Proceso analítico en red para valorar la sostenibilidad de puentes en ambientes marinos

Durante los días 11 a 12 de julio de 2022 tuvo lugar el International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI/SUSI 2022. La reunión permitió el intercambio de ideas y la interacción entre investigadores, diseñadores y académicos de la comunidad para compartir los avances en los campos científicos relacionados con los temas de la conferencia. Todas las ponencias de la conferencia se archivan en la biblioteca electrónica del Instituto Wessex (www.witpress.com/elibrary), donde están disponibles de forma fácil y permanente en formato de acceso abierto para la comunidad internacional.

Dentro de este congreso, nuestro grupo de investigación presentó un trabajo de investigación sobre la aplicación del Proceso Analítico en Red (ANP) para valorar la sostenibilidad de puentes en ambientes marinos. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Os dejo la comunicación completa (está en abierto) por si os resultara de interés.

Referencia:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). Group Analytic Network Process for the sustainability assessment of bridges nearshore. WIT Transactions on The Built Environment, 209: 143-154. DOI:10.2495/HPSU220131. ISSN 1743-3509 (on-line)

Descargar (PDF, 449KB)

Efecto del hielo y las sales fundentes sobre el hormigón

Figura 1. Ejemplo de acción hielo-deshielo junto con sales fundentes. https://www.interempresas.net/ObrasPublicas/Articulos/300170-Requisitos-revestimientos-protectores-larga-durabilidad-empleo-estructuras-hormigon.html

Cuando entramos en invierno, la bajada de temperaturas trae no solo ciclos de hielo y deshielo, sino que también es muy común el uso de sales fundentes para rebajar el punto de congelación del agua o de fundir el hielo si éste se ha formado. Echar sal sobre pavimentos, aceras o calles es habitual con frío y nevadas, pero tiene ciertos efectos perversos que deberíamos analizar.

En un país como España, donde el 18% de la superficie se encuentra a una altitud superior a 1000 m, y donde la altura media geográfica es de unos 660 m, hace que la posibilidad de fenómenos como las nevadas y heladas sean frecuentes. Estos efectos, por ejemplo, se dejan sentir fuertemente en la red de carreteras, pero también en las estructuras y los paramentos de hormigón. En este artículo nos vamos a centrar en los efectos del hielo y de las sales fundentes sobre el hormigón. En otros países, como es el caso del Reino Unido, en un estudio realizado en 1997, indicó que el 10% de todas las estructuras de hormigón armado se han visto afectadas por el ataque hielo-deshielo.

Por cierto, no vamos a hablar aquí sobre el efecto de las temperaturas en invierno en el hormigonado. No olvidemos que se suspenderá el vertido de hormigón siempre que se prevea que dentro de las 48 horas siguientes puede descender la temperatura ambiente por debajo de los 0ºC. Este tema, de gran trascendencia, se tratará en otro artículo.

El agua aumenta su volumen aproximadamente en un 9% cuando pasa de estado líquido a sólido. Como podemos ver en algunos artículos, se trata de una rareza más del líquido elemento, pues lo normal es que las sustancias se contraigan al enfriarse y se dilaten al calentarse. Esta peculiaridad ha facilitado la evolución de la vida en nuestro planeta, tal y como la conocemos. Sin embargo, cuando de lo que hablamos es de hormigón, estos ciclos de hielo y deshielo son perjudiciales. En efecto, los poros saturados, al congelarse, se rompen de forma explosiva, pudiendo provocar desconchados en el hormigón. Sin embargo, con la red capilar del hormigón o si existen fisuras, los daños pueden ser internos, pues estas fisuras crecen con el aumento de volumen provocado por el hielo.

La resistencia del hormigón a la acción del hielo depende de varios factores como son la edad del hormigón, su composición, el tipo de árido, el tamaño y distribución de los poros o la relación de enfriamiento y secado entre ciclos de hielo-deshielo. La resistencia del hormigón frente a este ataque se evalúa con la norma UNE-CENT/TS 12390-9.

El hielo se puede formar de varias formas: por congelación de la humedad existente en la superficie, por la condensación y enfriamiento del vapor de agua atmosférica (niebla y escarcha), por congelación del agua que cae sobre la superficie, por precipitación de agua en sobrefusión o por la nieve caída y no transformada.

Por otra parte, el uso de sales fundentes sobre la superficie helada del hormigón es un proceso endotérmico que provoca una caída de la temperatura superficial mientras se derrite el hielo. Es el conocido fenómeno de descenso crioscópico o depresión del punto de fusión. La velocidad de enfriamiento puede ser de hasta 14ºC por minuto, lo que provoca un choque térmico en la superficie del hormigón. Por este efecto, se forma un gradiente de temperaturas entre el exterior y el interior del hormigón que provoca un estado de tensiones internas que es capaz de producir fisuras en las capas exteriores del hormigón.

A este efecto físico hay que sumar, en el caso del hormigón armado, la presencia de cantidades suficientes de iones de cloruro disueltos que produce la corrosión del acero, incluso en condiciones altamente alcalinas. Esto genera, tal y como vemos en la Figura 2, picaduras de corrosión en puntos localizados de las armaduras donde la capa pasiva original es más débil, debido principalmente a la formación de sales de ácido clorhídico. Este efecto químico de determinadas sales fundentes es similar a las condiciones de durabilidad de las estructuras en ambientes marinos, de la que ya hemos hablado varias veces en este blog. Afortunadamente, existen alternativas a la sal que deberían tenerse muy en cuenta para evitar los impactos negativos, especialmente en estructuras como puentes.

Figura 2. Picaduras típicas provocadas por la presencia de cloruros en el hormigón. https://www.obrasurbanas.es/requisitos-de-los-revestimientos-protectores-de-larga-durabilidad-y-su-empleo-en-estructuras-de-hormigon/

Os dejo a continuación un documento técnico sobre el hormigón sometido a ciclos hielo-deshielo que espero sea de vuestro interés.

Descargar (PDF, 235KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aportación a la toma de decisión multricriterio desde la teoría neutrosófica

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer decil del JCR. En este caso hemos aplicado la teoría neutrosófica a la toma de decisión multicriterio. La nueva propuesta se ha aplicado al problema del proyecto más sostenible para un un tablero de puente de hormigón pretensado situado en una región costera. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Tras el reciente establecimiento de los Objetivos de Desarrollo Sostenible y de la Agenda 2030, el diseño sostenible de productos en general, y de infraestructuras en particular, surge como un campo desafiante para el desarrollo y la aplicación de herramientas de toma de decisiones multicriterio. Los problemas de decisión relacionados con la sostenibilidad suelen implicar, por definición, una gran variedad en cuanto a número y naturaleza de criterios conflictivos, lo que nos sitúa en el límite de la aplicabilidad de las herramientas convencionales de toma de decisiones multicriterio. Cuanto mayor sea el número de criterios y más complejas sean las relaciones existentes entre ellos en un problema de decisión, menos precisos y seguros serán los juicios requeridos por los métodos habituales, como el proceso de jerarquía analítica (AHP). El presente trabajo propone una metodología de finalización del AHP neutrosófico para reducir el número de juicios que debe emitir el decisor. Esto aumenta la consistencia de sus respuestas, a la vez que tiene en cuenta las incertidumbres asociadas a la borrosidad del pensamiento humano. El método se aplica a un problema de diseño sostenible, dando como resultado unas estimaciones de pesos que permiten reducir hasta un 22% las comparaciones requeridas convencionalmente, con una precisión media inferior al 10% entre las estimaciones y los pesos resultantes de una matriz AHP completada convencionalmente, y un error estándar medio de la raíz inferior al 15%.

Abstract:

After the recent establishment of the Sustainable Development Goals and the Agenda 2030, the sustainable design of products in general and infrastructures in particular emerge as a challenging field for the development and application of multicriteria decision-making tools. Sustainability-related decision problems usually involve, by definition, a wide variety in number and nature of conflicting criteria, thus pushing the limits of conventional multicriteria decision-making tools practices. The greater the number of criteria and the more complex the relations existing between them in a decisional problem, the less accurate and certain are the judgments required by usual methods, such as the analytic hierarchy process (AHP). The present paper proposes a neutrosophic AHP completion methodology to reduce the number of judgments required to be emitted by the decision maker. This increases the consistency of their responses, while accounting for uncertainties associated to the fuzziness of human thinking. The method is applied to a sustainable-design problem, resulting in weight estimations that allow for a reduction of up to 22% of the conventionally required comparisons, with an average accuracy below 10% between estimates and the weights resulting from a conventionally completed AHP matrix, and a root mean standard error below 15%.

Keywords:

Multicriteria decision-making tools; analytic hierarchy process; DEMATEL; neutrosophic logic; fuzzy decision making; sustainable design.

Referencia:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

Descargar (PDF, 568KB)

 

 

Lógica neutrosófica aplicada al análisis de la sostenibilidad de puentes en ambientes marinos

Acaban de publicarnos un artículo en la revista Structure and Infrastructure Engineering (revista indexada en el JCR) sobre la aplicación de la lógica neutrosófica (una generalización de la lógica difusa y la lógica intuicionista) al diseño y mantenimiento de puentes en ambiente marino. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La metodología propuesta utiliza la lógica neutrosófica para obtener los pesos en un Proceso Analítico Jerárquico (AHP) que considerar la subjetividad de los expertos en el proceso de toma de decisión. Se ha aplicado al diseño sostenible de puentes y su mantenimiento considerando simultáneamente las tres dimensiones de la sostenibilidad.

El artículo se puede descargar gratuitamente en el siguiente enlace:

https://www.tandfonline.com/eprint/2KZDAHNK4BPJKPSY4XSF/full?target=10.1080/15732479.2019.1676791

ABSTRACT:

Essential infrastructures such as bridges are designed to provide a long-lasting and intergenerational functionality. In those cases, sustainability becomes of paramount importance when the infrastructure is exposed to aggressive environments, which can jeopardise their durability and lead to significant maintenance demands. The assessment of sustainability is however often complex and uncertain. The present study assesses the sustainability performance of 16 alternative designs of a concrete bridge deck in a coastal environment on the basis of a neutrosophic group analytic hierarchy process (AHP). The use of neutrosophic logic in the field of multi-criteria decision-making, as a generalisation of the widely used fuzzy logic, allows for a proper capture of the vagueness and uncertainties of the judgements emitted by the decision-makers. TOPSIS technique is then used to aggregate the different sustainability criteria. From the results, it is derived that only the simultaneous consideration of the economic, environmental and social life cycle impacts of a design shall lead to adequate sustainable designs. Choices made based on the optimality of a design in only some of the sustainability pillars will lead to erroneous conclusions. The use of concrete with silica fume has resulted in a sustainability performance of 46.3% better than conventional concrete designs.

.
.
REFERENCIA:
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

Últimas investigaciones sobre mantenimiento de puentes en ambiente marino

https://es.wikipedia.org/wiki/Costas_bonaerenses

Dentro de nuestro grupo de investigación, y dentro del proyecto DIMALIFE, se está ultimando la tesis doctoral de Ignacio J. Navarro sobre la evaluación del ciclo de vida aplicada al diseño sostenible de puentes pretensados en ambiente marino. Esta tesis, cuya lectura está programada para este mes de noviembre, la he codirigido con el profesor José V. Martí.

Por su interés, voy a sintetizar de forma muy breve las principales contribuciones de la tesis y las principales referencias de los artículos científicos publicados al respecto, por si os resultan útiles.

  • En el artículo [1] se realizó un análisis de los costes del ciclo de vida asociados a distintos diseños para tableros de puente en ambiente marino. Los impactos de la fase de mantenimiento en este tipo de ambientes pueden suponer más del 50% de los costes totales del ciclo de vida. Los diseños basados en tratamientos superficiales hidrófugos, adición de humo de sílice, o reducciones significativas de la relación agua/cemento proporcionan reducciones de los costes del ciclo de vida superiores al 45% respecto al diseño real tomado como referencia en el trabajo.
  • En el artículo [2] se proponen indicadores sociales aplicados a puentes, y se propone una metodología adaptada a las normas ISO ambientales para evaluar el impacto social a lo largo del ciclo de vida de una infraestructura. Se analizan los impactos sociales a lo largo del ciclo de vida de un puente en ambiente marino, derivados de su construcción y su mantenimiento. Además, en el artículo se optimiza el mantenimiento para maximizar el beneficio social.
  • En el artículo [3] se analizan 15 diseños alternativos de un tablero de puente en ambiente marino, y de sus impactos ambientales a lo largo de su ciclo de vida. Los impactos ambientales se evalúan atendiendo a la metodología Ecoindicador 99. En el trabajo se comprueba que los impactos ambientales durante la fase de mantenimiento son muy significativos. Además, la optimización del mantenimiento se revela fundamental para reducir impactos a lo largo del ciclo de vida.
  • En el artículo [4] se ha llevado a cabo la optimización del mantenimiento para distintos diseños alternativos en puentes en ambientes marinos considerando criterios ambientales y económicos. La optimización se ha llevado a cabo considerando criterios de fiabilidad estructural. Los diseños con hormigones con humo de sílice han resultado en el mejor comportamiento en términos económicos, con una reducción de costes de ciclo de vida del 76% respecto a un diseño con hormigón convencional. En lo ambiental, el uso de tratamientos superficiales hidrófugos ha dado lugar a una reducción de los impactos del ciclo de vida del puente de referencia del 82,8%.
  • En el artículo [5] se ha revisado cómo se evalúa la sostenibilidad en las infraestructuras, a la vista de la formulación de los Objetivos de Desarrollo Sostenible establecidos para 2030. Se ha detectado un importante déficit metodológico en la evaluación de la sostenibilidad de las infraestructuras.
  • Por último, en el artículo [6] se ha aplicado la lógica neutrosófica (una generalización de la lógica difusa y la lógica intuicionista) para obtener los pesos mediante la metodología AHP para considerar la subjetividad de los expertos en el proceso de toma de decisión. Se ha aplicado al diseño sostenible de puentes y su mantenimiento. Se comprueba que el diseño sostenible requiere la consideración simultánea de las tres dimensiones de la sostenibilidad.

Con todo, aún se encuentran en fase de redacción y envío un par de artículos científicos que complementan la tesis. En cuanto tengamos más noticias, os avisaré de lo que vamos haciendo. Os dejo, de momento, las referencias que he utilizado.

Referencias:

  1. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  2. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  3. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  4. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, DOI: 10.1080/15732479.2019.1676791

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Es el agua de mar agresiva para el hormigón?

http://www.ohlinnovacion.com/soluciones-tecnologicas-innovadoras/cubipod/

La gran cantidad de obras marítimas que se realizan han obligado a realizar numerosos estudios sobre el comportamiento de los hormigones sometidos a la acción del agua del mar. El hormigón, como material heterogéneo que es, presenta propiedades que varían de las características de sus componentes, de sus cantidades, de la forma de poner dicho hormigón en obra, del curado y conservación, del medio donde va a estar trabajando, entre otras.

En efecto, el agua de mar provoca un proceso muy complejo sobre el hormigón en el que intervienen gran número de parámetros mecánicos, físicos, químicos, biológicos y atmosféricos. Sin embargo, la agresividad química de los componentes del agua marina sobre los productos de hidratación del cemento, en especial el hidróxido de magnesio (Mg(OH)2) y el sulfato cálcico (CaSO4), provocan expansiones debidas a la reacción álcali-árido, si hay árido reactivo, a la presión de cristalización de sales en el hormigón, a la acción del hielo en climas fríos, a la corrosión de las armaduras y a la erosión física debida al oleaje. Estas acciones aumentan la permeabilidad del hormigón, lo que retroalimenta el proceso. Son los iones sulfato del interior de la matriz los que reaccionan con el monosulfatoaluminato produciendo estringita, que es la responsable de la expansión y la rotura. Con todo, el agua de mar es menos agresiva para el hormigón que cada una de las soluciones que la componen individualmente debido a que el comportamiento expansivo asociado con formación de estringita está inhibido por la presencia de cloruros y facilita su solubilidad. Además, el CO2 disuelto en el agua carbonata gradualmente al hormigón, formando una capa superficial de carbonato cálcico que actúa como protector frente al ataque del hidróxido de magnesio y del sulfato cálcico los cuales terminan colmatando los poros restantes.

Lo anteriormente expuesto indica que, en un hormigón de razonable calidad, no suele ser un serio problema el ataque químico por el agua de mar. El parámetro esencial que determina el buen comportamiento de un hormigón es su compacidad y la morfología de sus poros. Por tanto, aunque el agua de mar podría considerarse como poco agresiva respecto de los hormigones, el ambiente marino, por sí mismo, resulta fuertemente agresivo. En efecto, el ataque químico del agua de mar depende de si el hormigón se encuentra sumergido total o parcialmente. Si está totalmente sumergido, tienen lugar fundamentalmente los procesos químicos. En la zona de oscilación, actúan los ataques químicos con otras acciones físicas como cristalizaciones de sales, heladas, etc. En la zona no sumergida, pero cercana al agua, ésta sube por capilaridad y arrastra sales que pueden cristalizar dando lugar a expansiones. Además, los cloruros del agua marina (MgCl2) solubilizan el hidróxido de calcio (Ca(OH)2) (portlandita) que se ha formado durante el fraguado y endurecimiento del cemento, formando cloruro de calcio e hidróxido de magnesio.

http://blog.hidrodemolicion.com/2013/02/corrosion-del-hormigon-en-ambiente.html

El tema se complica cuando tratamos con hormigón armado. Efectivamente, los cloruros (incluso los bromuros) presentes en el agua marina atacan a las armaduras. Los iones cloruro penetran por difusión por los poros del hormigón y llegan a las armaduras, donde forman un electrolito conductor que rompe su capa pasivante y se produce la oxidación llamada de “picadura”. Es por ello, que en las estructuras de hormigón armado situadas en ambiente marino, resulta fundamental respetar los recubrimientos recomendados para evitar la corrosión descrita.

Os dejo a continuación una guía técnica de IECA donde se describe con mayor detalle el comportamiento del hormigón en ambiente marino.

Descargar (PDF, 4.78MB)

Optimización multiobjetivo basada en fiabilidad del ciclo de vida de un puente en cajón postesado

Fuente: http://www.freyssinet.es/wp/?cat=3

Os presentamos un artículo, que se ha editado en formato abierto, donde se ha realizado la optimización a lo largo de su ciclo de vida de un puente en cajón postesado basándose en fiabilidad. Para ilustrar la metodología, se ha utilizado como ejemplo un puente situado en una zona costera y, por tanto, sometido a la corrosión por ambiente marino. Se ha optimizado el puente con múltiples objetivos simultáneos: el coste, las emisiones totales de CO₂ (incluyendo la recarbonatación), el inicio de la propagación de la corrosión y la seguridad. Primero se ha construido una frontera de Pareto con todas las soluciones óptimas con los múltiples objetivos y luego se ha estudiado el mantenimiento del puente, optimizando este mantenimiento atendiendo a criterios económicos, sociales y ambientales. Este artículo se enmarca dentro del proyecto de investigación BRIDLIFE. Espero que os sea de interés el artículo, que lo podéis descargar gratuitamente y compartir sin problemas (open-access).

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

 

Descargar (PDF, 1.23MB)