Resiliencia en las infraestructuras: cómo prepararnos para un futuro de incertidumbre

En nuestra vida cotidiana dependemos de una red invisible de infraestructuras que hace posible casi todo lo que hacemos: el agua que bebemos, la electricidad que ilumina nuestras casas, el transporte que nos conecta o las telecomunicaciones que nos mantienen informados. Sin embargo, basta con que una de estas piezas falle para que se produzca un efecto dominó con graves consecuencias. Un corte eléctrico prolongado puede paralizar hospitales y transportes, una rotura en la red de agua puede afectar a la higiene, la industria y la propia seguridad contra incendios, y un colapso en las telecomunicaciones puede aislar a comunidades enteras. Estas situaciones ponen de manifiesto la necesidad de ir más allá de la protección frente a fallos y centrarse en la resiliencia de los sistemas de infraestructuras.

La resiliencia de la infraestructura se define como «la capacidad de un sistema para minimizar la pérdida de rendimiento debido a una interrupción y para recuperar un nivel de rendimiento específico dentro de unos límites de tiempo y costes predefinidos y aceptables». Este concepto ha recibido mucha atención en los últimos años, en parte debido a la creciente frecuencia e intensidad de los eventos disruptivos de baja probabilidad y gran impacto, como el huracán Katrina, el tsunami de Indonesia y los atentados terroristas. La sociedad moderna depende en gran medida del funcionamiento casi continuo de sistemas de infraestructura vitales, como los de transporte, suministro de agua, alcantarillado, energía y telecomunicaciones. Estas infraestructuras están compuestas por elementos tangibles e intangibles que forman redes socioeconómicas y técnicas complejas e interdependientes. La interrupción grave de estos «salvavidas» puede tener enormes impactos negativos en las estructuras económicas y sociales de las comunidades humanas. Los conceptos de resiliencia, junto con los enfoques de protección, son fundamentales para garantizar la continuidad de la operación de la infraestructura durante y después de tales eventos. La actual urbanización mundial ha aumentado también la población que depende de estas infraestructuras, lo que subraya aún más la necesidad de resiliencia.

En ingeniería, la resiliencia se define como la capacidad de un sistema de infraestructuras para absorber el impacto de una perturbación, mantener un nivel básico de servicio y recuperarse en un tiempo y con un coste socialmente aceptables. No basta con diseñar estructuras robustas que no se caigan; también es importante que, cuando sufran un daño o interrupción de forma inevitable, puedan volver a funcionar lo antes posible. A diferencia de la fiabilidad, que mide la probabilidad de que un sistema funcione sin fallos, o de la vulnerabilidad, que estima el grado de daño probable, la resiliencia se centra en el comportamiento del sistema antes, durante y después de la crisis.

Imaginemos una red de agua urbana: si sus tuberías están bien mantenidas y cuentan con sensores de fuga, será fiable, ya que es poco probable que falle; si, a pesar de todo, se produce una rotura y existen válvulas de sectorización, equipos de reparación rápida y depósitos de reserva, será resiliente, puesto que el servicio se recuperará en poco tiempo y con costes asumibles; y si la avería afecta a un hospital o a una zona muy poblada, mostrará una alta vulnerabilidad debido al gran impacto inicial.

Resiliencia en el diseño de infraestructuras

Un sistema resiliente se caracteriza por cuatro atributos fundamentales: robustez, que es la capacidad de resistir eventos disruptivos sin que su rendimiento se vea significativamente afectado; redundancia, que implica contar con elementos o recursos alternativos que puedan suplir a los que fallen durante una interrupción; inventiva, que es la capacidad de identificar problemas, priorizar acciones, movilizar recursos y procedimientos de manera eficaz para responder y recuperarse, y rapidez, es decir, la capacidad de contener daños y restaurar el funcionamiento a niveles aceptables en el menor tiempo posible. Además, la resiliencia se manifiesta a través de cuatro dimensiones (técnica, organizativa, social y económica), subrayando su carácter multidisciplinar y su relevancia para los sistemas de infraestructura civil.

Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)

Una de las formas más gráficas de explicar la resiliencia es mediante la curva de funcionalidad, también conocida como «triángulo de resiliencia». Imaginemos una red de suministro eléctrico que opera normalmente al 100 % de su capacidad. En el momento en que ocurre un huracán, la funcionalidad del sistema cae en picado, digamos que hasta un 40 %. A partir de ese momento, comienza la recuperación. En algunos casos, la curva puede ser lineal, con una mejora progresiva hasta alcanzar de nuevo el 100 %. En otros, puede tener forma exponencial, con una recuperación inicial rápida que se ralentiza al final. También puede ser trigonométrica, comenzando la recuperación lentamente y acelerándose después. El área bajo la curva, es decir, la «superficie» del triángulo de resiliencia, representa la pérdida acumulada de servicio y, por tanto, el coste social del fallo. Esta herramienta permite a los ingenieros comparar estrategias: un sistema con redundancia puede experimentar una caída inicial menor, mientras que otro con mejores recursos de reparación puede recuperarse más rápidamente.

Curvas de resiliencia: patrones de recuperación tras un evento disruptivo

La resiliencia de las infraestructuras no es un concepto aislado de la ingeniería estructural, sino que se nutre de múltiples disciplinas. La ecología, por ejemplo, aporta la idea de que los sistemas no siempre regresan a su estado original, sino que pueden alcanzar nuevos equilibrios tras un evento disruptivo. La economía ayuda a valorar las pérdidas no solo en términos de daños materiales, sino también en costes indirectos, como la pérdida de productividad o el impacto en la actividad social. Las ciencias sociales, por su parte, nos recuerdan que las infraestructuras existen para servir a la comunidad y que el tiempo de recuperación aceptable depende de la tolerancia y las necesidades de la sociedad. La teoría de grafos, por su parte, ofrece herramientas matemáticas para analizar redes como las de agua o telecomunicaciones e identificar qué nodos son críticos y qué sucede si se eliminan de forma aleatoria (simulando un desastre natural) o intencionada (como en un ataque).

Perspectiva interdisciplinaria de la resiliencia de las infraestructuras

Las infraestructuras modernas están muy interconectadas, por lo que existe un mayor riesgo de fallos en cadena: por ejemplo, un corte de energía puede afectar al suministro de agua, a las comunicaciones y al transporte. Aunque existen acuerdos de ayuda mutua entre sistemas para apoyarse durante las interrupciones, esto no garantiza que cada sistema sea más resiliente por sí mismo. Un evento grave que afecte a toda la región podría dejar a cada servicio dependiendo únicamente de sus propios recursos. Además, si se confía demasiado en la ayuda externa, se frena el desarrollo de la resiliencia propia. Por eso, es fundamental evaluar la resiliencia de cada sistema de manera individual para que esté mejor preparado frente a fallos generalizados y situaciones imprevistas.

Los ejemplos de interdependencia entre infraestructuras ilustran bien la complejidad del problema. Imaginemos un terremoto que daña simultáneamente la red eléctrica y la red de agua potable. Las estaciones de bombeo necesitan energía para funcionar, mientras que algunas centrales térmicas requieren agua para la refrigeración. Si falla la electricidad, no habrá agua, y si no hay agua, puede peligrar la producción de electricidad. Este círculo vicioso muestra cómo una perturbación localizada puede propagarse en cascada a otros sectores, multiplicando el impacto. Por ejemplo, un fallo en las telecomunicaciones puede impedir la coordinación de la reparación de carreteras o la distribución de combustible, lo que alarga los tiempos de recuperación. Estos ejemplos subrayan la importancia de diseñar infraestructuras robustas y conscientes de sus interconexiones.

Esquema de interdependencia de infraestructuras críticas: visualiza cómo agua, energía, telecomunicaciones y transporte dependen unas de otras y de la sociedad.

Para los futuros ingenieros, la resiliencia supone un cambio de mentalidad. No se trata solo de dimensionar una estructura para soportar una carga extrema, sino de pensar en cómo responderá todo el sistema ante un fallo parcial. Supone aceptar la incertidumbre y trabajar con escenarios probabilísticos en los que se consideran eventos disruptivos, como el envejecimiento de los materiales, las sequías prolongadas o las crisis energéticas. Implica integrar la resiliencia en la gestión de activos y tomar decisiones como, por ejemplo, si es más eficaz duplicar una tubería para garantizar la redundancia o disponer de brigadas de intervención rápida que acorten los tiempos de reparación.

Traducir la resiliencia en aplicaciones prácticas para la infraestructura civil es todo un desafío debido a su complejidad y naturaleza transdisciplinaria. Las definiciones varían en función de la disciplina; es difícil medirla y muchas metodologías se centran en aspectos aislados sin tener en cuenta su interacción. Además, para integrarla en los sistemas de gestión existentes y pasar del concepto teórico a la práctica, es necesario adoptar un enfoque integral que tenga en cuenta la variabilidad de los eventos disruptivos, las dimensiones técnicas y sociales, las implicaciones económicas y las características de red del sistema.

En conclusión, la resiliencia de las infraestructuras civiles no es un lujo, sino una necesidad estratégica en un mundo marcado por el cambio climático, la creciente urbanización y las redes interdependientes. Para los estudiantes de ingeniería, representa un campo fértil en el que confluyen la técnica, la economía y la sociedad, y en el que la innovación tendrá un impacto directo en la seguridad y la calidad de vida de millones de personas. Comprender y aplicar este enfoque significa prepararse para un futuro en el que la incertidumbre será constante, pero en el que nuestra mayor fortaleza será la capacidad de adaptación.

Os paso un vídeo que puede sintetizar bien las ideas de este artículo.

Referencias:

ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.

BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.

GAY, L. F.; SINHA, S. K. (2013). Resilience of civil infrastructure systems: literature review for improved asset management. International Journal of Critical Infrastructures9(4), 330-350.

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Robustez estructural y colapso progresivo: claves para entender y proteger nuestras construcciones

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

La robustez estructural es la cualidad que permite a un edificio o puente soportar eventos inesperados —un fallo aislado, un impacto, una explosión—sin que ello provoque un colapso generalizado. Con el fin de aclarar el tema, se plantea la siguiente hipótesis: ¿qué ocurriría si un edificio perdiera de forma repentina uno de sus pilares portantes? En caso de que el diseño del edificio sea adecuado, las cargas que anteriormente transmitía dicho pilar se distribuirán de manera alternativa entre los elementos restantes, evitando así su colapso total. La capacidad de «resistir a contracorriente» ante situaciones inusuales se denomina robustez, constituyendo una línea de defensa fundamental para garantizar la seguridad de las personas y la continuidad del uso de la infraestructura.

El concepto puede resultar abstracto, pero es suficiente con considerar ejemplos dramáticos del pasado: en 1968, el colapso de una torre de viviendas en Ronan Point (Reino Unido) se originó por la explosión de una bombona de gas en un piso. Un fallo local aparentemente limitado desencadenó la caída de varias plantas, debido a la falta de mecanismos suficientes para redirigir las cargas. Por el contrario, un diseño sólido y bien fundamentado prevé esa posibilidad y mantiene la estructura del edificio en pie incluso tras el daño inicial, minimizando el número de víctimas y la magnitud del desastre.

Dentro de la robustez, se identifican diversas cualidades fundamentales. La redundancia implica la disposición de múltiples vías para garantizar la llegada de las cargas al terreno. En caso de una interrupción en una de las vías, las otras están preparadas para asumir la carga de manera inmediata. La ductilidad se define como la capacidad de los materiales —como el acero, el hormigón armado o la madera— para deformarse sin quebrarse de forma brusca. Esta «flexibilidad» les permite absorber la energía generada por impactos o terremotos, evitando así roturas instantáneas. La integridad estructural se define como la continuidad de todos los elementos conectados, de modo que las vigas, columnas y losas formen un conjunto que trabaje armónicamente y no se separe ante un esfuerzo puntual.

El colapso progresivo es un proceso en el que un fallo inicial genera otros a su alrededor, extendiéndose como una fiebre que consume toda la estructura. Analogía: el desplome de la primera ficha de dominó puede desencadenar la caída de todas las demás. En el ámbito de la ingeniería estructural, se busca evitar dicha reacción en cadena. Para ello, se implementan técnicas de «atado» o «conexión reforzada», mediante las cuales se une las vigas y columnas con armaduras continuas o refuerzos en puntos críticos. De esta manera, en caso de fallo de un elemento, el resto del sistema no se ve comprometido.

En el ámbito de la ingeniería, la incorporación de la robustez en los proyectos se aborda mediante la aplicación de diversas estrategias. Una de las metodologías más eficaces consiste en anticipar los posibles escenarios de daño, tales como impactos de vehículos, explosiones accidentales o errores de construcción. Posteriormente, se verifica mediante modelos simplificados que la estructura mantiene su estabilidad incluso cuando falta un pilar o una viga. Otra estrategia prescriptiva implica el refuerzo de elementos clave, tales como las columnas exteriores o los núcleos de las escaleras, mediante la incorporación de armaduras o perfiles metálicos de mayor sección, con el fin de actuar como «pilares de reserva» que soporten las cargas críticas.

La normativa europea, establecida en los Eurocódigos, ha establecido durante años la exigencia de que los edificios posean la capacidad de resistir sin colapsar de manera desproporcionada ante acciones accidentales. Es importante destacar que esta medida no implica la necesidad de afrontar situaciones de alto riesgo, como bombardeos o terremotos de gran intensidad. En cambio, se refiere a la capacidad del edificio para resistir eventos menos probables pero potencialmente significativos, tales como la explosión de una tubería de gas o el choque de un camión contra un pilar. Para ello, se establecen diversos niveles de severidad del daño y se implementan criterios de diseño más o menos rigurosos, en función del riesgo para las personas y el entorno.

En la práctica, estos requisitos se traducen en aspectos constructivos específicos, tales como la unión de las vigas de forjado a las vigas principales y a los muros de cerramiento, la instalación de estribos continuos en las columnas para mejorar su comportamiento ante daños localizados o la previsión de refuerzos metálicos en los puntos de unión más expuestos. Asimismo, se recomienda el empleo de materiales con suficiente ductilidad, como aceros estructurales de alta deformabilidad, y técnicas de construcción que garanticen conexiones firmes, tales como soldaduras completas, atornillados de alta resistencia o conectores especiales en estructuras de madera.

Estos principios, además de aplicarse en la obra nueva, también se emplean en el refuerzo de edificios existentes. En el proceso de rehabilitación de estructuras antiguas, con frecuencia se implementa la adición de pórticos metálicos interiores o el refuerzo de las conexiones de hormigón armado con fibras de carbono, con el propósito de incrementar su ductilidad. En el caso de los puentes, se procede a la instalación de amortiguadores o cables adicionales que permitan la redistribución de esfuerzos en caso de rotura de un tirante. El objetivo principal es la integración de elementos de seguridad en el sistema portante.

En resumen, la robustez estructural es un enfoque global que integra el diseño conceptual, el análisis de riesgos, la definición de escenarios y los detalles constructivos, con el objetivo de prevenir que un fallo puntual derive en un colapso mayor. Es imperativo comprender el colapso progresivo y aplicar medidas de redundancia, ductilidad e integridad —junto a estrategias prescriptivas y de análisis directo—. De esta manera, nuestros edificios y puentes se convierten en sistemas más seguros, preparados para afrontar lo imprevisto y reducir al máximo las consecuencias de cualquier incidente.

Tómese un momento para consultar el siguiente texto, el cual contiene información adicional relevante para su referencia. El presente informe, elaborado por la EU Science Hub, en consonancia con los Eurocódigos, aborda el tema de la resistencia estructural, con el propósito de prevenir colapsos progresivos y desproporcionados en estructuras tales como edificios y puentes. Por favor, proceda a analizar las directrices de diseño existentes en Europa y otros lugares, identificando fortalezas y debilidades en las normativas actuales. El documento propone nuevas estrategias de diseño, como métodos mejorados de fuerza de atado horizontal y consideraciones de rutas de carga alternativas, y aborda la importancia de tener en cuenta el envejecimiento, el deterioro y el diseño multi-riesgo. Se presentan ejemplos ilustrativos de aplicación para diversas estructuras.

Descargar (PDF, 3.34MB)

Glosario de términos clave

  • Robustez (estructural): Capacidad/propiedad de un sistema para evitar una variación del rendimiento estructural (rendimiento del sistema) desproporcionadamente mayor con respecto al daño correspondiente (perturbación del sistema).
  • Vulnerabilidad: Describe el grado de susceptibilidad de un sistema estructural a alcanzar un determinado nivel de consecuencias, para un evento peligroso dado.
  • Daño admisible (damage tolerance): Capacidad de un sistema estructural para soportar un determinado nivel de daño manteniendo el equilibrio con las cargas aplicadas.
  • Continuidad: Conexión continua de los miembros de un sistema estructural.
  • Ductilidad: Capacidad de un sistema estructural para soportar las cargas aplicadas disipando energía plástica.
  • Integridad: Condición de un sistema estructural para permitir la transferencia de fuerzas entre los miembros en caso de eventos accidentales.
  • Incertidumbres: Estado de información deficiente, por ejemplo, relacionada con la comprensión o el conocimiento de un evento, su consecuencia o probabilidad.
  • Probabilidad: Expresión matemática del grado de confianza en una predicción.
  • Fiabilidad (reliability): Medida probabilística de la capacidad de un sistema estructural para cumplir requisitos de diseño específicos. La fiabilidad se expresa comúnmente como el complemento de la probabilidad de falla.
  • Seguridad estructural: Calidad de un sistema estructural, referida a la resistencia, estabilidad e integridad de una estructura para soportar los peligros a los que es probable que esté expuesta durante su vida útil.
  • Riesgo: Una medida de la combinación (generalmente el producto) de la probabilidad o frecuencia de ocurrencia de un peligro definido y la magnitud de las consecuencias de la ocurrencia.
  • Redundancia: La capacidad del sistema para redistribuir entre sus miembros la carga que ya no puede ser soportada por algunos elementos dañados y/o deteriorados.
  • Peligro: Amenaza excepcionalmente inusual y severa, por ejemplo, una posible acción anormal o influencia ambiental, resistencia o rigidez insuficiente, o desviación perjudicial excesiva de las dimensiones previstas.
  • Escenario peligroso: Serie de situaciones, transitorias en el tiempo, que un sistema podría experimentar y que pueden poner en peligro el propio sistema, a las personas y al medio ambiente.
  • Consecuencias del fallo: Los resultados o impactos de un fallo estructural, que pueden ser directos (daño a elementos afectados directamente) o indirectos (fallo parcial o total del sistema subsiguiente).
  • Análisis por presión-impulso (pressure–impulse analysis): Método utilizado para evaluar el rendimiento y el daño de elementos estructurales individuales bajo carga dinámica, definido por curvas iso-daño que relacionan la presión y el impulso.
  • Capacidad de diseño (capacity design): Un principio de diseño sísmico que establece una jerarquía de resistencias de los miembros para garantizar que las rótulas plásticas se formen en ubicaciones deseadas, típicamente en las vigas en lugar de en las columnas (regla columna débil-viga fuerte – SCWB).
  • Factor de robustez R(𝜌, Δ): Un factor propuesto para cuantificar la robustez estructural relacionando el indicador de rendimiento residual (𝜌) con el índice de daño (Δ), a menudo con un parámetro de forma (𝛼).
  • Atados (ties): Elementos o disposiciones utilizados en el diseño estructural para proporcionar resistencia a la tracción y mejorar la robustez, especialmente en caso de pérdida de un elemento vertical de soporte de carga. Pueden ser horizontales o verticales.

Referencias:

MAKOOND, N.; SETIAWAN, A.; BUITRAGO, M., ADAM, J.M. (2024). Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). DOI:10.1038/s41586-024-07268-5

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

La resiliencia de las infraestructuras

Figura 1. https://www.un.org/sustainabledevelopment/es/2015/09/infraestructura-innovacion-e-industrias-inclusivas-claves-para-el-desarrollo/

La resiliencia es un concepto que viene del mundo de la psicología y representa la capacidad para adaptarse de forma positiva frente a situaciones adversas. Proviene del latín resilio, “volver atrás, volver de un salto, resaltar, rebotar”. En el campo de la mecánica, la resiliencia sería la capacidad de un material para recuperar su forma inicial después de haber sido deformado por una fuerza. En la ecología, un sistema es resiliente si puede tolerar una perturbación sin colapsar a un estado completamente distinto, controlado por otro conjunto de procesos. En un entorno tecnológico, este término se relaciona con la capacidad de un sistema de soportar y recuperarse ante desastres y perturbaciones. En este artículo vamos a indagar en el concepto de resiliencia de las infraestructuras.

Así, dentro de los objetivos de desarrollo sostenible de Naciones Unidas (Figura 1), encontramos el Objetivo 9: Construir infraestructuras resilientes, provomer la industrialización sostenible y fomentar la innovación. En efecto, las infraestructuras deben hacer frente al crecimiento de la población, pero también a los crecientes peligros físicos (cinéticos) como el terrorismo, o los asociados al clima extremo y los desastres naturales. La frecuencia y gravedad de estos eventos extremos se prevén crecientes, y, por tanto, es más que previsible un aumento en los costes e impacto humano. Además, debido a la cada vez más informatización y digitalización de las infraestructuras, el riesgo de ataques informáticos a las infraestructuras es más que evidente.

La resiliencia puede asociarse con cuatro atributos: robustez, que es la capacidad para resistir un evento extremo sin que el fracaso en la funcionalidad sea completo; rapidez, que sería la capacidad de recuperarse de forma eficiente y efectiva; la redundancia, que sería la reserva de componentes o de sistemas estructurales sustitutivos; y el ingenio, que sería la eficiencia en la identificación de problemas, priorizando soluciones y movilizando recursos para su solución (Bruneau et al., 2003).

Matemáticamente, se puede evaluar la resiliencia integrando la curva de funcionalidad a lo largo del tiempo (ver Figura 2).

donde Q(t) es la funcionalidad; t0 es el momento en el que ocurre el evento extremo y Tr es el horizonte hasta donde se estudia la funcionalidad.

Figura 2. Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)

En la Figura 2 se pueden observar los tres estados correspondientes con la funcionalidad. En la situación de fiabilidad, la infraestructura se encuentra con la funcionalidad de referencia, previo al evento extremo. La situación de recuperación comienza tras la ocurrencia del evento extremo, con una pérdida de funcionalidad dependiente de la robustez de la infraestructura, y con una recuperación que depende de los esfuerzos realizados en la reparación, que puede ser rápida o lenta en función del ingenio o la creatividad en las soluciones propuestas, así como de la redundancia de los sistemas previstos. Por último, la situación recuperada es la que ocurre cuando la funcionalidad vuelve a ser la de referencia.

Se comprueba en la Figura 2 cómo una infraestructura pasa de una funcionalidad de referencia a una residual tras el evento extremo. Tras el evento, puede darse una demora en la recuperación de la funcionalidad debido a las tareas de inspección, rediseño, financiación, contratación, permisos, etc.). La recuperación completa de la funcionalidad depende de la forma en la que se han abordado las tareas de reparación. Es fácil verificar que la resiliencia se puede calcular integrando la curva de recuperación de la funcionalidad desde la ocurrencia del evento extremo hasta la completa recuperación, dividiendo dicho valor por el tiempo empleado en dicha recuperación.

Este modelo simplificado permite establecer las pautas para mejorar la resiliencia de una infraestructura:

a) Incrementando la robustez de la infraestructura, es decir, maximizar su funcionalidad residual tras un evento extremo.

b) Acelerando las actividades de recuperación de la funcionalidad de la infraestructura.

En ambos casos, es necesario concebir la infraestructura desde el principio con diseños robustos, con sistemas redundantes y con una previsión de las tareas de reparación necesarias.

Con todo, la capacidad de recuperación comprende cuatro dimensiones interrelacionadas: técnica, organizativa, social y económica (Bruneau et al., 2003). La dimensión técnica de la resiliencia se refiere a la capacidad de los sistemas físicos (incluidos los componentes, sus interconexiones e interacciones, y los sistemas enteros) para funcionar a niveles aceptables o deseables cuando están sujetos a los eventos extremos. La dimensión organizativa de la resiliencia se refiere a la capacidad de las organizaciones que gestionan infraestructuras críticas y tienen la responsabilidad de tomar decisiones y adoptar medidas que contribuyan a lograr la resiliencia descrita anteriormente, es decir, que ayuden a lograr una mayor solidez, redundancia, ingenio y rapidez. La dimensión social de la resiliencia consiste en medidas específicamente diseñadas para disminuir los efectos de los eventos extremos por parte de la población debido a la pérdida de infraestructuras críticas. Análogamente, la dimensión económica de la resiliencia se refiere a la capacidad de reducir tanto las pérdidas directas e indirectas de los eventos extremos.

El problema de estas cuatro dimensiones se pueden sumar de forma homogénea, con interrelaciones entre ellas. El reto consiste en cuantificar y medir la resiliencia en todas sus dimensiones, así como sus interrelaciones. Se trata de un problema de investigación de gran trascendencia y complejidad, que afecta al ciclo de vida de las infraestructuras desde el inicio de la planificación (Salas y Yepes, 2020).

Referencias:

ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.

BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.