El aprendizaje profundo (deep learning) en la optimización de estructuras

Figura 1. Relación de pertenencia entre la inteligencia artificial, el aprendizaje automático y el aprendizaje profundo

En este artículo vamos a esbozar las posibilidades de la inteligencia artificial en la optimización de estructuras, en particular, el uso del aprendizaje profundo. El aprendizaje profundo (deep learning, DL) constituye un subconjunto del aprendizaje automático (machine learning, ML), que a su vez lo es de la inteligencia artificial (ver Figura 1). Si la inteligencia artificial empezó sobre los años 50, el aprendizaje automático surgió sobre los 80, mientras que el aprendizaje profundo nació en este siglo XXI, a partir del 2010, con la aparición de grandes superordenadores y por el aumento de los datos accesibles. Como curiosidad, uno de los grandes hitos del DL se produjo en 2012, cuando Google fue capaz de reconocer un gato entre los más de 10 millones de vídeos de Youtube, utilizando para ello 16000 ordenadores. Ahora serían necesarios muchos menos medios.

En cualquiera de estos tres casos, estamos hablando de sistemas informáticos capaces de analizar grandes cantidades de datos (big data), identificar patrones y tendencias y, por tanto, predecir de forma automática, rápida y precisa. De la inteligencia artificial y su aplicabilidad a la ingeniería civil ya hablamos en un artículo anterior.

Figura 2. Cronología en la aparición de los distintos tipos de algoritmos de inteligencia artificial. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Si pensamos en el cálculo estructural, utilizamos modelos, más o menos sofistificados, que permiten, si se conocen con suficiente precisión las acciones, averiguar los esfuerzos a los que se encuentran sometidos cada uno de los elementos en los que hemos dividido una estructura. Con dichos esfuerzos se identifican una serie de estados límite, que son un conjunto de situaciones potencialmente peligrosas para la estructura y comparar si la capacidad estructural del elemento analizado, dependiente de las propiedades geométricas y de sus materiales constituyentes, supera el valor último de la solicitación a la que, bajo cierta probabilidad, puede llegar a alcanzar el elemento estructural analizado.

Estos métodos tradicionales emplean desde hipótesis de elasticidad y comportamiento lineal, a otros modelos con comportamiento plástico o no lineales más complejos. Suele utilizarse, con mayor o menos sofisticación, el método de los elementos finitos (MEF) y el método matricial de la rigidez. En definitiva, en determinados casos, suelen emplearse los ordenadores para resolver de forma aproximada, ecuaciones diferenciales parciales muy complejas, habituales en la ingeniería estructural, pero también en otros campos de la ingeniería y la física. Para que estos sistemas de cálculo resulten precisos, es necesario alimentar los modelos con datos sobre materiales, condiciones de contorno, acciones, etc., lo más reales posibles. Para eso se comprueban y calibran estos modelos en ensayos reales de laboratorio (Friswell y Mottershead, 1995). De alguna forma, estamos retroalimentando de información al modelo, y por tanto “aprende”.

Figura 2. Malla 2D de elementos finitos, más densa alrededor de la zona de mayor interés. Wikipedia.

Si analizamos bien lo que hacemos, estamos utilizando un modelo, más o menos complicado, para predecir cómo se va a comportar la estructura. Pues bien, si tuviésemos una cantidad suficiente de datos procedentes de laboratorio y de casos reales, un sistema inteligente extraería información y sería capaz de predecir el resultado final. Mientras que la inteligencia artificial debería alimentarse de una ingente cantidad de datos (big data), el método de los elementos finitos precisa menor cantidad de información bruta (smart data), pues ha habido una labor previa muy concienzuda y rigurosa, para intentar comprender el fenómeno subyacente y modelizarlo adecuadamente. Pero, en definitiva, son dos procedimientos diferentes que nos llevan a un mismo objetivo: diseñar estructuras seguras. Otro tema será si éstas estructuras son óptimas desde algún punto de vista (economía, sostenibilidad, etc.).

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas. Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables.

Una de las características de la optimización mediante metaheurísticas es el elevado número de iteraciones en el espacio de soluciones, lo cual permite generar una inmensa cantidad de datos para el conjunto de estructuras visitadas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación.

Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). Se trata ahora de dar un paso más allá. Se trata de que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Tanto la inteligencia artificial como el aprendizaje automático no son una ciencia nueva. El problema es que sus aplicaciones eran limitadas por la falta de datos y de tecnologías para procesarlas de forma rápida y eficiente. Hoy en día se ha dado un salto cualitativo y se puede utilizar el DL, que como ya hemos dicho es una parte del ML, pero que utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. Digamos que el DL (redes neuronales) utiliza algoritmos distintos al ML (algoritmos de regresión, árboles de decisión, entre otros). En ambos casos, los algoritmos pueden aprender de forma supervisada o no supervisada. En las no supervisadas se facilitan los datos de entrada, no los de salida. La razón por la que se llama aprendizaje profundo hace referencia a las redes neuronales profundas, que utilizan un número elevado de capas en la red, digamos, por ejemplo, 1000 capas. De hecho, el DL también se le conoce a menudo como “redes neuronales profundas”. Esta técnica de redes artificiales de neuronas es una de las técnicas más comunes del DL.

Figura. Esquema explicativo de diferencia entre ML y DL. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Una de las redes neuronales utilizadas en DL son las redes neuronales convolucionales, que es una variación del perceptrón multicapa, pero donde su aplicación se realiza en matrices bidimensionales, y por tanto, son muy efectivas en las tareas de visión artificial, como en la clasificación y segmentación de imágenes. En ingeniería, por ejemplo, se puede utilizar para la monitorización de la condición estructural, por ejemplo, para el análisis del deterioro. Habría que imaginar hasta dónde se podría llegar grabando en imágenes digitales la rotura en laboratorio de estructuras de hormigón y ver la capacidad predictiva de este tipo de herramientas si contaran con suficiente cantidad de datos. Todo se andará. Aquí os dejo una aplicación tradicional típica (Antoni Cladera, de la Universitat de les Illes Balears), donde se explica el modelo de rotura de una viga a flexión en la pizarra y luego se rompe la viga en el laboratorio. ¡Cuántos datos estamos perdiendo en la grabación! Un ejemplo muy reciente del uso del DL y Digital Image Correlation (DIC) aplicado a roturas de probetas en laboratorio es el trabajo de Gulgec et al. (2020).

Sin embargo, aquí nos interesa detenernos en la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Un ejemplo de este camino novedoso en la investigación es la aplicabilidad de algoritmos que hibriden DL y metaheurísticas. Ya hemos publicado algunos artículos en este sentido aplicados a la optimización de muros de contrafuertes (Yepes et al., 2020; García et al., 2020a, 2020b). Además, hemos propuesto como editor invitado, un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“.

Dejo a continuación un pequeño vídeo explicativo de las diferencias entre la inteligencia artificial, machine learning y deep learning.

Referencias:

FRISWELL, M.; MOTTERSHEAD, J. E. (1995). Finite element model updating in structural dynamics (Vol. 38). Dordrecht, Netherlands: Springer Science & Business Media.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020a). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020b). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0

GULGEC, N.S.; TAKAC, M., PAKZAD S.N. (2020). Uncertainty quantification in digital image correlation for experimental evaluation of deep learning based damage diagnostic. Structure and Infrastructure Engineering, https://doi.org/10.1080/15732479.2020.1815224

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La inteligencia artificial en la ingeniería civil

https://www.chilecubica.com/revistas-de-construcci%C3%B3n/inteligencia-artificial/

La inteligencia artificial (IA)  – tecnologías capaces de realizar tareas que normalmente requieren inteligencia humana – constituye un enfoque alternativo a las técnicas de modelización clásicas. La IA es la rama de la ciencia de la computación que desarrolla máquinas y software con una inteligencia que trata de imitar las funciones cognitivas humanas. En comparación con los métodos tradicionales, la IA ofrece ventajas para abordar los problemas asociados con las incertidumbres y es una ayuda efectiva para resolver problemas de elevada complejidad, como son la mayoría de problemas reales en ingeniería. Además, las soluciones aportadas por la IA constituyen buenas alternativas para determinar los parámetros de diseño cuando no es posible realizar ensayos, lo que supone un ahorro importante en tiempo y esfuerzo dedicado a los experimentos. La IA también es capaz de acelerar el proceso de toma de decisiones, disminuye las tasas de error y aumenta la eficiencia de los cálculos. Entre las diferentes técnicas de IA destacan el aprendizaje automático (machine learning), el reconocimiento de patrones (pattern recognition) y el aprendizaje profundo (deep learning), técnicas que han adquirido recientemente una atención considerable y que se están estableciendo como una nueva clase de métodos inteligentes para su uso en la ingeniería civil.

Todos conocemos problemas de ingeniería civil cuya solución pone al límite las técnicas computacionales tradicionales. Muchas veces se solucionan porque existen expertos con la formación adecuada capaces de intuir la solución más adecuada, para luego comprobarla con los métodos convencionales de cálculo. En este contexto, la inteligencia artificial está tratando de capturar la esencia de la cognición humana para acelerar la resolución de estos problemas complejos. La IA se ha desarrollado en base a la interacción de varias disciplinas, como son la informática, la teoría de la información, la cibernética, la lingüística y la neurofisiología.

Figura 1. Interrelación entre diferentes técnicas computacionales inteligentes. Elaboración propia basada en Salehi y Burgueño (2018)

A veces el concepto de “inteligencia artificial (IA)” se confunde con el de “inteligencia de máquina (IM)” (machine intelligence). En general, la IM se refiere a máquinas con un comportamiento y un razonamiento inteligente similar al de los humanos, mientras que la IA se refiere a la capacidad de una máquina de imitar las funciones cognitivas de los humanos para realizar tareas de forma inteligente. Otro término importante es la “computación cognitiva (CC)” (cognitive computing), que se inspira en las capacidades de la mente humana. Los sistemas cognitivos son capaces de resolver problemas imitando el pensamiento y el razonamiento humano. Tales sistemas se basan en la capacidad de las máquinas para medir, razonar y adaptarse utilizando la experiencia adquirida.

Las principales características de los sistemas de CC son su capacidad para interpretar grandes datos, el entrenamiento dinámico y el aprendizaje adaptativo, el descubrimiento probabilístico de patrones relevantes. Técnicamente, la IA se refiere a ordenadores y máquinas que pueden comportarse de forma inteligente, mientras que el CC se concentra en la resolución de los problemas utilizando el pensamiento humano. La diferencia más significativa entre la IA y la CC puede definirse en función de su interactuación con los humanos. Para cualquier sistema de IA, hay un agente que decide qué acciones deben tomarse. Sin embargo, los sistemas de CC aprenden, razonan e interactúan como los humanos.

Por otra parte, los “sistemas expertos” son una rama de la IA. Un sistema experto se definiría como un programa de ordenador que intenta imitar a los expertos humanos para resolver problemas que exigen conocimientos humanos y experiencia. Por tanto, la IA incluye diferentes ramas como los sistemas expertos, el aprendizaje automático, el reconocimiento de patrones y la lógica difusa.

La IA se ha usado en estas últimas décadas de forma intensiva en las investigaciones relacionadas con la ingeniería civil. Son notables las aplicaciones de las redes neuronales, los algoritmos genéticos, la lógica difusa y la programación paralela. Además, la optimización heurística ha tenido una especial relevancia en muchos campos de la ingeniería civil, especialmente en el ámbito de las estructuras y las infraestructuras. Sin embargo, los métodos más recientes como el reconocimiento de patrones, el aprendizaje automático y el aprendizaje profundo son método totalmente emergentes en este ámbito de la ingeniería. Éstas técnicas emergentes tienen la capacidad de aprender complicadas interrelaciones entre los parámetros y las variables, y así permiten resolver una diversidad de problemas que son difíciles, o no son posibles, de resolver con los métodos tradicionales.

El aprendizaje automático es capaz de descubrir información oculta sobre el rendimiento de una estructura al aprender la influencia de diversos mecanismos de daño o degradación y los datos recogidos de los sensores. Además, el aprendizaje automático y el aprendizaje profundo tienen una elevada potencialidad en el dominio de la mecánica computacional, como por ejemplo, para optimizar los procesos en el método de elementos finitos para mejorar la eficiencia de los cálculos. Estos métodos también se pueden utilizar para resolver problemas complejos a través del novedoso concepto de la Internet de las Cosas. En este contexto del Internet de las Cosas, se pueden utilizar estas técnicas emergentes para analizar e interpretar grandes bases de datos. Esto abre las puertas al desarrollo de infraestructuras, ciudades o estructuras inteligentes.

Sin embargo, aún nos encontramos con limitaciones en el uso de estos métodos emergentes. Entre esas limitaciones figura la falta de selección racional del método de IA, que no se tenga en cuenta el efecto de los datos incompletos o con ruido, que no se considere la eficiencia de la computación, el hecho de que se informe sobre la exactitud de la clasificación sin explorar soluciones alternativas para aumentar el rendimiento, y la insuficiencia de la presentación del proceso para seleccionar los parámetros óptimos para la técnica de IA. Con todo, a pesar de estas limitaciones, el aprendizaje automático, el reconocimiento de patrones y el aprendizaje profundo se postulan como método pioneros para aumentar la eficiencia de muchas aplicaciones actuales de la ingeniería civil, así como para la creación de usos innovadores.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803.

SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171:170-189.

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.

YEPES, V. (2013). Métodos no convencionales de investigación basados en la inteligencia artificial. https://victoryepes.blogs.upv.es/2013/11/12/metodos-no-convencionales-de-investigacion-basado-en-la-inteligencia-artificial/

YEPES, V. (2020). Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación. https://victoryepes.blogs.upv.es/2019/10/30/computacion-cuantica-gemelos-digitales/

YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036

Os dejo a continuación un informe sobre cómo la inteligencia de máquina permite crear valor y se postula como una herramienta de primer nivel en todos los ámbitos.

Descargar (PDF, 1.05MB)