Pavimento continuo de hormigón armado para carreteras

Figura 1. Colocación de armadura en un pavimento continuo de hormigón armado.

El Pavimento Continuo de Hormigón Armado (PCHA) no requiere juntas transversales de contracción. Básicamente, se trata de un pavimento de hormigón armado con juntas, pero con armadura suficiente para que la distancia sea infinita. Cuando se ejecuta adecuadamente, este pavimento requiere una conservación mínima. Los PCHA buscan proporcionar superficies cómodas y sin interrupciones. A través del cálculo de cargas, retracción y cambios de temperatura, se puede anticipar la resistencia del pavimento y controlar su tendencia a agrietarse, como en cualquier otra estructura de hormigón armado. Las ventajas de este tipo de pavimento son su seguridad, su costo y su capacidad para ser compatible con pavimentos existentes de mezcla bituminosa o con superficies de hormigón en mal estado, pues no requieren su eliminación previa.

La eliminación de juntas transversales se realiza a costa de aumentar la cuantía de la armadura longitudinal de acero de alto límite elástico a valores superiores a 10 kg/m². La eliminación de las juntas transversales permite reducir el espesor de la capa de hormigón y amplía su campo de aplicación, aunque su costo inicial elevado los hace más apropiados para su uso en firmes que soporten altos niveles de tráfico pesado, especialmente en autopistas y carreteras principales.

Inicialmente, estos pavimentos se utilizaban principalmente en firmes de nueva construcción. Sin embargo, en los últimos años también se han empleado como refuerzo de firmes ya existentes, tanto rígidos como flexibles, y en la reconstrucción de carriles para vehículos pesados en autopistas. Los pavimentos de hormigón armado continuo también se emplean en pistas de aterrizaje y despegue de aeropuertos, como en el aeropuerto de Narita (Tokio) y en la base francesa de Lorient-Lann-Bihoué. Además, se usan en glorietas, túneles, plataformas industriales y en carreteras donde se espera un asentamiento diferencial, ya que la corta distancia entre las grietas del pavimento permite que se divida en pseudolosas de pequeña longitud, lo que facilita su adaptación a los movimientos del terreno de base.

Figura 2. Sección de un Pavimento Continuo de Hormigón Armado (PCHA)

La utilización del PCHA comenzó en Estados Unidos en 1938, en autopistas con tráfico pesado, pero pasó más de una década hasta que se empezó a experimentar su uso en Europa. Bélgica fue el primer país en aplicarlo en tramos experimentales y en utilizarlo comúnmente en autopistas y carreteras importantes. En 1963, se realizaron pruebas experimentales en la N-II, cerca de Madrid, y se construyeron 43 km en la autopista Oviedo-Gijón-Avilés en 1975. A partir de 1990, se construyeron algunos tramos en la autopista del Cantábrico. Aunque su empleo en España es limitado, se dispone de una técnica madura y fiable para su desarrollo.

Debido a la alta cantidad de armadura principal que poseen en dirección longitudinal (entre 0,6% y 0,7%), los PCHA tienden a desarrollar fisuras transversales de manera natural en intervalos aleatorios pequeños (generalmente de 0,8 a 2,0 m). La función principal de la armadura es limitar la fisuración por retracción y temperatura, y la secundaria es absorber las tracciones estructurales. La armadura transversal, que representa del 0,05% al 0,10%, actúa como soporte para las barras longitudinales y puede ser prescindible. Según el PG-3, los solapes deberían ser menores del 20% del total.

Generalmente, se deja una distancia de aproximadamente 15 cm entre las barras longitudinales para facilitar el vertido del hormigón entre ellas. Por su parte, las armaduras transversales se ubican como soporte de las barras longitudinales y para mantener su posición relativa. No obstante, en los últimos años se ha popularizado el uso de equipos con guías para colocar las barras longitudinales en su posición final durante el vertido del hormigón, lo que permite prescindir de las armaduras transversales.

La cantidad de armadura longitudinal necesaria en un PCHA depende de varios factores, incluyendo el límite elástico del acero y la resistencia característica a flexo-tracción del hormigón. En el caso de hormigones HP-4,5 (4,5 MPa), esta cantidad suele estar en valores entre el 0,65 % y 0,7 %. Generalmente, se suelen emplear barras corrugadas de alto límite elástico (510-620 MPa) como armadura en este tipo de pavimentaciones.

La distancia entre las fisuras y su apertura son inversamente proporcionales a la cantidad de acero dispuesta. Según datos empíricos, la distancia deseable entre fisuras está entre 1 y 3 m, siendo lo óptimo entre 1,5 y 2 m. La apertura de las fisuras debe ser inferior a 0,5 mm. Además, es importante que la distribución de las fisuras sea homogénea para asegurar la transferencia de cargas a través de ellas sin desniveles ni degradación bajo el tráfico. Las fisuras deben estabilizarse a los 4 o 5 años. Para lograr lo anterior, es necesario seguir las indicaciones previas en cuanto a la cantidad de acero, la separación óptima de las barras, el porcentaje de solapes, entre otros factores.

En la historia temprana del uso del acero en PCHA, se solía colocar la armadura en el tercio superior de la losa para mantener cerradas las fisuras en esa zona y para que la armadura actuara como “armadura de piel” y resistiera los desprendimientos del hormigón debidos al tráfico. Sin embargo, con la evolución de la técnica, se ha descubierto que es preferible colocar la armadura a mitad del espesor. Esto no solo reduce el riesgo de corrosión, sino que también mejora la regularidad superficial del pavimento al evitar las ligeras ondulaciones causadas por la “reflexión” de la armadura en la superficie.

Figura 3. Esquema de un Pavimento Continuo de Hormigón Armado (PCHA)

La técnica resulta poco competitiva debido al elevado costo del acero, pero es posible reducir su cuantía a casi la mitad mediante la sustitución de las barras por bandas corrugadas de acero de muy alto límite elástico. Estas bandas tienen una sección transversal de 2 x 40 mm², por ejemplo, y se suministran en bobinas desenrollables. Aunque su costo de construcción es más elevado que el de los pavimentos de hormigón simple con juntas, los PCHA presentan la ventaja de requerir poco mantenimiento y tener una vida útil más larga que otros tipos de pavimentos si se ejecutan correctamente. No obstante, debido a su elevado costo, no suele utilizarse este tipo de pavimento, salvo casos muy especiales de tráfico muy pesado, especialmente si se trata de refuerzos.

Os dejo una presentación de IECA sobre este tipo de pavimentos.

Descargar (PDF, 2.21MB)

Algunas organizaciones promotoras del empleo del cemento han editado publicaciones explicando las ventajas. Os dejo un vídeo explicativo de IECA donde se explica cómo se construye este pavimento. Espero que os guste.

Otro vídeo sobre el mismo tema es el siguiente:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón en masa con juntas para carreteras

Figura 1. Estructura tipo de un pavimento rígido

Existen varios tipos de pavimentos de hormigón, que se clasifican en función de la existencia o no de armaduras y de la disposición de las juntas (Figura 1). Los pavimentos de hormigón en masa o de hormigón armado con juntas, y los pavimentos continuos de hormigón armado, son los más comunes en carreteras, mientras que los pavimentos de hormigón pretensado, los de hormigón armado con fibras, los de hormigón compactado con rodillo, de hormigón poroso, y los de elementos prefabricados (losas o adoquines) son menos frecuentes.

A continuación, se detallan los pavimentos de hormigón en masa con juntas, los cuales se consideran los más económicos y sencillos de construir (Figura 2). Estos pavimentos son usuales en diversas categorías de tráfico, soportando un promedio de hasta 2.000 vehículos pesados por carril y día. El control de la fisuración se logra mediante la inclusión de juntas, ya sean estas longitudinales o transversales, y pueden cumplir diferentes funciones como juntas de construcción, de contracción o de dilatación, dependiendo de su diseño.

Figura 2. Pavimento de hormigón en masa con juntas.

La fisuración se controla dividiendo al pavimento en losas con una separación entre juntas transversales de 3,5 a 6,0 m, que depende, entre otros factores, del tipo de base, el espesor y el coeficiente de expansión térmica (Figura 3). La separación entre juntas en una losa está estrechamente relacionada con su espesor. Si no hay grandes gradientes de temperatura, la distancia entre las juntas no debería exceder 25-30 veces el espesor de la losa. Si hay gradientes importantes de temperatura, la separación entre juntas debe reducirse a 15-20 veces el espesor de la losa. Se recomienda colocar las juntas a distancias inferiores a 5 m, y si no hay pasadores, no deben superar los 4 m. Como regla general, las losas deben ser rectangulares, y la relación entre sus lados no debe ser superior a 1,5. En calzadas con un ancho mayor de 5 m, se deben disponer juntas longitudinales.

Figura 3. Esquema de un pavimento de hormigón en masa con juntas

La transferencia de carga a través de las juntas es un factor relevante que condiciona el desempeño de los pavimentos. Una mala transferencia de carga puede provocar problemas como el escalonamiento de las juntas, la erosión de las bases debido a la eyección de agua con suelo fino (también conocido como “bombeo”) y roturas de las esquinas. En este tipo de juntas, existen dos mecanismos de transferencia de carga: la trabazón entre los áridos y el uso de pasadores.

Con frecuencia, se colocan barras de unión de acero corrugado en las juntas longitudinales para mantener unidas las losas adyacentes. Estas barras permiten la deformación debida al gradiente térmico, pero evitan la separación de las juntas entre carriles de circulación y el escalonamiento causado por el tráfico. A pesar de ello, estos fenómenos suelen ocurrir con poca frecuencia en las juntas longitudinales.

Con tráficos medios (IMD entre 200 y 2.000 vehículos pesados), suele ser común el empleo de pasadores en las juntas transversales para mejorar la transmisión de cargas entre las losas. Son barras lisas de acero no adheridas al hormigón, situadas a mitad de espesor, paralelas entre sí y al eje de la vía. De esta manera, se garantiza que las losas a ambos lados de la junta tengan una deflexión similar al paso de los vehículos. A pesar de que el empleo de pasadores reduce el espesor de las losas y aumenta la separación entre las juntas, también se han logrado excelentes resultados en pavimentos sin pasadores cuando las juntas se han dispuesto a distancias inferiores a 4 m.

El diseño “californiano” prescinde de los pasadores (Figura 4), aunque solo se utiliza en España para el tráfico medio y ligero. Sin embargo, cuando se espera más de 200 vehículos pesados por carril y sentido, se adoptan medidas para prolongar la vida útil del pavimento. Estas incluyen bases resistentes al desgaste como el hormigón magro o el gravacemento con mayor contenido de conglomerante, sistemas de drenaje para evitar la acumulación de agua en las juntas y bordes del pavimento (drenes laterales o bases porosas) y la construcción de losas cortas (aproximadamente de 4 m) con juntas inclinadas 1:6 para minimizar las tensiones.

Figura 4. Pavimento de hormigón en masa con juntas transversales inclinadas (Kraemer et al., 1999)

Hay que evitar los finos de los arcenes cercanos para prevenir el escalonamiento del pavimento. Se pueden implementar soluciones como zanjas longitudinales porosas o bases drenantes sin finos o estabilizadas empleando gravacemento o suelocemento. Sin embargo, la opción más efectiva suele ser un arcén de hormigón en masa con barras de unión al carril adyacente y una junta longitudinal sellada. Se comprueba que, con estas medidas, los pavimentos de hormigón en masa con juntas sin pasadores soportan el tráfico pesado, siempre y cuando no haya mucha lluvia. Además, es importante considerar el efecto positivo que tiene un arcén de hormigón en la estructura y en la prevención de la erosión. No obstante, en España, los pasadores son obligatorios para el tráfico pesado y medio-alto.

La técnica californiana se adapta bien a las pavimentadoras de encofrados deslizantes, pues no requiere pasadores. Antes de la década de 1980, los pasadores se introducían mediante vibración con una máquina que rodaba sobre encofrados fijos, o bien, la pavimentadora debía detenerse en cada junta para colocar los pasadores mediante horquillas, lo que empeoraba la regularidad superficial. Actualmente, las pavimentadoras cuentan con dispositivos que introducen los pasadores sin interrupciones y sin afectar al hormigón de la junta, lo que simplifica el proceso y aumenta su eficiencia. Además, el sobrecoste de utilizar pasadores es mínimo, lo que hace que esta solución sea competitiva para tráficos pesados y medios-alto.

Os dejo un webminar, desarrollado en 2020, del Instituto del Cemento Portland Argentino, sobre la ejecución de pavimentos de hormigón con tecnología convencional. Espero que os sea útil.

También recomiendo la videoconferencia sobre diseño y ejecución de juntas en pavimentos de hormigón, cuyo ponente es César Bartolomé, director del Área de Innovación de IECA. Espero que os guste.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Textura en los pavimentos de hormigón en carreteras

Figura 1. Texturizado de pavimentos de hormigón con peine metálico transversal. https://web1.icpa.org.ar/wp-content/uploads/2019/04/2014-04-Texturas-pavimentos.pdf

En los últimos años, ha aumentado la preocupación por las texturas superficiales de los pavimentos de hormigón debido al incremento progresivo del tráfico y de la velocidad de circulación. Anteriormente, la texturización se vinculaba a la reducción de accidentes por deslizamiento en superficies húmedas, pero en la actualidad, también se considera la generación de ruido entre el pavimento y el neumático. La textura superficial garantiza la rugosidad para la adherencia, el drenaje, la baja sonoridad y reduce la reflectancia del pavimento. Una adecuada textura superficial se realiza mediante el arrastre o pasaje de algún elemento sobre el hormigón fresco, procediendo inmediatamente al curado. En resumen, el objetivo del texturizado es conseguir una resistencia mínima al deslizamiento en condiciones húmedas, mantener un buen drenaje y escurrimiento superficial del agua, reducir los niveles de ruido y brindar resistencia al desgaste y la durabilidad.

Existen diversas técnicas para aplicar una textura sobre la superficie del hormigón, que pueden ejecutarse con equipamiento mecánico o manualmente. Asimismo, se pueden aplicar otras técnicas en estado endurecido en pavimentos en servicio o nuevos para mejorar el desempeño de la superficie en parámetros como la fricción, el drenaje superficial y el ruido.

Es importante aplicar la textura de forma homogénea para producir condiciones uniformes de fricción y circulación, independientemente de la técnica utilizada. Los factores que más influyen en la textura cuando se aplica en estado fresco son la consistencia y características del hormigón, el momento o tiempo en el cual se realiza, la presión con la que se aplican las herramientas de texturizado, su limpieza y la presencia de agua de exudación en la superficie del hormigón, entre otros.

Existen diferentes tipos de texturas que se pueden utilizar en la superficie del pavimento, entre ellas:

  • Estriado transversal: se crea mediante el uso de peines de púas metálicas o de plástico. Esta textura proporciona una alta adherencia y resistencia a la frenada, así como un buen drenaje. Sin embargo, también es ruidosa, por lo que se recomienda su utilización en arcenes y en zonas muy lluviosas.
  • Estriado longitudinal oscilante: se consigue mediante el empleo de cepillos o peines, que generalmente están integrados en el carro del equipo de curado. Es fundamental que el dispositivo de creación de la textura tenga un movimiento lateral, combinado con el avance, que provoque una ondulación sinusoidal para evitar el guiado de las ruedas. Generan un bajo nivel de ruido.
  • Terminación con arpillera: se logra aplicando una arpillera húmeda lastrada para obtener una microtextura adherente de baja rugosidad. Esta técnica se suele realizar en combinación con alguna de las otras texturas mencionadas anteriormente. Esta técnica es de sencilla ejecución y puede aplicarse tanto en forma manual como automática, y además, tiene una baja generación de ruido. Entre las debilidades destaca una baja profundidad de textura y una mayor pérdida de fricción inicial.
  • Árido visto: se consigue eliminando el mortero superficial del pavimento mediante la aplicación de un retardador de superficie sobre el hormigón fresco, lo que impide que el mortero se endurezca en los milímetros superiores. Luego se aplica un producto filmógeno de curado o una lámina de plástico sobre el retardador. Después de que el resto del hormigón ha adquirido suficiente resistencia, que generalmente toma alrededor de un día, se elimina el mortero mediante barrido, dejando el árido parcialmente visible. Este método bien desarrollado permite obtener pavimentos con alta rugosidad, buenas características de evacuación del agua de lluvia, antideslizantes y de muy baja sonoridad, manteniendo estas cualidades durante toda su vida útil. Entre sus ventajas se encuentran elevados índices de fricción, baja generación de ruido y elevada durabilidad. Sin embargo, también presenta algunas debilidades, como la necesidad de utilizar métodos y equipos especiales, un costo elevado y la importancia de contar con un constructor calificado.
Figura 2. Texturizado con cepillo en sentido transversal (manual y automatizada). https://web1.icpa.org.ar/wp-content/uploads/2019/04/2014-04-Texturas-pavimentos.pdf

Os dejo algunos vídeos que, espero, os sean de interés.

Referencias:

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Extendido de un pavimento de hormigón en carreteras

Figura 1. Pavimentadora de encofrado deslizante. https://www.gomaco.com

El pavimento se coloca de forma manual en vías rurales y calles urbanas, pero para carreteras se necesitan pavimentadoras de encofrado deslizante de alto rendimiento debido a la exigencia de regularidad superficial. Se recomienda descargar directamente los camiones, pero si no es posible, se puede recurrir a la alimentación lateral mediante retroexcavadoras, cintas transportadoras u otros dispositivos similares.

Las pavimentadoras de encofrado deslizante realizan la distribución, vibrado y terminación del hormigón en una sola pasada, y para dotarle de textura y curado posterior se utiliza un carro con dispositivos especiales. La cota y la rasante del pavimento se determinan mediante palpadores que se apoyan en hilos tensos o sistemas de guiado tridimensional.

Para la ejecución con pavimentadoras de encofrados deslizantes se requiere al menos una máquina por cada capa de construcción. Estos equipos se encargan de extender, compactar y enrasar uniformemente el hormigón, y en el caso de la capa superior, ejecutar un fratasado mecánico para obtener un pavimento denso y homogéneo. Deben contar con un sistema de guiado por hilo, que actúe en cuanto las desviaciones excedan 3 mm en alzado o 10 mm en planta. También deben estar equipadas con encofrados móviles que sostengan el hormigón lateralmente durante el tiempo necesario y compactar el hormigón adecuadamente por vibración interna. La frecuencia de vibración de cada unidad vibrante no será inferior a 5.000 ciclos por minuto y la amplitud de la vibración será perceptible en la superficie del hormigón a lo largo de toda la longitud vibrante y a una distancia de 30 cm. La pavimentadora deberá ir provista de los mecanismos necesarios si se ejecuta una junta longitudinal en fresco. Además, la longitud de la placa conformadora será suficiente para evitar la apariencia de vibraciones en la superficie del hormigón tras el borde posterior de la placa.

Las pavimentadoras pueden construir superficies de entre 2 y 15 metros en una sola pasada. Algunas máquinas están equipadas con dispositivos de vibro-inserción que introducen automáticamente pasadores o barras de unión. Otras tienen una batería de tubos de inserción en la parte delantera para colocar las armaduras de un pavimento continuo de hormigón armado en su posición final. En algunas extendedoras, se encuentra en la parte posterior una maestra oscilante transversal (llamada habitualmente auto-float o bailarina) y una regla longitudinal oscilante para eliminar las irregularidades longitudinales.

De acuerdo con el artículo 550 del PG-3, para la ejecución de losas de hormigón es necesario contar con una pavimentadora que cuente con un sistema de guía por cable o guiado tridimensional y encofrados móviles que sostengan el hormigón lateralmente sin asentamientos en el borde de la losa. Además, el equipo debe ser capaz de compactar adecuadamente el hormigón fresco en toda la anchura de la pavimentación mediante vibradores internos uniformemente distribuidos, con una separación entre 350 y 500 mm.

Os dejo algunos vídeos al respecto:

Os dejo también una guía técnica sobre firmes de hormigón en carreteras de IECA. Espero que os sea útil.

Descargar (PDF, 933KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Reciclado de firmes in situ con cemento

Tren de reciclado. http://pa-12.blogspot.com.es/2009/03/tren-de-reciclado.html

El reciclado de firmes in situ con cemento constituye una técnica de rehabilitación que consiste en transformar el firme deteriorado tomando como fuente de suministro de áridos la propia carretera. Es una técnica sostenible, puesto que podría evitar, según el IECA, la extracción de unas 800.000 t de áridos. El procedimiento constructivo consiste en disgregar el firme existente en la profundidad requerida, mezclar el material resultante con cemento y agua y compactar la mezcla a la densidad adecuada. Con ello se consigue un firme en conjunto mucho más duradero, con menor susceptibilidad al agua y mayor resistencia a la fatiga. Aquí os dejo un enlace para descargaros la Guía Técnica de IECA sobre reciclado de firmes in situ.

¿Cómo se hace?, pues aquí tienes un didáctico vídeo sobre estabilización de suelos con cemento, procedente de la sección de vídeos de IECA. Espero que os guste.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Es el agua de mar agresiva para el hormigón?

http://www.ohlinnovacion.com/soluciones-tecnologicas-innovadoras/cubipod/

La gran cantidad de obras marítimas que se realizan han obligado a realizar numerosos estudios sobre el comportamiento de los hormigones sometidos a la acción del agua del mar. El hormigón, como material heterogéneo que es, presenta propiedades que varían de las características de sus componentes, de sus cantidades, de la forma de poner dicho hormigón en obra, del curado y conservación, del medio donde va a estar trabajando, entre otras.

En efecto, el agua de mar provoca un proceso muy complejo sobre el hormigón en el que intervienen gran número de parámetros mecánicos, físicos, químicos, biológicos y atmosféricos. Sin embargo, la agresividad química de los componentes del agua marina sobre los productos de hidratación del cemento, en especial el hidróxido de magnesio (Mg(OH)2) y el sulfato cálcico (CaSO4), provocan expansiones debidas a la reacción álcali-árido, si hay árido reactivo, a la presión de cristalización de sales en el hormigón, a la acción del hielo en climas fríos, a la corrosión de las armaduras y a la erosión física debida al oleaje. Estas acciones aumentan la permeabilidad del hormigón, lo que retroalimenta el proceso. Son los iones sulfato del interior de la matriz los que reaccionan con el monosulfatoaluminato produciendo estringita, que es la responsable de la expansión y la rotura. Con todo, el agua de mar es menos agresiva para el hormigón que cada una de las soluciones que la componen individualmente debido a que el comportamiento expansivo asociado con formación de estringita está inhibido por la presencia de cloruros y facilita su solubilidad. Además, el CO2 disuelto en el agua carbonata gradualmente al hormigón, formando una capa superficial de carbonato cálcico que actúa como protector frente al ataque del hidróxido de magnesio y del sulfato cálcico los cuales terminan colmatando los poros restantes.

Lo anteriormente expuesto indica que, en un hormigón de razonable calidad, no suele ser un serio problema el ataque químico por el agua de mar. El parámetro esencial que determina el buen comportamiento de un hormigón es su compacidad y la morfología de sus poros. Por tanto, aunque el agua de mar podría considerarse como poco agresiva respecto de los hormigones, el ambiente marino, por sí mismo, resulta fuertemente agresivo. En efecto, el ataque químico del agua de mar depende de si el hormigón se encuentra sumergido total o parcialmente. Si está totalmente sumergido, tienen lugar fundamentalmente los procesos químicos. En la zona de oscilación, actúan los ataques químicos con otras acciones físicas como cristalizaciones de sales, heladas, etc. En la zona no sumergida, pero cercana al agua, ésta sube por capilaridad y arrastra sales que pueden cristalizar dando lugar a expansiones. Además, los cloruros del agua marina (MgCl2) solubilizan el hidróxido de calcio (Ca(OH)2) (portlandita) que se ha formado durante el fraguado y endurecimiento del cemento, formando cloruro de calcio e hidróxido de magnesio.

http://blog.hidrodemolicion.com/2013/02/corrosion-del-hormigon-en-ambiente.html

El tema se complica cuando tratamos con hormigón armado. Efectivamente, los cloruros (incluso los bromuros) presentes en el agua marina atacan a las armaduras. Los iones cloruro penetran por difusión por los poros del hormigón y llegan a las armaduras, donde forman un electrolito conductor que rompe su capa pasivante y se produce la oxidación llamada de “picadura”. Es por ello, que en las estructuras de hormigón armado situadas en ambiente marino, resulta fundamental respetar los recubrimientos recomendados para evitar la corrosión descrita.

Os dejo a continuación una guía técnica de IECA donde se describe con mayor detalle el comportamiento del hormigón en ambiente marino.

Descargar (PDF, 4.78MB)

Pavimentación con hormigón

http://www.imcyc.com/revistacyt/jul10/pavimentos.htm

Se define como pavimento de hormigón en masa al constituido por un conjunto de losas de hormigón en masa separadas por juntas transversales, eventualmente dotado de juntas longitudinales; en el que el hormigón se pone en obra con una consistencia tal que requiere el empleo de vibradores internos para su compactación y maquinaria específica para su extensión y acabado superficial.

La ejecución del pavimento de hormigón incluye las siguientes operaciones:

  • Estudio y obtención de la fórmula de trabajo.
  • Preparación de la superficie de asiento.
  • Fabricación del hormigón.
  • Transporte del hormigón.
  • Colocación  de  elementos  de  guía  y  acondicionamiento  de  los  caminos  de rodadura para la pavimentadora y los equipos de acabado superficial.
  • Colocación de los elementos de las juntas.
  • Ejecución de juntas en fresco.
  • Terminación.
  • En su caso numeración y marcado de las losas.
  • Protección y curado del hormigón fresco.
  • Ejecución de juntas serradas.
  • Sellado de las juntas.
https://www.gomaco.com/

Para ampliar la información os remito al Pliego de Prescripciones Técnicas para Pavimentos de Hormigón, de IECA y al siguiente enlace para visualizar vídeos.

¿Qué es el reciclado de firmes con cemento?

https://www.eurovia-es.com/soluciones-constructivas/por-tipo-de-aplicacion/tecnicas-amigables-con-el-medioambiente/reciclado-in-situ-con-cemento

El reciclado es una técnica cuyo objetivo principal consiste en transformar un firme degradado en una estructura homogénea y adaptada al tráfico que debe soportar. Se trata de reutilizar sus materiales para la construcción de una nueva capa portante, lo que permite claras ventajas medioambientales y económicas.

Para ampliar los conocimientos sobre este tema, os dejo una videoconferencia proporcionada por Structuralia sobre aplicación del cemento en la conservación de carreteras. El ponente es Jesús Díaz Minguela, Doctor Ingeniero de Caminos, Canales y Puertos y Director Técnico de IECA. Espero que os sea de utilidad.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Juntas en pavimentos de hormigón

http://www.duravia.com.pe

Los pavimentos de hormigón más habitualmente empleados son los de hormigón en masa con juntas y, en menor proporción, los de hormigón armado con juntas (en donde el armado puede realizarse bien mediante armadura convencional o bien con fibras metálicas).  En función de su posición con respecto al avance del hormigonado, las juntas en un pavimento de hormigón se pueden clasificar como juntas longitudinales, que son paralelas a dicho avance, y como juntas transversales, que son las perpendiculares al mismo.  Os recomiendo la Guía Técnica de IECA sobre Diseño y ejecución de juntas en pavimentos y soleras de hormigón.

También recomiendo la videoconferencia sobre diseño y ejecución de juntas en pavimentos de hormigón, cuyo ponente es César Bartolomé, director del Área de Innovación de IECA. Espero que os guste.

La estabilización de suelos

Figura 1. Suelo mejorado con cemento. https://www.360enconcreto.com/blog/detalle/caracteristicas-del-suelo-cemento-que-y-para-que

No siempre se encuentra el suelo adecuado que garantice la estabilidad y durabilidad de una explanada. Si se une a ello la creciente importancia medioambiental y la presión social por minimizar la apertura de nuevos préstamos y vertederos necesarios para el movimiento de tierras de una infraestructura, es evidente el esfuerzo necesario en utilizar materiales calificados como tolerables, marginales e incluso inadecuados. La estabilización permite reemplazar un suelo de baja calidad por otro estabilizado y mejorado. Se trata de una de las técnicas más antiguas y utilizadas en bases y subbases para uso vial. No obstante, el espesor de la capa del suelo a tratar es relativamente pequeño, por lo que algunos autores no la consideran como una técnica de mejora de terrenos.

La estabilización de un suelo mejora o controla su estabilidad volumétrica, aumenta su resistencia y el módulo esfuerzo-deformación, mejora su permeabilidad y durabilidad y reduce su susceptibilidad al agua. Se requieren ensayos de laboratorio y pruebas de campo para evaluar el rendimiento de la técnica. Se aprovechan los suelos de baja calidad, evitando su extracción y transporte a vertedero, aumenta su resistencia a la erosión, a la helada y otros agentes climáticos, permite la circulación por terrenos impracticables y obtiene una plataforma estable de apoyo del firme de infraestructuras lineales que colabore estructuralmente con el mismo.

Figura 2. Maquinaria para la estabilización de suelos. Fuente: M. López-Bachiller

La compactación y el drenaje del agua son los procedimientos más sencillos de estabilización. Asimismo, se puede mezclar dos o más suelos para obtener un suelo de mejor granulometría, plasticidad o grado de permeabilidad. También se logra mediante aditivos que actúan física o químicamente sobre las propiedades del suelo. Los más utilizados son el cemento y la cal, pero también se usan cenizas volantes, escorias granuladas, puzolanas, ligantes hidrocarbonados fluidos, cloruro cálcico, cloruro potásico, etc. Por tanto, la estabilización puede ser mecánica o química.

La estabilización mecánica se emplea en las explanadas de carreteras mediante compactación o por mezcla del suelo existente con otro de aportación. Por ejemplo, en presencia de un suelo granular sin finos se agregaría otro con finos y cierta plasticidad para conseguir una mezcla de mayor cohesión más fácil de compactar y menos permeable.

El tipo de suelo, el porcentaje de aditivo y la ejecución de la mezcla influyen en el grado de estabilización química. Se denominan suelos mejorados cuando se añaden pequeñas cantidades de aditivo para mejorar ligeramente el suelo. No obstante, ciertos suelos de buena granulometría y pequeña plasticidad mejoran considerablemente con porcentajes mínimos de aditivo.

La estabilización química puede realizarse “in situ” o bien realizarse la mezcla en central. Asimismo, en función de la profundidad del tratamiento, la estabilización puede considerarse como un método de mezcla profunda (“deep mixing method”) o una estabilización en masa (“mass stabilization”). La mezcla profunda de suelos podría clasificarse también como una técnica de mejora por inclusiones rígidas. También podrían incluirse aquí las mezclas de suelos realizadas mediante inyecciones o mediante jet grouting. También es posible dividir la estabilización de suelos en técnicas de mezcla húmeda (“wet soil mixing”), por ejemplo, en el caso de lechadas de cemento, y mezcla seca (“dry soil mixing”), como es el caso de las mezclas con cal y cemento.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Aquí os he grabado un pequeño vídeo introductorio a esta técnica.

Asimismo, os dejo algunos vídeos al respecto para que veáis el procedimiento constructivo. Espero que os gusten.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.