors of the five influencing stages in the entire life cycle of the bridge structure. The results show that the material manufacturing, maintenance, and operation of the bridge still produce environmental pollution; the main source of the emissions exceeds 53% of the total emissions. The effective impact factor reaches 3.01. At the end of the article, a big data sensitivity model was established. Through big data innovation and optimization analysis, traffic pollution emissions were reduced by 330 tonnes. Modeling of the comprehensive research model; application; clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in the evaluation of the sustainable development of the construction industry. The research results have made important contributions to the realization of the sustainable development goals of the construction industry.

Keywords:

Construction industry; environmental; impact factor; analysis; contribution

Reference:

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

Descargar (PDF, 5MB)

 

Herramienta asistida por ordenador para optimizar puentes de forma automática

En el diseño de puentes, es necesario modelar muchas variables como los materiales, las dimensiones de la sección transversal, las armaduras de refuerzo y el pretensado para evaluar el rendimiento estructural. Se pretende aumentar la eficiencia y satisfacer los estados límite últimos y de servicio impuestos por el código estructural. En este trabajo se presenta una herramienta informática para analizar los puentes de carretera de vigas continuas de sección en cajón de hormigón postesado para minimizar el coste y proporcionar las variables óptimas de diseño. El programa comprende seis módulos para realizar el proceso de optimización, el análisis por elementos finitos y la verificación de los estados límite. La metodología se define y se aplica a un caso práctico. Un algoritmo de búsqueda de armonía (HS) optimiza 33 variables que definen un puente de tres vanos situado en una región costera. Sin embargo, el mismo procedimiento podría aplicarse para optimizar cualquier estructura. Esta herramienta permite definir los parámetros fijos y las variables optimizadas por el algoritmo heurístico. Además el resultado proporciona reglas útiles para guiar a los ingenieros en el diseño de puentes de carretera de sección en cajón.

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2017). Computer-support tool to optimize bridges automatically. International Journal of Computational Methods and Experimental Measurements, 5(2):171-178.

Descargar (PDF, 141KB)

 

 

 

Aplicación de la metodología de la superficie de respuesta en un curso de postgrado de optimización

Este trabajo describe la introducción de la metodología de superficie de respuesta en un curso de postgrado. Este caso se realiza en la asignatura de “Modelos predictivos y de optimización de estructuras de hormigón“. Esta asignatura se enmarca en el Plan de Estudios del Máster Universitario en Ingeniería del Hormigón. Los estudiantes aprenden aquí conceptos como la optimización de estructuras mediante algoritmos heurísticos, la toma de decisiones multicriterio, técnicas de diseño de experimentos y metamodelos como la superficie de respuesta para obtener resultados óptimos. En este caso de estudio, el objetivo es obtener una solución óptima de un muro de hormigón armado, utilizando las emisiones de CO2 como función objetivo para reducir su impacto. Para aplicar esta metodología, los estudiantes aprovechan programas comerciales. Por un lado, para realizar el análisis estadístico que permita obtener la superficie de respuesta se utiliza Minitab. Por otro lado, los estudiantes comprueban la resistencia de la estructura utilizando el software de cálculo estructural Cype. Como resultado de esta metodología se consigue que los estudiantes alcancen un mejor nivel en competencias transversales, como el diseño y el proyecto, el pensamiento crítico, el análisis y la resolución de problemas o el uso de software específico. En este trabajo se presentan futuros estudios de investigación relacionados con el uso de técnicas de optimización de estructuras por parte de los estudiantes aplicando otras técnicas de optimización diferentes.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2021). Application of the response surface methodology in a postgraduate optimization course. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 869-878, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 232KB)

 

 

Constructibilidad para la optimización en BIM y gemelos híbridos digitales

En otros artículos anteriores ya hemos hablado de la computación cuántica y los gemelos híbridos digitales en ingeniería civil y edificación. Ahora os paso una comunicación que hicimos en el EAAE-ARCC International Conference que se celebró en Valencia el verano pasado, organizado por la Universitat Politècnica de València.

La introducción de los estándares de Lean Construction en la industria de la construcción ha cambiado la forma en que los profesionales abordan los problemas. El BIM y los gemelos digitales híbridos son nuevas tecnologías que mejoran la eficiencia de los procedimientos del sector. Los algoritmos de optimización se utilizan a menudo en combinación con estas técnicas para mejorar el resultado en varios puntos de la fase de diseño, incluyendo el proyecto estructural. La optimización puede realizarse utilizando diferentes criterios, como la economía, la sostenibilidad, el consumo de energía o la constructibilidad o una combinación entre ellos. Aunque existen fórmulas exactas para cuantificar algunos de estos criterios, no existe una universal para cuantificar la constructibilidad. En este artículo, establecemos los puntos clave para crear un criterio de constructibilidad para cada proyecto estructural y explorar su eficiencia. La forma de cuantificar la constructibilidad depende del diseño estructural y del elemento a optimizar y como no existe una fórmula exacta para cuantificarla se han definido los diferentes factores que influyen en ella y se han explorado sus combinaciones para un determinado problema estructural: la optimización de una viga de hormigón. Con ello, se consigue cuantificar la facilidad para construir un determinado proyecto estructural y reducir el tiempo de construcción y el coste de las cuadrillas y crear una forma de mejorar el diseño estructural. Este método expuesto puede ampliarse luego a diferentes elementos estructurales.

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V. (2020). Constructability criterion for structural optimization in BIM and Hybrid Digital Twins. EAAE-ARCC International Conference, June, 10-13, Valencia, 8 pp. DOI: http://dx.doi.org/10.4995/EAAE-ARCC-IC-2020.2020.XXXX

Descargar (PDF, 368KB)

Optimización energética de muros de contrafuertes

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La importancia de la construcción en el consumo de recursos naturales está llevando a los profesionales del diseño estructural a crear diseños de estructuras más eficientes que reduzcan tanto las emisiones como la energía consumida. En este trabajo se presenta un proceso automatizado para obtener diseños óptimos energéticos de muros de contrafuertes. Se consideraron dos funciones objetivo para comparar la diferencia entre una optimización de costes y una optimización de energía incorporada. Para alcanzar el mejor diseño para cada criterio de optimización, se ajustaron los parámetros del algoritmo. Este estudio utilizó un algoritmo híbrido de optimización simulada para obtener los valores de la geometría, las resistencias del hormigón y las cantidades de hormigón y materiales. La relación entre todas las variables geométricas y la altura del muro se obtuvo ajustando las funciones lineales y parabólicas. Se encontró que la optimización de los costes y de la energía están vinculados. Una reducción de costes de 1 euro lleva asociada una reducción del consumo energético de 4,54 kWh. Para conseguir un diseño de baja energía, se recomienda reducir la distancia entre los contrafuertes con respecto a la optimización económica. Esta disminución permite reducir los refuerzos necesarios para resistir la flexión del alzado. La diferencia entre los resultados de las variables geométricas de la cimentación para los dos objetivos de optimización apenas revela variaciones entre ellos. Este trabajo proporciona a los técnicos algunas reglas prácticas de diseño óptimo. Además, compara los diseños obtenidos mediante estos dos objetivos de optimización con las recomendaciones de diseño tradicionales.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/4/1800

ABSTRACT:

The importance of construction in the consumption of natural resources is leading structural design professionals to create more efficient structure designs that reduce emissions as well as the energy consumed. This paper presents an automated process to obtain low embodied energy buttressed earth-retaining wall optimum designs. Two objective functions were considered to compare the difference between a cost optimization and an embodied energy optimization. To reach the best design for every optimization criterion, a tuning of the algorithm parameters was carried out. This study used a hybrid simulated optimization algorithm to obtain the values of the geometry, the concrete resistances, and the amounts of concrete and materials to obtain an optimum buttressed earth-retaining wall low embodied energy design. The relation between all the geometric variables and the wall height was obtained by adjusting the linear and parabolic functions. A relationship was found between the two optimization criteria, and it can be concluded that cost and energy optimization are linked. This allows us to state that a cost reduction of €1 has an associated energy consumption reduction of 4.54 kWh. To achieve a low embodied energy design, it is recommended to reduce the distance between buttresses with respect to economic optimization. This decrease allows a reduction in the reinforcing steel needed to resist stem bending. The difference between the results of the geometric variables of the foundation for the two-optimization objectives reveals hardly any variation between them. This work gives technicians some rules to get optimum cost and embodied energy design. Furthermore, it compares designs obtained through these two optimization objectives with traditional design recommendations.

Keywords:

Heuristic optimization; energy savings; sustainable construction; buttressed earth-retaining walls

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

Descargar (PDF, 1.02MB)

Discretización de metaheurísticas continuas a través de un operador KNN

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este caso hemos abordado la binarización de metaheurísticas continuas. Se trata de una estrategia muy útil para el caso de la optimización de estructuras, puesto que éstas suelen presentar variables discretas para favoreces su constructabilidad. El trabajo entra dentro de la estrecha colaboración internacional de nuestro grupo de investigación, en este caso, con investigaciones chilenos.

En este trabajo se propone un operador de perturbación que utiliza la técnica de k-vecinos más cercanos, y se estudia con el objetivo de mejorar las propiedades de diversificación e intensificación de los algoritmos metaheurísticos en su versión binaria. Se diseñan operadores aleatorios para estudiar la contribución del operador de perturbación. Para verificar la propuesta, se estudian grandes instancias del conocido problema de cobertura de conjuntos. Se utilizan gráficos de caja, gráficos de convergencia y la prueba estadística de Wilcoxon para determinar la contribución del operador. Además, se realiza una comparación con técnicas metaheurísticas que utilizan mecanismos generales de binarización como las funciones de transferencia o el db-scan como métodos de binarización. Los resultados obtenidos indican que el operador de perturbación KNN mejora significativamente los resultados.

ABSTRACT:

The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results.

KEYWORDS:

Combinatorial optimization; machine learning; KNN; metaheuristics; transfer functions

REFERENCE:

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

Descargar (PDF, 1.02MB)

 

Special Issue “Optimization for Decision Making III”

 

 

 

 

 

Mathematics (ISSN 2227-7390) is a peer-reviewed open access journal which provides an advanced forum for studies related to mathematics, and is published monthly online by MDPI.

  • Open Access – free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High visibility: Indexed in the Science Citation Indexed Expanded – SCIE (Web of Science) from Vol. 4 (2016), Scopus, and Zentralblatt MATH from Vol. 3 (2015).
  • Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 21.7 days after submission; acceptance to publication is undertaken in 5.3 days (median values for papers published in this journal in the second half of 2018).
  • Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

Impact Factor: 1.747 (2019)  (First decile JCR journal)

Special Issue “Optimization for Decision Making III”

Deadline for manuscript submissions: 30 June 2021.

Special Issue Editors

Guest Editor 

Prof. Víctor Yepes
Universitat Politècnica de València, Spain
Website | E-Mail
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor 

Prof. José M. Moreno-Jiménez
Universidad de Zaragoza
Website | E-Mail
Interests: multicriteria decision making; environmental selection; strategic planning; knowledge management; evaluation of systems; logistics and public decision making (e-government, e-participation, e-democracy and e-cognocracy)

Special Issue Information

Dear Colleagues,

In the current context of the electronic governance of society, both administrations and citizens are demanding greater participation of all the actors involved in the decision-making process relative to the governance of society. In addition, the design, planning, and operations management rely on mathematical models, the complexity of which depends on the detail of models and complexity/characteristics of the problem they represent. Unfortunately, decision-making by humans is often suboptimal in ways that can be reliably predicted. Furthermore, the process industry seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. On the other hand, in order to give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and application of optimization techniques to support decisions is particularly complex, and a wide range of optimization techniques and methodologies are used to minimize risks or improve quality in making concomitant decisions. In addition, a sensitivity analysis should be done to validate/analyze the influence of uncertainty regarding decision-making.

Prof. Víctor Yepes
Prof. José Moreno-Jiménez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • Multicriteria decision making
  • Optimization techniques
  • Multiobjective optimization