Diseño de experimentos en cuadrado grecolatino. Ejemplo aplicado al hormigón

Figura 1. Cuadrado grecolatino de orden cuatro. Wikipedia

Un cuadrado greco-latinocuadrado de Euler o cuadrados latinos ortogonales de orden n se denomina, en matemáticas, a la disposición en una cuadrícula cuadrada n×n de los elementos de dos conjuntos S y T, ambos con n elementos, cada celda conteniendo un par ordenado (st), siendo s elemento de S y t de T, de forma que cada elemento de S y cada elemento de T aparezca exactamente una vez en cada fila y en cada columna y que no haya dos celdas conteniendo el mismo par ordenado. Si bien los cuadrados grecolatinos eran una curiosidad matemática, a mediados del siglo XX Fisher demostró su utilidad para el control de experimentos estadísticos.

El diseño de experimentos en cuadrado grecolatino constituye una extensión del cuadrado latino. En este caso se eliminan tres fuentes extrañas de variabilidad, es decir, se controlan tres factores de bloques y un factor de tratamiento. Se trata de un diseño basado en una matriz de “n” letras latinas y “n” letras griegas, de forma que cada letra latina aparece solo una vez al lado de cada letra griega. Lo interesante de este diseño es que se permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con “n” niveles en solo “n2” corridas. Se llama cuadrado grecolatino porque los cuatro factores involucrados se prueban en la misma cantidad de niveles, de aquí que se pueda escribir como un cuadro. En la Figura 1 se presenta el aspecto de los datos del diseño de orden cuatro. El inconveniente de este modelo es que su utilización es muy restrictiva. El análisis de la varianza permite comprobar las hipótesis de igualdad de letras latinas (tratamientos), de las filas, de las columnas y de las letras griegas.

Si a un cuadrado latino p x p se le superpone un segundo cuadrado latino n x n en el que los tratamientos se denotan con letras griegas, entonces los dos cuadrados tienen la propiedad de que cada letra griega aparece una y sólo una vez con cada letra latina. Este diseño permite controlar sistemáticamente tres fuentes de variabilidad extraña. Ello permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con p niveles en sólo n2 ensayos.

Por tanto, el diseño de experimentos en cuadrado grecolatino se caracteriza por lo siguiente:

  • Es un diseño con cuatro factores a n niveles
  • Se asume que no hay interacciones entre los factores
  • Requiere de n2 observaciones
  • Cada nivel de un factor aparece una vez con cada nivel de los otros factores
  • Se trata de la superposición de dos cuadrados latinos (ver Figura 2)
Figura 2. Superposición de dos cuadrados latinos

En un diseño en cuadrado greco-latino la variable respuesta yij(hp) viene descrita por la siguiente ecuación:

A continuación os presento un caso para aclarar la aplicabilidad de este diseño de experimentos. Se trata de averiguar si la resistencia característica del hormigón a flexocompresión (MPa) varía con cuatro dosificaciones diferentes. Para ello se han preparado amasadas en cuatro amasadoras diferentes, se han utilizado cuatro operarios de amasadora y los ensayos se han realizado en cuatro laboratorios diferentes. Los resultados se encuentran en la tabla que sigue. Se quiere analizar el diseño de experimentos en cuadrado grecolatino realizado.

En el caso que nos ocupa, la variable de respuesta de la resistencia característica del hormigón a flexocompresión (MPa). El factor que se quiere estudiar es la dosificación a cuatro niveles (A, B, C y D). El bloque I es el tipo de amasadora, con cuatro niveles (α, β, γ y δ). El bloque II es el operario de la amasadora, con cuatro niveles (1, 2, 3 y 4). El bloque III es el laboratorio, con cuatro niveles (las filas). Se supone que no hay interacción entre el factor y los bloques entre sí.

Lo que se quiere averiguar es si hay diferencias significativas entre las dosificaciones (el factor a estudiar). De paso, se desea saber si hay diferencias entre los laboratorios, los operarios y las amasadoras (los bloques).

Os paso un pequeño vídeo donde se explica, de forma muy resumida, este caso, tanto para SPSS como para MINITAB.

Os dejo otro vídeo donde también se explica este tipo de diseño de experimentos.

Referencias:

  • Gutiérrez, H.; de la Vara, R. (2004). Análisis y Diseño de Experimentos. McGraw Hill, México.
  • Vicente, MªL.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de Experimentos. Soluciones con SAS y SPSS. Pearson, Prentice Hall, Madrid.
  • Pérez, C. (2013). Diseño de Experimentos. Técnicas y Herramientas. Garceta Grupo Editorial, Madrid.

 

Gestión de la innovación en las empresas constructoras

Tras la crisis financiera de 2008, que supuso una caída brutal de la contratación de obra pública en España, las empresas constructoras y consultoras tuvieron que internacionalizarse. Sin casi haber salido completamente de este trance, sobrevino la actual crisis sanitaria de la pandemia del coronavirus que ha acarreado una nueva recesión social y económica que, de momento, no se atisba su solución. Las consecuencias de esta nueva crisis, graves sin duda, aún no se sabe hasta dónde pueden alcanzar. Por tanto, el sector de la construcción vuelve a sufrir una convulsión de difícil pronóstico. Las nuevas tecnologías están teniendo un papel determinante en la forma de afrontar esta coyuntura, especialmente en el trabajo no presencial. Los cambios que podrían tardar décadas en llegar, nos han alcanzado de repente. La pregunta es la de siempre: ¿cómo afrontar la competitividad de las empresas en escenarios tan cambiantes como los actuales?

Parece evidente que la metáfora darwinista de la evolución podría aplicarse, con todas las cautelas necesarias, al mundo empresarial. Solo sobrevivirán aquellas organizaciones capaces de adaptarse rápidamente al nuevo entorno. Y para ello no es suficiente la mejora continua de nuestros procesos y productos, sino que se requiere un cambio radical, rupturista, basado en la innovación, capaz de crear un “océano azul” donde la competencia sea irrelevante.

A continuación os paso una clase que tuve que impartir en línea sobre la gestión de la innovación en las empresas constructoras. Se trata de una clase impartida en la asignatura “Gestión de la innovación en el sector de la construcción” del Máster Universitario en Planificación y Gestión en Ingeniería Civil (MAPGIC) de la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de la Universitat Politècnica de València. La dejo en abierto para que la pueda ver quien esté interesado.

Métodos modernos de construcción (MMC): fabricación modular

Figura 1. Construcción modular. https://www.draytonfox.com/modern-methods-of-construction/

La construcción modular y la prefabricación son técnicas ya veteranas en el ámbito de la ingeniería civil y la edificación. Desde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados, la tecnología ha experimentado un avance imparable. Por otra parte, la construcción modular tiene una larga historia en la gestión de la innovación (Simon, 1962). Sin embargo, la auténtica revolución que supone la inteligencia artificial, las tecnologías BIM y los retos de la sostenibilidad están cambiando radicalmente este concepto y lo está llevando a una nueva dimensión. En efecto, estamos ante la revolución de los métodos modernos de construcción. Este es el concepto del que vamos a hablar a continuación.

Los métodos modernos de construcción (Modern Methods of Construction, MMC) , o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Este concepto MMC lo utilizó el gobierno del Reino Unido para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales son tecnologías de construcción en fábrica (Gibb, 1999). Es un término que cubre una amplia gama de tecnologías basada en la fabricación modular, ya sea “in situ” o en otra ubicación, que está revolucionando la forma de construir edificios de forma más rápida, rentable y eficiente. También suele llamarse construcción “off-site”. Un ejemplo no muy lejano ha sido la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días debido a la epidemia del coronavirus. Por ejemplo, países como Suecia y Japón lideran la construcción MMC. En Suecia, casi la mitad de las viviendas de nueva construcción utilizan este método, llegando al 80% en el caso de viviendas unifamiliares. Japón, es el país donde se construye mayor número de viviendas nuevas con este método, aunque no llegan al 20% del total. Incluso podemos leer una noticia de hace unos días donde el alcalde de Londres apoya decididamente la aplicación de diseño de viviendas modulares.

Los diferentes métodos MMC incluyen el sistema de paneles planos prefabricados, módulos volumétricos 3D (Figuras 1 y 3), construcción con losas planas, paneles de cerramiento prefabricados (Figura 2), muros y forjados de hormigón, tecnología de doble pared (Figura 4), cimientos de hormigón prefabricado, aislamiento de encofrados de hormigón, entre otros. No obstante, la gestión de los sistemas 1D/2D respecto a los volumétricos 3D es muy diferente (López, 2017).

Tabla. Principales diferencias entre los sistemas modulares basados en elementos 1D y 2D frente a celdas 3D (López, 2017)

La reciente norma UNE 127050:2020 trata justamente de los sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón, así como de los requisitos de comportamiento, fabricación, instalación y verificación.

Figura 2. Paneles de cerramiento prefabricados (precast cladding panels). https://www.designingbuildings.co.uk/wiki/Precast_concrete_cladding

Las ventajas de la construcción MMC frente a la construcción tradicional son evidentes. Los módulos permiten un ahorro de tiempo de hasta el 50%, pues éstos se elaboran en fábrica, sin incidencia del clima. Una vez llegan a la obra, se ensamblan, interrumpiendo al mínimo la propia obra, pues el 80% de la actividad de la construcción se ha realizado lejos de la obra. Permite el uso de materiales respetuosos con el medio ambiente, reduciéndose el desperdicio. Los módulos son de diseño atractivo e innovador, con materiales de elevada calidad, con un diseño a medida del cliente. La construcción en fábrica permite la fabricación con tolerancias estrictas, la reducción de los errores, promueve la seguridad, no estando los materiales a la intemperie durante la construcción. Además, permite el uso de materiales durables, que mejoran el aislamiento acústico, la protección contra incendios y la eficiencia energética. Sin embargo, en algunos países el uso de las MMC presenta costes más elevados que la construcción tradicional. Otras barreras son la falta de mano de obra especializada, la escasez de suministros o la regulación existente (Rahman, 2014). Con todo, la actual crisis del Covid-19 puede acelerar los cambios necesarios. De todos modos, los métodos MMC constituyen un producto diferente al del mercado de la construcción tradicional. La construcción modular, al tratarse de un producto alternativo, en lugar de competir, complementará el mercado tradicional. El objetivo es aumentar la productividad de los recursos disponibles mejorando la calidad, la eficiencia empresarial, la satisfacción del cliente, el rendimiento ambiental, el índice de sostenibilidad y el control de los plazos de entrega (Yepes et al., 2012; Pellicer et al., 2014, 2016).

Figura 3. Módulos volumétricos 3D (3D volumetric modules). http://www.ehu.eus/ehusfera/industrialized-architecture/page/4/

Una de las claves que acelerará, sin duda, la adopción de los métodos MMC es la introducción de la metodología BIM en los proyectos de edificación o de infraestructuras. En España, las administraciones públicas ya van dando pasos hacia la exigencia de que los proyectos de edificación o infraestructuras se realicen bajo la metodología BIM. Tanto MMC como BIM aumentan claramente la calidad del producto, la sostenibilidad y la mejora del servicio a lo largo del ciclo de vida del activo. A este respecto, recomiendo leer la guía BIM para empresas de prefabricados de hormigón (ANDECE, 2020).

En la feria Construmat de Barcelona (mayo de 2019), McKinsey & Company presentó un informe en el que se detalla cómo la tecnología basada en datos podría ayudar a las empresas españolas de infraestructuras a tomar decisiones más inteligentes, reducir el riesgo y mejorar los resultados de los proyectos. Por tanto, BIM, la automatización de procesos, la inteligencia artificial, el Big Data, las tecnologías en la nube o la interacción con Internet de las Cosas suponen el revolución que lanzará definitivamente la construcción inteligente.

Figura 4. Tecnología de doble pared (twin wall technology). https://www.cornishconcrete.co.uk/products/twin-wall/

Dentro de nuestro grupo de investigación estamos trabajando en la tesis doctoral de Antonio Sánchez Garrido sobre este tipo de aspectos. En una de sus primeras publicaciones en revista indexada en el primer decil de JCR (Sánchez-Garrido y Yepes, 2020), se han aplicado técnicas analíticas de toma de decisiones multicriterio (MCDM) y análisis del ciclo de vida, a una tipología de construcción tradicional de una vivienda unifamiliar, y a dos alternativas diferentes basadas en MMC. Se propone un índice de sosteniblidad, que incluye atributos tangibles e intangibles, así como factores de incertidumbre y riesgos, que permite a los promotores priorizar soluciones que aseguren la sostenibilidad económica, social y medioambiental.

Os dejo algunos vídeos al respecto de esta nueva tecnología.

Os dejo como información complementaria un artículo de Alejandro López de hace apenas tres años, pero donde ya se empezaba a vislumbrar un crecimiento exponencial de la construcción modular.

Descargar (PDF, 623KB)

Referencias:

AENOR (2020). UNE 127050:2020. Sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón. Requisitos de comportamiento, fabricación, instalación y verificación.

ANDECE (2020). Guía BIM para empresas de prefabricados de hormigón, 46 pp.

DOWSETT, R.; GREEN, M.; SEXTON, M.; HARTY, C.,2019. Projecting at the project level: MMC supply chain integration roadmap for small house builders. Construction Innovation-England, 19 (2): 193-211.

GIBB, A.G.F. (1999). Offsite Fabrication: Prefabrication, Preassembly and Modularisation, Whittles Publishing, Caithness

PELLICER, E.; YEPES, V.; CORREA, C.L.; ALARCÓN, L.F. (2014). Model for Systematic Innovation in Construction Companies. Journal of Construction Engineering and Management, 140(4):B4014001.

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896.

LÓPEZ, A. (2016). Declaraciones ambientales de productos prefabricados de hormigón. Materiales sostenibles, 46:42-45.

LÓPEZ, A. (2017). Construcción modular en hormigón: una tendencia al alza. Revista Técnica Cemento Hormigón, 980:48-54.

LÓPEZ, A. (2018). Declaraciones ambientales de productos prefabricados de hormigón (y 2ª parte). Ecoconstrucción, 18:24-26.

RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Journal of Management in Engineering, 30(1):69-77.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556.

SIMON, H.A. (1962). The arquitecture of complexity. Proceedings of the American Philosophical Society, 106(6):467-482.

YEPES, V.; PELLICER, E.; ORTEGA, J.A. (2012). Designing a benchmark indicator for managerial competences in construction at the graduate level. Journal of Professional Issues in Engineering Education and Practice, 138(1): 48-54.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejorando la I+D+i mediante la normalización y la certificación: el caso del sector de la construcción español

Figura. Calidad, innovación y gestión del conocimiento (Pellicer et al., 2008)

El grado de desarrollo de una comunidad se mide, a menudo, por su inversión en investigación, desarrollo e innovación (I+D+i). Los países industrializados asumen la necesidad de investigar nuevas técnicas, materiales y procesos con objeto de alcanzar una mayor eficiencia y sustentabilidad en cada tarea productiva. La normalización y la certificación de la gestión de proyectos o sistemas de I+D+i supone una herramienta adecuada para optimizar los resultados, sobre todo cuando es una política internacional el incentivo de las tareas de I+D+i. Las empresas buscan acreditar ante la administración pública los recursos destinados a la I+D+i, obteniendo ventajas fiscales a lo largo de todo el proceso. A pesar de que el sector de la construcción es importante en todas las economías desarrolladas y en vías de desarrollo, las empresas constructoras invierten poco en I+D+i comparativamente con otros sectores. La relación entre la normalización y la innovación sigue siendo una asignatura pendiente dentro del campo de la gestión de la construcción. A lo largo del presente artículo se analiza la situación internacional en materia de normalización y certificación de actividades de I+D+i, señalando el carácter innovador de las normas españolas UNE 166000. Se exponen los resultados de un estudio sistemático destinado a conocer la situación actual en el sector de la construcción en España, referente a la normalización y a la certificación. Esta nueva familia de normas podría servir como referente para otros países, siempre funcionando conjuntamente con las series de normas ISO 9000 y 14000.

Palabras clave: Innovación, certificación, construcción, normalización, gestión

Referencia:

PELLICER E., YEPES V., CORREA C.L.; MARTÍNEZ, G. (2008). Enhancing R&D&i through standardization and certification: the case of the Spanish construction industryRevista Ingeniería de Construcción, 23(2): 112-121.

Descargar (PDF, 768KB)

 

 

La inteligencia artificial en la ingeniería civil

https://www.chilecubica.com/revistas-de-construcci%C3%B3n/inteligencia-artificial/

La inteligencia artificial (IA)  – tecnologías capaces de realizar tareas que normalmente requieren inteligencia humana – constituye un enfoque alternativo a las técnicas de modelización clásicas. La IA es la rama de la ciencia de la computación que desarrolla máquinas y software con una inteligencia que trata de imitar las funciones cognitivas humanas. En comparación con los métodos tradicionales, la IA ofrece ventajas para abordar los problemas asociados con las incertidumbres y es una ayuda efectiva para resolver problemas de elevada complejidad, como son la mayoría de problemas reales en ingeniería. Además, las soluciones aportadas por la IA constituyen buenas alternativas para determinar los parámetros de diseño cuando no es posible realizar ensayos, lo que supone un ahorro importante en tiempo y esfuerzo dedicado a los experimentos. La IA también es capaz de acelerar el proceso de toma de decisiones, disminuye las tasas de error y aumenta la eficiencia de los cálculos. Entre las diferentes técnicas de IA destacan el aprendizaje automático (machine learning), el reconocimiento de patrones (pattern recognition) y el aprendizaje profundo (deep learning), técnicas que han adquirido recientemente una atención considerable y que se están estableciendo como una nueva clase de métodos inteligentes para su uso en la ingeniería civil.

Todos conocemos problemas de ingeniería civil cuya solución pone al límite las técnicas computacionales tradicionales. Muchas veces se solucionan porque existen expertos con la formación adecuada capaces de intuir la solución más adecuada, para luego comprobarla con los métodos convencionales de cálculo. En este contexto, la inteligencia artificial está tratando de capturar la esencia de la cognición humana para acelerar la resolución de estos problemas complejos. La IA se ha desarrollado en base a la interacción de varias disciplinas, como son la informática, la teoría de la información, la cibernética, la lingüística y la neurofisiología.

Figura 1. Interrelación entre diferentes técnicas computacionales inteligentes. Elaboración propia basada en Salehi y Burgueño (2018)

A veces el concepto de “inteligencia artificial (IA)” se confunde con el de “inteligencia de máquina (IM)” (machine intelligence). En general, la IM se refiere a máquinas con un comportamiento y un razonamiento inteligente similar al de los humanos, mientras que la IA se refiere a la capacidad de una máquina de imitar las funciones cognitivas de los humanos para realizar tareas de forma inteligente. Otro término importante es la “computación cognitiva (CC)” (cognitive computing), que se inspira en las capacidades de la mente humana. Los sistemas cognitivos son capaces de resolver problemas imitando el pensamiento y el razonamiento humano. Tales sistemas se basan en la capacidad de las máquinas para medir, razonar y adaptarse utilizando la experiencia adquirida.

Las principales características de los sistemas de CC son su capacidad para interpretar grandes datos, el entrenamiento dinámico y el aprendizaje adaptativo, el descubrimiento probabilístico de patrones relevantes. Técnicamente, la IA se refiere a ordenadores y máquinas que pueden comportarse de forma inteligente, mientras que el CC se concentra en la resolución de los problemas utilizando el pensamiento humano. La diferencia más significativa entre la IA y la CC puede definirse en función de su interactuación con los humanos. Para cualquier sistema de IA, hay un agente que decide qué acciones deben tomarse. Sin embargo, los sistemas de CC aprenden, razonan e interactúan como los humanos.

Por otra parte, los “sistemas expertos” son una rama de la IA. Un sistema experto se definiría como un programa de ordenador que intenta imitar a los expertos humanos para resolver problemas que exigen conocimientos humanos y experiencia. Por tanto, la IA incluye diferentes ramas como los sistemas expertos, el aprendizaje automático, el reconocimiento de patrones y la lógica difusa.

La IA se ha usado en estas últimas décadas de forma intensiva en las investigaciones relacionadas con la ingeniería civil. Son notables las aplicaciones de las redes neuronales, los algoritmos genéticos, la lógica difusa y la programación paralela. Además, la optimización heurística ha tenido una especial relevancia en muchos campos de la ingeniería civil, especialmente en el ámbito de las estructuras y las infraestructuras. Sin embargo, los métodos más recientes como el reconocimiento de patrones, el aprendizaje automático y el aprendizaje profundo son método totalmente emergentes en este ámbito de la ingeniería. Éstas técnicas emergentes tienen la capacidad de aprender complicadas interrelaciones entre los parámetros y las variables, y así permiten resolver una diversidad de problemas que son difíciles, o no son posibles, de resolver con los métodos tradicionales.

El aprendizaje automático es capaz de descubrir información oculta sobre el rendimiento de una estructura al aprender la influencia de diversos mecanismos de daño o degradación y los datos recogidos de los sensores. Además, el aprendizaje automático y el aprendizaje profundo tienen una elevada potencialidad en el dominio de la mecánica computacional, como por ejemplo, para optimizar los procesos en el método de elementos finitos para mejorar la eficiencia de los cálculos. Estos métodos también se pueden utilizar para resolver problemas complejos a través del novedoso concepto de la Internet de las Cosas. En este contexto del Internet de las Cosas, se pueden utilizar estas técnicas emergentes para analizar e interpretar grandes bases de datos. Esto abre las puertas al desarrollo de infraestructuras, ciudades o estructuras inteligentes.

Sin embargo, aún nos encontramos con limitaciones en el uso de estos métodos emergentes. Entre esas limitaciones figura la falta de selección racional del método de IA, que no se tenga en cuenta el efecto de los datos incompletos o con ruido, que no se considere la eficiencia de la computación, el hecho de que se informe sobre la exactitud de la clasificación sin explorar soluciones alternativas para aumentar el rendimiento, y la insuficiencia de la presentación del proceso para seleccionar los parámetros óptimos para la técnica de IA. Con todo, a pesar de estas limitaciones, el aprendizaje automático, el reconocimiento de patrones y el aprendizaje profundo se postulan como método pioneros para aumentar la eficiencia de muchas aplicaciones actuales de la ingeniería civil, así como para la creación de usos innovadores.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803.

SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171:170-189.

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.

YEPES, V. (2013). Métodos no convencionales de investigación basados en la inteligencia artificial. https://victoryepes.blogs.upv.es/2013/11/12/metodos-no-convencionales-de-investigacion-basado-en-la-inteligencia-artificial/

YEPES, V. (2020). Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación. https://victoryepes.blogs.upv.es/2019/10/30/computacion-cuantica-gemelos-digitales/

YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036

Os dejo a continuación un informe sobre cómo la inteligencia de máquina permite crear valor y se postula como una herramienta de primer nivel en todos los ámbitos.

Descargar (PDF, 1.05MB)

Impacto del I+D+I en el rendimiento de las empresas constructoras españolas

Nos acaban de publicar en la revista Advances in Civil Engineering, revista indexada en el JCR, un artículo donde analizamos el impacto de la investigación, el desarrollo tecnológico y la innovación (I+D+I) en el rendimiento de las empresas constructoras españolas. Este artículo forma parte de nuestra línea de investigación DIMALIFE.

Decidir si ciertos factores deben considerarse impulsores de la innovación en las empresas de construcción es crucial para mejorar su rendimiento y supervivencia en un entorno que está cambiando a pasos agigantados. A lo largo de los años, las empresas de construcción se han considerado tradicionales y sin tendencia a la innovación. Sin embargo, varios estudios han confirmado que esta percepción del sector está evolucionando y que los instrumentos exitosos de otras industrias se están adaptando gradualmente en beneficio de la construcción. En este artículo que presentamos, el objetivo ha sido investigar los posibles factores que afectan al rendimiento de estas organizaciones. Se identificaron 18 factores relacionados con los niveles individual, de grupo y de organización mediante una revisión del estado del arte y una metodología que fue validada por profesionales experimentados. Se envió un cuestionario a 103 personas que trabajan en el sector a nivel nacional para conocer sus opiniones. Los resultados del análisis de la clasificación indican que la “tecnología y el equipo” y la “adquisición de programas informáticos” se consideran los dos factores más significativos. Además, esos 18 factores pueden clasificarse en 7 grupos: i) impulsores internos de la innovación; ii) innovación dentro de la organización; iii) innovación tecnológica; iv) vínculos tecnológicos con el medio ambiente; v) impulsores externos de la innovación; vi) innovación en los procesos; vii) cultura de la innovación en la empresa. La innovación en los procesos es la que tiene el mayor nivel de impacto. Esta investigación profundiza en la comprensión actual de los factores en los diferentes niveles organizativos que deben destacarse en la aplicación de un sistema de investigación y desarrollo para que las empresas mejoren su rendimiento y supervivencia en los procesos futuros.

ABSTRACT

Deciding whether certain factors should be considered drivers of innovation in construction firms is crucial in terms of improving their performance and survival in an environment that is changing by leaps and bounds. Throughout the years, construction companies have been considered to be traditional and without the tendency to innovate. However, several studies have confirmed that this perception of the sector is evolving and that successful instruments from other industries are gradually being adapted for the benefit of the industry. The objective of this paper is therefore to investigate the potential factors affecting the performance of these organizations. Eighteen factors related to the individual, group, and organizational levels were identified through a review of the literature and an instrument developed that was validated by experienced professionals. A questionnaire was sent to 103 people working in the sector at the national level to obtain their views. The results of the classification analysis indicate that “technology and equipment” and “software acquisition” are considered the two most significant factors. In addition, these 18 factors can be classified into 7 groups: (i) internal drivers of innovation; (ii) innovation within the organization; (iii) technological innovation; (iv) technological links with the environment; (v) external drivers of innovation; (vi) innovation in processes; (vii) a culture of innovation in the company. Innovation in processes has the highest level of impact. This research deepens the current understanding of the factors at different organizational levels that must be highlighted in the implementation of an R&D system in order for companies to improve their performance and survival in future processes.

REFERENCE:

LÓPEZ, S.; YEPES, V. (2020). Impact of the R&D&I on the performance of Spanish construction companies. Advances in Civil Engineering, 2020:7835231. DOI:10.1155/2020/7835231

Descargar (PDF, 1.45MB)

 

Ignacio Javier Navarro Martínez, Premio al Ingeniero Joven 2020

Ignacio Javier Navarro Martínez, Premio Ingeniero Joven 2020
Ignacio Javier Navarro Martínez, Premio Ingeniero Joven 2020

La Junta Rectora de la Demarcación de la Comunidad Valenciana del Colegio de Ingenieros de Caminos, Canales y Puertos, ha otorgado el Premio Ingeniero Joven en su edición 2020 a Ignacio Javier Navarro Martínez, colegiado 30.550, resaltando su carácter emprendedor e innovador, así como su trayectoria profesional internacional, con intervención en obras singulares de relevancia y su extensa labor de investigación, que se refleja en los numerosos artículos que han sido publicados en revistas técnicas de prestigio internacional.

He tenido la oportunidad de dirigir, junto con el profesor José V. Martí, su tesis en el máster en ingeniería del hormigón: “Análisis de los impactos socio-económicos y de la durabilidad de las medidas de prevención de la corrosión por cloruros en estructuras de hormigón armado“, y su tesis doctoral: “Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments“, que obtuvo la máxima calificación de “Sobresaliente Cum Laude” por unanimidad. De esta tesis se publicaron siete artículos científicos de impacto internacional en revistas indexadas en el JCR.

Para mí es un orgullo dirigir el principio de la investigación y las tesis doctorales de estudiantes que, con el paso de los años, se han convertido en grandísimos profesionales. Destacan, además de Ignacio, el Premio Abertis Chile de Cristina Torres Machí, el premio Cemex y el Junior Award IALCCE a Tatiana García Segura, entre otros muchos estudiantes

¡Enhorabuena por el trabajo bien hecho!

Referencias:

  • PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845

Evaluación del impacto ambiental y social de puentes de carretera óptimos de hormigón postesado

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo se evalúa el impacto social y ambiental de puentes de carretera óptimos de hormigón postesado. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La mayoría de las definiciones de sostenibilidad incluyen tres pilares básicos: económico, ambiental y social. El aspecto económico siempre se evalúa, pero no necesariamente en el sentido de la sostenibilidad económica. Por otra parte, el aspecto ambiental se está considerando cada vez más, mientras que el pilar social apenas se ha trabajado en él. Centrándose en los pilares ambiental y social, resulta crucial el uso de metodologías que permitan una evaluación amplia de todos los aspectos y la integración de la evaluación en unos pocos indicadores que sean comprensibles. Este artículo se estructura en dos partes. En la primera parte se hace un examen de los métodos de evaluación del impacto del ciclo de vida, que permiten una evaluación amplia de los aspectos ambiental y social. En la segunda parte, se realiza una evaluación completa de la sostenibilidad ambiental y social utilizando la base de datos de ecoinvent y el método ReCiPe, para el pilar ambiental, y la base de datos SOCA y el método simple de ponderación del impacto social, para el pilar social. Esta metodología se utilizó para comparar tres puentes optimizados: dos puentes de carretera de hormigón postensado de sección en cajón con diversas características iniciales y de mantenimiento, y un puente prefabricado de hormigón pretensado. Los resultados muestran que existe una alta interrelación entre el impacto ambiental y social para cada etapa del ciclo de vida.

Abstract

Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.

Keywords

 SustainabilityLCAS-LCAsocial assessmentecoinventSOCA

Reference:

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

Descargar (PDF, 1.52MB)

Vídeos de las Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción

Hace pocos días que tuvo lugar las “Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción (Formación, I+D+i y Transferencia)”. He de decir que las jornadas fueron todo un éxito y que, afortunadamente, se pudieron grabar en streaming las conferencias principales. Os dejo a continuación ambas conferencias por el interés que despertaron. La grabación es completa, por lo que podéis avanzar o retroceder a aquellos minutos que os resulten de mayor interés. Podéis pulsar sobre la imagen de cada vídeo o directamente sobre el enlace que os he puesto. Espero que os gusten.

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=0dc5b890-36df-11ea-b29c-ddfb8fbe85af

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=68eef880-36df-11ea-b29c-ddfb8fbe85af

Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción

Los que leéis frecuentemente mi blog habéis visto como mezclo constantemente aspectos técnicos, docentes y de investigación. En este último caso, la labor de nuestro grupo de investigación es muy intensa a través del proyecto DIMALIFE. Además, nuestro equipo pertenece, de una u otra forma al Departamento de Ingeniería de la Construcción, al ICITECH y al programa de doctorado del departamento. Asimismo, participamos activamente en el Máster Universitario en Ingeniería del Hormigón.

Si tenéis curiosidad de lo que hacemos, puedes acceder a los enlaces que os he dejado. Os puede interesar las líneas de investigación de nuestro grupo: https://victoryepes.blogs.upv.es/2014/09/11/mis-lineas-de-investigacion-en-el-programa-de-doctorado-en-ingenieria-de-la-construccion/

Pues bien, os anuncio una jornada gratuita que va a tratar de todo ello, en la que van a participar, entre otros, Antonio Martínez Cutillas y José Romo Martín. Os dejo los folletos anunciadores y os animo a venir a visitarnos y a participar.

Las jornadas se retransmitirán online a través del siguiente link:

https://videoapuntes.upv.es/streaming/4ffe3ef0-aa40-11e6-871f-9161f5b643ea

El Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil (DICPIC) y el Instituto Universitario de Ciencia y Tecnología del Hormigón (ICITECH) se complacen en anunciar las “Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción (Formación, I+D+i y Transferencia)” que se celebrarán el 18 de febrero de 2020 en el Salón de Actos del Edificio 4H de la ETSI Caminos, Canales y Puertos de la Universitat Politècnica de València.

Estas jornadas reunirán a profesionales, profesores e investigadores relacionados con la formación, investigación, desarrollo, innovación y transferencia en el ámbito de la Ingeniería de la Construcción. Durante este encuentro se fomentará el contacto entre estudiantes de doctorado, másteres y grado, profesores y profesionales, así como la difusión de trabajos de investigación realizados en el Programa de Doctorado en Ingeniería de la Construcción y en el Máster Universitario en Ingeniería del Hormigón (MUIH).

Jornadas gratuitas y abiertas a todos los públicos sin necesidad de reserva previa.

Descargar (PDF, 2.52MB)

Descargar (PDF, 2.51MB)