Optimización por acoplamiento térmico del impacto ambiental de un puente

Nos acaban de publicar en la revista Environmental Impact Assessment Review (primer cuartil del JCR) un artículo relacionado con la optimización por acoplamiento térmico del impacto ambiental de un puente. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo del artículo es minimizar el impacto ambiental del mantenimiento de los puentes durante una vida útil de 100 años mediante el desarrollo de un modelo de optimización termomecánica dinámica tridimensional. La fiabilidad del modelo se demuestra mediante un estudio de caso, que muestra una reducción de 49,9 millones de toneladas de emisiones, lo que equivale al 1,91% de las emisiones totales de diseño, durante un período de mantenimiento de 100 años.

Los resultados de la investigación pueden servir de base para futuros estudios y proporcionar un enfoque para evaluar el impacto ambiental de los cambios de temperatura a largo plazo en las estructuras. Esto puede contribuir al desarrollo de enfoques más eficaces para mitigar la contaminación ambiental en la industria de la construcción.

La editorial permite la descarga gratuita del artículo hasta el 30 de noviembre de 2023 en la siguiente dirección: https://authors.elsevier.com/c/1hv7iiZ5tCtN6

Abstract:

Infrastructure is a crucial aspect of promoting worldwide economic integration. However, the construction of infrastructure often results in high energy consumption and substantial emissions of greenhouse gases. Over time, the environment can also cause significant damage to bridges, leading to repeated repairs and replacements that further harm the environment. This research aims to minimize the environmental impact of bridge maintenance over a 100-year lifespan. The study utilizes a three-dimensional dynamic thermo-mechanical optimization model developed through comprehensive research and interdisciplinary collaboration in various fields such as Bibliometrics, Fluid Mechanics, Structural DynamicsThermoelectricity, and Damage Mechanics. From examining single crystal structures at a microscopic level to examining system components under extreme temperatures, this study provides a system for reducing environmental pollution. The model’s reliability is shown through a case study, demonstrating a reduction of 49.9 million tonnes of emissions, equivalent to 1.91% of total design emissions, over a 100-year maintenance period. This research provides a foundation for future studies and presents an approach for evaluating the environmental impact of long-term temperature changes in structures.

Keywords:

Construction industry; Structure; Temperature; Topology optimization; Stress; Sensitivity

Reference:

ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Environmental Impact Assessment Review, 104:107316. DOI:10.1016/j.eiar.2023.107316