Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y toma de decisión multicriterio

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y MCDM. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Estas son las principales contribuciones descritas en el artículo:

  • Marco integrado para la optimización: La investigación presenta un marco integral que integra algoritmos de optimización multiobjetivo (MOO) y técnicas de toma de decisiones multicriterio (MCDM). Este marco no solo es aplicable a las cerchas pretensadas, sino también a varios diseños estructurales, lo que mejora la toma de decisiones en ingeniería estructural.
  • Algoritmos de optimización avanzados: el estudio emplea tres algoritmos MOO avanzados (NSGA-III, CTAEA y SMS-EMAO) para optimizar el diseño estructural de las cerchas arqueadas pretensadas. Este enfoque permite evaluar de forma sólida los diferentes objetivos del diseño, como la minimización del peso, el rendimiento de carga y la capacidad de construcción.
  • Métricas de evaluación integrales: el documento incorpora una serie de visualizaciones analíticas y métricas de evaluación exhaustivas para comprender la variabilidad de las diferentes variables en el contexto de Pareto. Esto ayuda a ilustrar las ventajas y desventajas que conllevan las distintas estrategias de optimización y proporciona una visión más clara del proceso de diseño.
  • Evaluación del rendimiento de los algoritmos: la investigación evalúa el rendimiento de los algoritmos de optimización utilizando métricas de distancia generacional (GD) y distancia generacional invertida (IGD). Los resultados indican que el NSGA-III supera a los demás algoritmos en términos de convergencia con respecto a Pareto, lo que proporciona información valiosa sobre la eficacia de cada algoritmo.
  • Validación estadística de los resultados: el artículo emplea la prueba de Kruskal-Wallis para validar las diferencias de rendimiento entre los algoritmos. Esto añade credibilidad a los hallazgos y resalta las ventajas y limitaciones de cada enfoque de optimización, que es crucial para las futuras aplicaciones de optimización estructural.
  • Implicaciones prácticas para la construcción: Las innovaciones presentadas en el documento mejoran el rendimiento estructural, reducen el consumo de recursos y mejoran la capacidad de construcción y la seguridad. Estas contribuciones demuestran las implicaciones prácticas para unas prácticas de construcción más eficientes y sostenibles, y abordan la complejidad de los métodos de diseño tradicionales.

En resumen, este documento promueve significativamente la comprensión y la aplicación de las cerchas pretensadas al proporcionar un marco sólido para la optimización y la toma de decisiones, junto con información práctica para mejorar las prácticas de construcción.

Abstract:

The structural design of prestressed arched trusses presents a complex challenge due to the need to balance multiple conflicting objectives such as structural performance, weight, and constructability. This complexity is further compounded by the interdependent nature of the structural elements, which necessitates a comprehensive optimization approach. Addressing this challenge is crucial for advancing construction practices and improving the efficiency and safety of structural designs. The integration of advanced optimization algorithms and decision-making techniques offers a promising avenue for enhancing the design process of prestressed arched trusses. This study proposes the use of three advanced multi-objective optimization algorithms: NSGA-III, CTAEA, and SMS-EMOA, to optimize the structural design of prestressed arched trusses. The performance of these algorithms was evaluated using Generational Distance and Inverted Generational Distance metrics. Additionally, the non-dominated optimal designs generated by these algorithms were assessed and ranked using multiple Multi-Criteria Decision-Making techniques, including SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR. This approach allowed for a robust comparison of the algorithms and provided insights into their effectiveness in balancing the different design objectives. The results of the study indicate that NSGA-III exhibited superior performance with a GD value of 0.215, reflecting a closer proximity of its solutions to the Pareto front, and an IGD value of 0.329, indicating a well-distributed set of solutions across the Pareto front. In comparison, CTAEA and SMS-EMOA showed higher GD values of 0.326 and 0.436, respectively, suggesting less convergence to the Pareto front. However, SMS-EMOA demonstrated a balanced performance in terms of constructability and structural weight, with an IGD value of 0.434. The statistical significance of these differences was confirmed by the Kruskal-Wallis test, with p-values of 2.50×10−15 for GD and 5.15×10−06 for IGD. These findings underscore the advantages and limitations of each algorithm, providing valuable insights for future applications in structural optimization.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-III; CTAEA; SMS-EMOA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

Descargar (PDF, 2.8MB)

Mejora de la robustez en la optimización de estructuras modulares prefabricadas: Integración de NSGA-II, NSGA-III y RVEA para una infraestructura sostenible

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento explora el diseño de estructuras modulares prefabricadas sostenibles utilizando la optimización multiobjetivo (MOO) y la toma de decisión multicriterio (MCDM) con algoritmos avanzados como NSGA-II, NSGA-III y RVEA. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo destaca la importancia de integrar la sostenibilidad del ciclo de vida en los proyectos de infraestructura de transporte para estimular la innovación y la colaboración entre las partes interesadas. Además, presenta una estrategia de diseño novedosa que se centra en la optimización del ciclo de vida de los marcos modulares prefabricados de hormigón armado (RCPMF). Por último, amplía la comprensión de la aplicabilidad de los algoritmos avanzados de MOO y las técnicas de MCDM para mejorar el desarrollo sostenible de la infraestructura.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio evalúa el rendimiento de optimización del ciclo de vida de los algoritmos NSGA-II, NSGA-III y RVEA dentro de una estructura prefabricada tipo marco de diseño coherente para una infraestructura de transporte sostenible.
  • El NSGA-III se identifica como el algoritmo con mejor rendimiento, lo que demuestra su potencial para facilitar enfoques de diseño sostenibles.
  • El problema del MCDM se evalúa rigurosamente y se abordan nueve soluciones no dominantes generadas por los algoritmos de optimización, lo que demuestra la eficiencia y la fiabilidad del marco integrado de MOO y MCDM.
  • Los resultados abogan por un enfoque transformador del desarrollo de infraestructuras, orientado hacia soluciones de ingeniería más avanzadas y sostenibles.

Abstract:

The advancement toward sustainable infrastructure presents complex multi-objective optimization (MOO) challenges. This paper expands the current understanding of design frameworks that balance cost, environmental impacts, social factors, and structural integrity. Integrating MOO with multi-criteria decision-making (MCDM), the study targets enhancements in life cycle sustainability for complex engineering projects using precast modular road frames. Three advanced evolutionary algorithms—NSGA-II, NSGA-III, and RVEA—are optimized and deployed to address sustainability objectives under performance constraints. The efficacy of these algorithms is gauged through a comparative analysis, and a robust MCDM approach is applied to nine non-dominated solutions, employing SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR decision-making techniques. An entropy theory-based method ensures systematic, unbiased criteria weighting, augmenting the framework’s capacity to pinpoint designs, balancing life cycle sustainability. The results reveal that NSGA-III is the algorithm converging towards the most cost-effective solutions, surpassing NSGA-II and RVEA by 21.11% and 10.07%, respectively, while maintaining balanced environmental and social impacts. The RVEA achieves up to 15.94% greater environmental efficiency than its counterparts. The analysis of non-dominated solutions identifies the 𝐴4𝐴4 design, utilizing 35 MPa concrete and B500S steel, as the most sustainable alternative across 80% of decision-making algorithms. The ranking correlation coefficients above 0.94 demonstrate consistency among decision-making techniques, underscoring the robustness of the integrated MOO and MCDM framework. The results in this paper expand the understanding of the applicability of novel techniques for enhancing engineering practices and advocate for a comprehensive strategy that employs advanced MOO algorithms and MCDM to enhance sustainable infrastructure development.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-II; NSGA-III; RVEA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1001KB)

Toma de decisión multicriterio aplicada a la sostenibilidad de estructuras de edificios basados en métodos modernos de construcción (MMC)

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

Desde el establecimiento de los Objetivos de Desarrollo Sostenible, ha surgido una gran preocupación sobre cómo disminuir los impactos que resultan de las actividades de construcción. En este contexto, los Métodos Modernos de Construcción (MMC) surgen como una poderosa forma de reducir la huella del ciclo de vida a través de la optimización del consumo de materiales. Este trabajo se centra en la evaluación de la sostenibilidad de diferentes técnicas MMC aplicadas a estructuras de hormigón de viviendas unifamiliares. Se compara el rendimiento del ciclo de vida en términos de sostenibilidad entre un diseño de referencia convencional, un diseño prefabricado, un diseño de losa ligera con discos huecos presurizados y un diseño basado en elementos estructurales de doble pared. La sostenibilidad se evalúa mediante un conjunto de 38 indicadores que abordan no solo la respuesta económica y medioambiental de los diseños, sino también sus impactos sociales. Se aplican cinco de las técnicas más conocidas de toma de decisiones con criterios múltiples (SAW, COPRAS, TOPSIS, VIKOR y MIVES) para derivar el rendimiento del ciclo de vida de cada diseño en una única puntuación de sostenibilidad. Dado que no hay consenso sobre qué método MCDM funciona mejor en las evaluaciones de sostenibilidad, se propone aquí un Índice Global de Sostenibilidad Estructural (GSSI) que combina y pondera los anteriores para ayudar al análisis de los resultados obtenidos. Los resultados muestran que la consideración de las tres dimensiones de la sostenibilidad conduce a diseños equilibrados cuya preferencia no tiene por qué coincidir con los derivados de cada enfoque unidimensional del ciclo de vida.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE hasta el 28 de enero de 2022 en el siguiente enlace:

https://authors.elsevier.com/c/1eDIl3QCo9bRMh

Abstract

Since the establishment of the Sustainable Development Goals, great concern has arisen on how to diminish the impacts that result from construction activities. In such context, Modern Methods of Construction (MMC) rise as a powerful way to reduce life cycle impacts through optimizing the consumption of materials. This paper focuses on the sustainability assessment of different modern construction techniques applied to concrete structures of single-family houses. The life cycle performance in terms of sustainability is compared between a conventional reference design, a precast design, a lightweight slab design with pressurized hollow discs, and a design based on double-wall structural elements. The sustainability is assessed through a set of 38 indicators that address not only the economic and environmental response of the designs, but also their social impacts as well. Five of the best known Multi-Criteria Decision-Making (MCDM) techniques (SAW, COPRAS, TOPSIS, VIKOR and MIVES) are applied to derive the life-cycle performance of each design into a single sustainability score. Since there is no consensus on which MCDM method works best in sustainability assessments, a Global Structural Sustainability Index (GSSI) combining and weighting the above is proposed here to aid the analysis of the results obtained. The results show that consideration of the three dimensions of sustainability leads to balanced designs whose preference need not coincide with those derived from each one-dimensional life cycle approach.

Keywords:

Sustainability, Construction, Structural design, Life cycle cost, Life cycle assessment, Social life cycle, Multi-criteria decision-making, Modern methods of construction

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision- making applied to the sustainability of building structures bases on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

Clasificación de los métodos de toma de decisión multicriterio multiatributo

Figura. Clasificación general de los MCDM

Seguimos en este entrada explicando los conceptos básicos que subyacen a a toma de decisión multicriterio. El concepto de toma de decisiones multi-criterio (MCDM) abarcaba en sus inicios al conjunto de métodos que servían como herramienta para el proceso de toma de decisiones (Cinelli et al., 2014). Sin embargo, el desarrollo de estos métodos ha sido exponencial, de forma que es necesario algún tipo de clasificación para entender mejor el funcionamiento de cada técnica.

Hwang and Yoon (1981) propusieron dividir los métodos MCDM en métodos de toma de decisión multi-atributo (Multi-attribute decision-making, MADM) y métodos de toma de decisión multi-objetivo (Multiobjective decision-making, MODM). En la Figura se puede ver esta clasificación general de los métodos. Los métodos MADM se utilizan para resolver problemas discretos: las alternativas están predeterminadas y los expertos valoran “a priori” cada criterio e indicando la importancia de cada uno de ellos. Los métodos MODM se utilizan para resolver problemas continuos: las alternativas no están predeterminadas, pues son grupos de soluciones igualmente buenas bajo una serie de restricciones, participando los expertos “a posteriori”.

Los métodos MADM, a su vez, se pueden subdividir en función del tipo de información inicial (determinista, estocástica o incierta), o dependiendo de los grupos de decisores (un único grupo o varios grupos). Sin embargo, la clasificación más habitual es la propuesta por Hajkwociz y Collins (2007) y De Brito y Evers (2016) en los siguientes métodos:

  • Los métodos de puntuación directa (scoring methods) son los más simples, basados en evaluar las diferentes alternativas mediante operaciones aritméticas básicas. SAW y COPRAS evalúan las alternativas sumando el valor normalizado de cada criterio por su peso correspondiente. SAW es más antiguo y permite realizar este proceso únicamente cuando se desea maximizar un criterio. COPRAS constituye una evolución de SAW y se aplica tanto para criterios que se desean maximizar como minimizar.
  • Los métodos basados en la distancia (distance-based methods) calculan la distancia entre cada alternativa y un punto concreto. El método GP pretende obtener la alternativa que satisfaga un conjunto de metas, es decir, el punto no es el óptimo, sino aquel que cumpla una serie de condiciones. El método CP trata de obtener aquella alternativa más próxima al hipotético punto óptimo. Los métodos VIKOR y TOPSIS se basan en CP, diferenciándose en la normalización de los criterios. VIKOR tiene en cuenta la distancia a la solución ideal y TOPSIS considera tanto la distancia tanto a la solución ideal como a la solución no ideal.
  • Los métodos de comparación por pares (pairwise comparision methods) son muy útiles para obtener los pesos de los diferentes criterios y evaluar criterios subjetivos comparando las alternativas entre sí. El método AHP fue el primero en desarrollarse y es uno de los métodos más usados en la toma decisiones. ANP es una evolución del AHP que permite usar criterios dependientes entre sí. MACBETH es una alternativa similar al AHP en cuanto a forma, pero con algunas diferencias en cuanto a conceptos.
  • Los métodos de superación (outranking methods) establecen una relación de preferencia entre un conjunto de soluciones donde cada una de ellas muestra un grado de dominación sobre las otras respecto a un criterio. Estos métodos son capaces de tratar con información incompleta y difusa, y permite clasificar las alternativas en función de la relación de preferencia existente entre ellas. Dentro de este grupo se encuentran PROMETHEE y ELECTRE.
  • Los métodos basados en funciones de utilidad o valor (utility/value methods) como MAUT (utilidad) y MAVT (valor), definen funciones que determinan el grado de satisfacción de una alternativa respecto a un criterio. Estas funciones convierten las valoraciones de las alternativas en un grado de satisfacción para cada criterio. Dichas funciones presentan diferentes formas en función de la relación entre la valoración y el grado de satisfacción. MIVES es un derivado de los anteriores en el cual se proporciona las ecuaciones que definen las diferentes funciones de satisfacción.

 

Tabla. Clasificación de los métodos MADM (Penadés-Plà et al., 2016)

A pesar de todo lo anterior, la vida real es compleja. Siempre existe una incertidumbre en las valoraciones o en las comparaciones. Es por ello que muchos de estos métodos utilizan herramientas como la teoría fuzzy, el método de Montecarlo o los números Grey. Además, cuando la toma de decisiones no es individual, suelen existir diferentes grupos con diferentes intereses, con lo que es necesario llegar a un consenso entre ellos. El método Delphi es una herramienta útil para cuando hay diferentes decisores.

Referencias:

Cinelli, M.; Coles, M.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148.

De Brito, M. M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033.

García-Segura, T.; Penadés-Plà, V.; Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915.

Hajkowicz, S.; Collins, K. A review of multiple criteria analysis for water resource planning and management. Water Resour. Manag. 2007, 21, 1553–1566.

Hwang, C. L.; Yoon, K. Multiple attribute decision making: Methods and Applications; 1981.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.