Acaban de publicar un artículo en la revista, Geomechanics for Energy and the Environment, de la editorial Elsevier, indexada en el JCR. El presente artículo examina un estudio que combina medición en pilotes de hormigón armado, tecnologías GNSS e InSAR y simulaciones de elementos finitos para entender cómo interactúan factores como la presión, la temperatura y la humedad en la evolución de taludes colapsables.
Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Hunan University of Science and Engineering (China).
Podéis descargar el artículo de forma gratuita, hasta el 22 de julio de 2025, en la siguiente dirección: https://authors.elsevier.com/c/1lCKs8MtfNSrg1
En entornos donde los suelos de loess presentan alta susceptibilidad a deslizamientos, disponer de información precisa y temprana resulta determinante para garantizar la estabilidad de las infraestructuras y la seguridad de las comunidades. A partir de los datos de campo y de la validación numérica, se extraen conclusiones clave sobre cómo dimensionar sistemas de refuerzo, configurar umbrales de alerta temprana y optimizar el diseño de pilotes en proyectos reales. A lo largo del texto se detallan tanto la metodología empleada como las aportaciones más relevantes, la interpretación de los resultados y las líneas futuras de investigación, de modo que el profesional del sector disponga de criterios sólidos para aplicar en obra o en la elaboración de proyectos de contención y estabilización en loess.
Metodología
El estudio combina la vigilancia de campo y simulación numérica para caracterizar el comportamiento de deslizamientos en suelos de loess. Se diseñó una red de instrumentación que incluye:
- Pilotes de hormigón armado con sensores de presión y temperatura instalados a distintas profundidades (entre 2 m y 16 m). Estos sensores registran continuamente variaciones de tensión y temperatura, permitiendo asociar cambios térmicos con redistribuciones de fricción lateral entre pilote y suelo.
- Receptores GNSS de alta precisión para medir desplazamientos superficiales con cadencia diaria.
- Técnicas InSAR destinadas a generar mapas de deformación de superficie con resolución milimétrica.
- Sensores de alambre vibrante para detectar cambios en humedad y densidad del terreno, claves para evaluar la resistencia interna del suelo y su evolución ante variaciones de carga y humedad.
En paralelo, en laboratorio se realizaron ensayos geomecánicos sobre muestras de loess. Se determinaron parámetros fundamentales: cohesión, ángulo de fricción, módulo de deformación y relación de vacíos. Estos datos alimentaron un modelo tridimensional de elementos finitos de tipo termomecánico, que incorpora:
- Parámetros de resistencia al corte y rigidez del suelo, calibrados mediante comparación con los desplazamientos y tensiones reales observados en campo.
- Condiciones de contorno tomadas de las lecturas de GNSS, InSAR y sensores en pilotes, para reproducir las condiciones de carga estática y los ciclos térmicos naturales.
- Proceso de optimización iterativa, ajustando el modelo hasta que las predicciones de deformación coincidieran con los datos de monitorización (diferencia inferior al 5 % entre desplazamientos numéricos y medidos) .
Este enfoque dual—campo y simulación—garantiza que las conclusiones numéricas se basen en datos reales y que los sistemas de seguimiento puedan ser validados frente a un modelo predictivo confiable.
Aportaciones relevantes
El artículo introduce un método integral de monitorización inteligente que va más allá del registro de desplazamientos superficiales. Los aspectos más destacados, con aplicación directa para el ingeniero civil, son:
- Medición de tensiones internas en profundidad: La instalación de sensores de presión en pilotes permite identificar aumentos de carga a diferentes niveles. Los resultados mostraron que la presión tiende a incrementarse de forma monótona con la profundidad, lo que indica que los estratos inferiores soportan una mayor carga estática. Este comportamiento aporta información valiosa para dimensionar pilotes y elementos de refuerzo, pues revela en qué zonas del talud se concentran esfuerzos críticos antes de que se trasladen a la superficie.
- Indicadores térmicos de fricción lateral: Las variaciones de temperatura registradas en los pilotes resultan ser un indicador temprano de cambios en la interacción entre el hormigón y el terreno. Aumentos de temperatura intermedios de hasta 3 °C por ciclos diurnos se correlacionaron con un incremento momentáneo de fricción lateral, lo que puede retrasar o anticipar movimientos dependientes de la descompresión del terreno. Para el ingeniero, esto significa que el seguimiento térmico aporta información adicional sobre el estado crítico del pilote antes de observar movimientos visibles.
- Integración de GNSS e InSAR: Al combinar medidas GNSS (desplazamientos puntuales diarios) con mapas InSAR (cobertura continua de la superficie), se obtiene una visión conjunta de movimientos tanto profundos como superficiales. En el estudio, los desplazamientos de superficie máximos alcanzaron 26,2 mm, con velocidades de 0,11 mm/día, mientras que en profundidad se observaron desplazamientos de hasta 5,64 mm. Estos resultados permiten calibrar sistemas de alerta temprana sobre umbrales de desplazamiento en superficie que reflejen con mayor fiabilidad la evolución interna del talud.
- Validación del modelo numérico: La comparación entre las simulaciones de elementos finitos y los datos de campo mostró concordancia en las tendencias de deformación. El modelo predijo con precisión que los bloques con geometría más inclinada y menor cohesión interna sufrirían desplazamientos sustanciales (hasta 6,48 m en algunos tramos simulados), mientras que bloques de forma más estable presentaron desplazamientos medios inferiores a 0,20 m. Esta validación otorga credibilidad al modelo para anticipar magnitudes de deformación en función de propiedades geomecánicas y geometría del talud.
En conjunto, estas aportaciones proveen al ingeniero civil una base sólida para diseñar sistemas de protección y refuerzo, establecer niveles de alerta basados en parámetros internos (presión y temperatura) y optimizar diseños de pilotes según las condiciones específicas del terreno de loess.
Discusión de resultados
Los registros de presión en pilotes revelaron que a profundidades superiores a 10 m los valores oscilan entre 50 kPa y 65 kPa, mientras que en los primeros metros (2 m–5 m) se sitúan entre 5 kPa y 20 kPa. Estos gradientes de presión confirman que la mayor parte de la carga estática recae en los estratos inferiores, algo habitual en suelos colapsables. Para el ingeniero, esta información práctica implica que, al diseñar pilotes de refuerzo, debe dimensionarse la sección y longitud considerando un incremento significativo de esfuerzos por debajo de 10 m de profundidad.
Asimismo, las variaciones térmicas registradas mostraron que, durante días con escasa precipitación, las temperaturas del hormigón en pilotes oscilan en un rango de 2 °C a 3 °C en zonas intermedias. Este efecto térmico se traduce en un aumento temporal de la fricción entre el pilote y el suelo, lo que actúa como un freno temporal al movimiento. Sin embargo, tras eventos de lluvia intensa, la entrada de agua reduce la temperatura y, simultáneamente, se observa una disminución de la fricción lateral, provocando repentinamente un aumento de desplazamientos en la superficie. Para el diseño práctico, esto sugiere que los sistemas de alerta temprana deben incorporar sensores de temperatura en pilotes para correlacionar descensos térmicos con posibles incrementos de desplazamiento.
Los desplazamientos superficiales medidos mediante GNSS e InSAR confirman que los movimientos más significativos (hasta 26,2 mm) se producen después de periodos de lluvia intensa, cuando la capacidad de drenaje del loess se ve limitada y presta a la saturación parcial del estrato superior. En estos momentos, los desplazamientos profundos (hasta 5,64 mm) preceden a los superficiales, lo que indica que la evolución interna puede anticipar la inestabilidad. En la práctica, esto recomienda que el seguimiento continuo de movimientos profundos—detectables por un ligero desplazamiento en pilotes o por un ligero aumento de presión de poros—sea prioridad para emitir avisos antes de observar grandes desplazamientos en la superficie.
Desde el punto de vista de la simulación numérica, el modelo de elementos finitos calibrado con los parámetros geomecánicos del loess mostró que los desplazamientos máximos simulados en bloques con ángulos de inclinación superiores a 30° podrían alcanzar valores de hasta 6,48 m en escenarios extremos de carga gradual. En contraste, bloques con inclinación por debajo de 20° presentaron apenas 0,20 m de deformación promedio. Estos resultados empíricos permiten al ingeniero estimar rangos de deformación potenciales según la geometría del talud y decidir si es necesario instalar medidas de contención adicionales (muros de mampostería, gaviones o anclajes). Asimismo, la validación numérica asegura que, en proyectos futuros, el ingeniero pueda confiar en simulaciones previamente calibradas para evaluar la viabilidad de distintas intervenciones.
Futuras líneas de investigación
Con el objetivo de mejorar la práctica profesional, se proponen las siguientes líneas de estudio:
- Escenarios sísmicos y precipitaciones extremas: Ampliar la investigación hacia eventos sísmicos de magnitud superior a 5,0 Ritcher y lluvias prolongadas con más de 50 mm/día. Es preciso analizar la respuesta dinámica del suelo y del hormigón en pilotes, incorporando modelos viscoelásticos que reflejen el comportamiento frente a aceleraciones y ciclos de carga rápidos. Esto permitirá definir nuevos criterios de seguridad para zonas de riesgo sísmico y diseñar pilotes con mayor ductilidad o sistemas de disipación de energía.
- Control de humedad y nivel freático: Incluir sensores de humedad de alta frecuencia y piezómetros para registrar en tiempo real la evolución del nivel de agua en el subsuelo. Vincular estos datos con la variación de presión de poros y temperatura en pilotes facilitará una lectura más precisa de la dinámica agua-suelo, identificando umbrales de saturación que reduzcan drásticamente la cohesión del loess. Para la práctica, esto significa instar a la instalación de estaciones meteorológicas locales y piezómetros en proyectos en zonas colapsables.
- Algoritmos de aprendizaje automático: Desarrollar modelos que integren todos los datos multi-sensoriales (GNSS, InSAR, presión, temperatura, vibración y humedad) para detectar patrones tempranos de reactivación. Las redes neuronales profundas o las máquinas de soporte vectorial pueden clasificar con mayor antelación estados de riesgo, automatizando alertas y permitiendo intervenciones más eficientes. El ingeniero podría disponer de una herramienta que genere notificaciones automáticas al superar umbrales críticos combinados.
- Durabilidad de pilotes y fatiga térmica: Investigar la resistencia a largo plazo de los pilotes de hormigón sometidos a ciclos térmicos y mecánicos. Ensayos acelerados de fatiga térmica, por ejemplo, podrían simular 10 años de degradación en semanas de laboratorio, determinando la resistencia residual del hormigón y sus revestimientos. Estos estudios serían útiles para seleccionar aditivos o recubrimientos que impidan la aparición de fisuras por dilataciones y contracciones repetidas.
- Interacción entre tráfico e inestabilidades de talud: Analizar cómo las vibraciones generadas por tráfico rodado intenso afectan el desarrollo de grietas y concentraciones de tensión en suelos de loess. Mediante modelos acoplados vehículo-terreno, se podría determinar si reemplazar capas de refuerzo rígido por materiales con mayor capacidad disipadora de energía reduce los efectos adversos en taludes cercanos a carreteras. Esta línea resultará de utilidad para ingenieros de firmes y geotecnia que trabajen en infraestructuras viales cercanas a zonas inestables.
Conclusión
El estudio presenta una estrategia de seguimiento inteligente que combina mediciones de presión y temperatura en profundidad, datos GNSS e InSAR, y simulaciones numéricas termomecánicas para describir con detalle el comportamiento de deslizamientos en loess. Para el ingeniero civil, los hallazgos prácticos son:
- La presión en pilotes crece significativamente con la profundidad, por lo que el dimensionado debe contemplar refuerzos más robustos bajo los 10 m.
- Las variaciones térmicas en pilotes anticipan cambios de fricción lateral, recomendando el uso de sensores de temperatura para mejorar sistemas de alerta.
- Los desplazamientos profundos preceden a los superficiales tras lluvias intensas, por lo que priorizar la monitorización interna puede prevenir movimientos de gran magnitud en superficie.
- Los bloques con ángulos de inclinación superiores a 30° son más vulnerables y requieren medidas de contención adicionales, hecho que valida la simulación numérica como herramienta predictiva.
En definitiva, la combinación de datos de campo y modelización proporciona una base sólida para diseñar soluciones de refuerzo y sistemas de alerta temprana más ajustados a la realidad del terreno. Herramientas adicionales—como el seguimiento continuo de humedad, algoritmos de inteligencia artificial y estudios de fatiga térmica—podrían perfeccionar las estrategias de diseño y mantenimiento de infraestructuras en zonas de loess, favoreciendo la seguridad y la eficiencia de las intervenciones.
Referencia:
ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, DOI:10.1016/j.gete.2025.100692