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Abstract: The integration of sustainability principles into the structural design and decision-making
processes for transportation infrastructure, particularly concerning reinforced concrete precast mod-
ular frames (RCPMF), is recognized as crucial for ensuring outcomes that are environmentally
responsible, economically feasible, and socially beneficial. In this study, this challenge is addressed,
with the significance of sustainable development in modern engineering practices being underscored.
A novel approach, which is a combination of multi-objective optimization (MOO) with multi-criteria
decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection
of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity-
based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation
of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm
II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of
simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and
ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design
requirements is exhibited by the statistical-based repair operator, which offers solutions with lower
impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced
similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their
consistent evaluation capacity despite distinct operational methodologies.

Keywords: multi-objective optimization; multi-criteria decision-making; modular structure; life cycle
sustainability; NSGA-II; simple additive weighting; fair un choix adéquat

MSC: 90C11; 90C27; 90C29

1. Introduction

Transport infrastructure plays a pivotal role in enhancing the quality of life and pro-
pelling global economic and social advancement. This importance is evidenced by the
allocation of over 20% of the World Bank’s loans to transportation infrastructure in recent
years [1]. The construction industry, accounting for 9% of Europe’s GDP, is on track to
expand into a USD 14 trillion global industry by 2025 [2]. In light of this growth, fostering
sustainable development in transportation infrastructure becomes imperative. This chal-
lenge requires integrating the three key pillars of sustainability—economic, environmental,
and social–into transport infrastructure’s design and operational strategies [3–5].

In contemporary structural engineering, it is critical to extend beyond adhering to
technical standards by incorporating sustainability principles from the design stage. This
holistic approach demands integrating complex criteria into the decision-making process
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of structural design [6–8]. Researchers have increasingly employed multi-objective opti-
mization (MOO) techniques for concurrently considering multiple criteria, thus yielding
balanced and optimal solutions in civil engineering [9].

Previous research focused on applying single-objective optimization (SOO) strategies
to minimize the economic cost and embodied energy in transportation infrastructure so-
lutions [10]. Recently, there has been a shift towards employing MOO in the design of
various structural typologies, from reinforced concrete buildings to wind turbine founda-
tions [11,12]. Adopting MOO strategies marks a significant progression in harmonizing
technical compliance with sustainability objectives within structural engineering [13].

Aligning MOO in structural design with contemporary industry trends, particularly
the emphasis on integrating sustainability principles from the outset, significantly enhances
the effectiveness of the multi-criteria decision-making (MCDM) process. Furthermore, it
highlights its escalating relevance in modern structural engineering practices [14].

The intersection of secondary routes with primary roads presents a frequent challenge
in transportation networks. Reinforced concrete road frames are a versatile solution to man-
age this issue. These road frames in transportation infrastructure have been predominantly
constructed on-site as reinforced concrete cast-in-place frames (RCCPF). However, recent
research exploring the reduction in economic costs through SOO of reinforced concrete
precast modular frames (RCPMF) has identified precasting as a viable alternative for road
networks [15]. Furthermore, environmental assessments focusing on factors such as CO2
emissions and embodied energy indicated that RCPMF presents environmental benefits
compared to RCCPF [16]. Conceiving a systematic method based on objective analysis
for enhanced structural decision-making is a relevant research avenue [17]. This study
introduces a MOO strategy utilizing the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) for the optimal design of RCPMF [18]. The NSGA-II algorithm is specifically
adapted to minimize the final cost, environmental life cycle analysis (ELCA), and social life
cycle analysis (SLCA) endpoint results [19]. Customized crossover and mutation operators
are implemented into the NSGA-II algorithm to adapt the specific nature of NSGA-II to the
mixed-integer programming (MIP) nature of the RCPMF problem. Furthermore, the study
develops, implements, and evaluates the performance of three distinct repair operators.
The optimal designs derived from the MOO process are subsequently examined and evalu-
ated through two MCDM techniques: single additive weighting (SAW) and fair un choix
adéquat (FUCA) [20]. Both methods employ an entropy theory-based criteria weighting
computation for an objective and data-informed weighting process [21].

Integrating MCDM techniques with MOO methodologies capitalizes on the inherent
strengths of both approaches. MOO enables the generation of optimal solution sets that
consider the economic, environmental, and social dimensions of the RCPMF life cycle
in a balanced manner. MCDM methodologies add a further dimension by providing
a systematic framework for evaluating, scoring, and ranking these optimal solutions.
As a result, the novel approach presented in this study effectively balances and evaluates
economic feasibility with environmental and social impacts throughout the entire life cycle
of the structure.

Merging MOO with MCDM presents unique challenges, especially when applied to
complex engineering contexts, as detailed in this study. This integration requires a thor-
ough understanding of the optimization objectives and the decision-making criteria. In this
analysis, the MOO objectives are crafted carefully considering life cycle sustainability, de-
rived from an exhaustive analysis of critical factors that influence sustainable infrastructure
development, ensuring an unbiased representation of economic, environmental, and social
factors. Moreover, the objectives are aligned with MCDM criteria to reflect stakeholder
priorities accurately throughout the structure’s life cycle. Harmonizing and weighting
these criteria demands meticulous consideration of the diverse priorities underpinning
sustainable development.

This research outlines a clear and methodical strategy to effectively facilitate the
integration of MOO and MCDM, formulating a coherent framework for practical imple-
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mentation. Three novel repair operators are introduced within the NSGA-II algorithm,
designed to optimize the RCPMF while addressing the MIP challenges. These operators
play a crucial role in refining solutions to ensure they meet constraints and enhance feasi-
bility. Adjustments are made randomly by the first operator, facilitating exploration of new
solution spaces. Modifications guided by proximity concepts are employed by the second
operator, steering towards previously successful solutions. The third operator utilizes
statistical methods, drawing on data patterns for solution improvements. The efficient
exploration of the solution space is enabled and adherence to constraints is ensured, sig-
nificantly enhancing the quality of the solutions and contributing to the sustainable and
cost-effective design of infrastructure.

Section 2.2 of this paper elaborates on the customized version of the NSGA-II algo-
rithm integrating tailored crossover and mutation operators. Sections 2.3 and 3.1 focus
on introducing and evaluating the effectiveness of three distinct repair operators, empha-
sizing their performance in generating optimal solutions. The application of MOO to the
RCPMF problem, detailed in Section 2.1, aims to broaden the existing knowledge and
understanding of RCPMF design. The MCDM strategy, described in Section 2.4, allows
for a better-informed decision-making process, yielding the results evaluated in Section 3.
The approach is designed to effectively balance economic feasibility with the environmental
and social impacts throughout the entire structure life cycle.

2. Methods

This section provides a comprehensive overview of the RCPMF problem and delin-
eates the NSGA-II algorithm as the selected MOO strategy. Furthermore, it delves into the
entropy theory-based weighting method and the MCDM approaches, specifically delineat-
ing the SAW and FUCA techniques employed to assess the optimal solutions derived from
the MOO process.

2.1. Optimization Problem Overview

MOO involves identifying a vector X⃗, comprising n variables, that minimizes k ob-
jective functions while adhering to m constraints. Equations (1) through (3) delineate the
foundational structure for a generic MOO problem.

X⃗ = x1, x2, . . . , xn (1)

min( fi(X⃗)) = min( f1(X⃗), f2(X⃗), . . . , fk(X⃗)) (2)

gm(X⃗) ≤ 0 (3)

The optimization problem of this research consists of the design of a RCPMF. The spec-
ified structure extends 10 m horizontally, has a height of 5 m, and is buried to a depth of
5 m. Sections 2.1.1 and 2.1.2 detail the variables, parameters, and constraints integral to
the RCPMF problem. Adopting a comprehensive MOO approach, this study integrates the
three pillars of sustainability: the economic cost of the structure, the ELCA endpoint single
score, and the SLCA endpoint score. These elements, elaborated on in Section 2.1.3, are the
objective functions earmarked for minimization.

2.1.1. Variables and Parameters

The RCPMF problem, illustrated in Figure 1, encompasses 41 design variables, broad-
ening the scope beyond previous studies focused on the final cost minimization via
SOO [16]. Among these variables, three relate to the geometry of the lateral walls and the
upper and lower slabs (wd, usd, lsd). Multiple variables are allocated to the configurations
of passive reinforcement in all structural sections. This comprehensive set includes corner
reinforcement (ucϕ,b,h,v, lcϕ,b,h,v) and bending reinforcement in the central sections of the
top and bottom slabs (urϕ,b,l , lrϕ,b,l). The remaining variables are critical in defining the
positioning and configuration of shear reinforcement and determining structural concrete
and steel material grades (cg, sg).
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Figure 1. RCPMF optimization variables.

The MIP nature of the problem requires establishing upper and lower bounds for three
distinct categories of variables: choice (discrete), integer, and real (continuous).

Each category undergoes unique processing during the optimization phase via custom-
developed repair operators. These operators are designed explicitly for mutation, crossover,
and repair functions within the NSGA-II optimization algorithm. Table 1 comprehensively
details the set of optimization variables, categorizing them by type and specifying their
respective upper and lower bounds.
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Table 1. Optimization problem variables and boundaries.

Variable Unit Lower Limit Upper Limit Type

Section geometry

usd m 0.60 1.60 continuous
lsd m 0.40 1.40 continuous
wd m 0.30 1.20 continuous

Base reinforcement

utϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
utb bars 4 20 integer
ubϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
ubb bars 4 20 integer
ltϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
ltb bars 4 20 integer
lbϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
lbb bars 4 20 integer
wuiϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
wuib bars 4 20 integer
wueϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
wueb bars 4 20 integer
wliϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
wlib bars 4 20 integer
wleϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
wleb bars 4 20 integer

Corner and central reinforcement

ucϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
ucb bars 4 20 integer
uch m 1 5 continuous
ucv m 0.70 1.80 continuous
lcϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
lcb bars 4 20 integer
lch m 1 5 continuous
lcv m 0.70 2.80 continuous
urϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
urb bars 4 20 integer
url m 5 9.50 continuous
lrϕ mm 8, 10, 12, 16, 20, 25, 32 discrete
lrb bars 4 20 integer
lrl m 3 8 continuous

Shear reinforcement

uvϕ mm 10, 12, 16, 20, 25, 32 discrete
uvs m 0.1 0.4 continuous
uvl m 1.50 4.80 continuous
lvϕ mm 10, 12, 16, 20, 25, 32 discrete
lvs m 0.1 0.4 continuous
lvl m 1.50 4.80 continuous

Material grade

cg MPa 25, 30, 35, 30 discrete
sg MPa 400, 500 discrete

In addition to the optimization variables, the structural design problem encompasses a
comprehensive set of parameters that remain constant throughout the optimization process.
In conjunction with the previously delineated optimization variables, these parameters
enable the complete characterization of the RCPMF design. The problem incorporates
parameters relevant to the structure’s geometry and those necessary for calculating struc-
tural loads. Moreover, it includes several parameters necessary for evaluating the objective
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functions. These encompass the economic cost of materials and the environmental and
social impacts, which are assessed over the structure’s life cycle. Table 2 summarizes the
main optimization parameters of the problem along with their specific values.

Table 2. Optimization problem parameters and specific values.

Parameter Unit Value

Structure geometry

Vertical height m 5
Horizontal span m 10
Hinge height m 3
Embankment depth m 5
Section depth m 1

Structural loads

Terrain density kN/m3 20
Concrete density kN/m3 24
Steel density kN/m3 78.5
Terrain internal friction angle ◦ 30
Active earth pressure – 0.33
Resting earth pressure – 0.50
Heavy vehicle load kN 150
Heavy vehicle length m 1.20
Uniform overload kN/m2 10
Ballast coefficient MN/m3 10

Sustainability metrics

Economic costs EUR Table 3
Environmental impact point Table 4
Social impact mrh Table 4

Verification parameters

Standard regulations CEN [22,23]/MFOM [24]
Applicable codes MFOM [25]

2.1.2. Constraints

The constraints of the RCPMF problem ensure the representativeness of the mathe-
matical model. Structural solutions generated during the optimization process are required
to conform to the ultimate limit states (ULS) and service limit states (SLS) as stipulated in
the applicable regulations [22,23]. Furthermore, the designs adhere to specific guidelines
and recommendations for buried structures [24,25].

The ULS ensure the structural integrity of all sections under diverse loading scenarios.
Compliance with ULS involves a multi-step verification process [15]. Initially, it requires
verifying sectional shear stress resistance [26], followed by assessing normal stresses via
N-M interaction diagrams. This procedure includes accounting for the increase in bend-
ing moments due to shear interaction. Subsequent steps include confirming the fatigue
resistance of the structure and evaluating additional geometrical and reinforcement design
characteristics, which are closely linked to sectional properties.

The SLS criteria focus on maintaining the structure’s aesthetic integrity by preventing
the generation and propagation of cracks. Additionally, SLS involves the restriction of
deformations. Thus, global structure deflections in the upper slab central sections are
assessed to remain within predefined allowable limits [24].

Structural calculation and compliance verification are conducted using a mathematical
model developed in Python 3 [27]. This approach incorporates global models for calculating
sectional internal forces, utilizing a finite element analysis (FEA) methodology [28]. Addi-
tionally, local models for each structural section are computed and thoroughly evaluated to
confirm compliance with the specified constraints [22,23]. The NSGA-II optimization algo-
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rithm from the pymoo library is modified and utilized to solve the MOO [29]. During this
process, the mathematical model generates a constraint vector adapted to its functional
requirements for each solution.

2.1.3. Objective Functions

Three objective functions are established for an integrated approach to enhancing
RCPMF sustainability performance. Equations (4), (6), and (7), evaluate the economic
cost, the ELCA endpoint, and the SLCA endpoint of the structure life cycle, respectively.
The Python numerical model integrates all necessary calculations for evaluating these
objective functions and generates a vector representing specific values for each solution
throughout the optimization process.

The final cost of the structure is determined by summing the products of the material
unit costs, ci, and the specific quantities of materials used, mi. The unit values in this study,
detailed in Table 3, were sourced from the BEDEC database [30].

C(X⃗) = ci ·mi(X⃗) (4)

Table 3. Unit cost values for each RCPMF material [30].

Material Unit Cost (EUR)

C25/30 concrete m3 112.85
C30/37 concrete m3 126.16
C35/45 concrete m3 129.32
C40/50 concrete m3 133.13
B400S steel kg 1.79
B500S steel kg 1.84

The life cycle of the RCPMF encompasses all processes from raw material extraction
to the post-service life disposal of the structure’s remains, while treating the life cycle as-
sessment (LCA) calculation as a “black box” executed externally by OpenLCA 2.1 software
is a feasible method [31], this study opts to develop a numerical model that utilizes the
precomputed individual impacts of each process.

The life cycle model, depicted in Figure 2, adheres to the ISO 14040:2006 standard,
including four stages: manufacture, construction, use, and end-of-life [19]. Table 4 details
each process’s unit environmental and social impacts. The data is sourced from the ecoin-
vent 3.7.1 and soca v2 databases [32–34] and evaluated employing the ReCiPe 2008 and
SWIM life cycle impact assessment (LCIA) methods for environmental and social impacts,
respectively, [35].

Life Cycle Model

Manufacturing Construction Use End-of-Life

- Raw material extraction
- Raw material transport
- Concrete manufacturing
- Steel manufacturing
- Auxiliary manufacturing
- In-plant precasting

- Structural set transport
- Site excavation
- Earth moving
- Terrain leveling
- Forklift assembly
- Backfill compaction

- Surface repairs
- Traffic detour
- Concrete carbonation

- Excavation
- Forklift disassembly
- Transport to recycling
- Industrial crusher
- Transport to landfill
- Concrete carbonation

Figure 2. RCPMF life cycle model stages and processes.

The manufacturing stage covers all processes, from the extraction of raw materials
to the delivery of ready-to-use materials to the construction site. The construction phase
includes site preparation, earth moving, transportation, assembling the structural com-
ponents, covering the structure, and installing auxiliary systems. The use phase models
routine minor repairs to the internal surface of the structure and the associated impact
of traffic diversions due to these activities. Lastly, the end-of-life stage encompasses
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unearthing, dismantling the structure and transporting materials to recycling facilities
and landfills.

Table 4. LCA processes and environmental and social unit impact values [32–34].

Process Unit elcai (Point) slcai (mrh)

concrete production 25 MPa m3 2.037 × 101 1.254 × 105

concrete production 30 MPa m3 2.631 × 101 1.668 × 105

concrete production 35 MPa m3 2.478 × 101 1.554 × 105

concrete production 40 MPa m3 2.585 × 101 1.623 × 105

steel production B400S kg 2.417 × 10−1 1.941 × 103

steel production B500S kg 2.538 × 10−1 2.067 × 103

clay production kg 1.062 × 10−3 8.475 × 100

gravel production kg 1.196 × 10−3 2.617 × 100

sand production kg 1.718 × 10−3 3.543 × 100

transport, freight, lorry 16–32 ton t·km 2.502 × 10−2 4.116 × 101

transport, freight, lorry 3.5–7.5 ton t·km 7.755 × 10−2 1.655 × 102

transport, passenger, car km 2.760 × 10−4 1.417 × 10−1

digger, operation min 7.876 × 10−2 8.825 × 102

skid plate, operation min 7.651 × 10−2 8.657 × 102

diesel, burned in building machine MJ 1.361 × 10−2 8.764 × 100

carbon dioxide kg 4.369 × 10−2 0.000 × 100

mortar production kg 3.084 × 10−2 1.415 × 102

epoxy production kg 8.399 × 10−1 4.107 × 103

rock crushing kg 7.223 × 10−5 8.304 × 10−1

Concrete acts as a carbon-sequestering component. The carbon dioxide captured
through the carbonation process during the structure’s use and end-of-life stages is esti-
mated using Fick’s law, detailed in Equation (5). Here, t represents the 100-year service
life of the structure, k the carbonation coefficient, A the area affected by carbonation, C
the amount of cement, and K the clinker content. The optimization problem incorporates
parameters such as the carbonation coefficients for the interior and exterior walls, the quan-
tity of cement, and the clinker content. The area affected by carbonation is calculated by
integrating the geometric optimization variables of the RCPMF.

CO2 (kg) = 0.383 ·
k
(

mm√
year

)
·
√

t(year)

1000
· A(m2) · C

(
kg
m3

)
· K(%) (5)

By integrating all the considerations above, the endpoint results for the ELCA and
SLCA are computed as the cumulative sum of the products of the environmental impact
factors, elcai, or social impact factors, slcai, and the quantity of the process mi required
throughout the j stages of the structure’s life cycle.

ELCA(X⃗) =
n

∑
i=1

4

∑
j=1

elcai,j ·mi,j(X⃗) (6)

SLCA(X⃗) =
n

∑
i=1

4

∑
j=1

slcai,j ·mi,j(X⃗) (7)

2.2. Optimization Algorithm

This section aims to delineate the NSGA-II, [18], the MOO algorithm employed for op-
timizing the RCPMF structure. Initially, a comprehensive elucidation of the standard NSGA-
II algorithm will be presented. Subsequently, the next section will introduce specialized
repair operators tailored for addressing the unique challenges posed by the mixed-integer
optimization problem, which amalgamates discrete, integer, and continuous variables.
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This dual-phase approach facilitates a profound understanding of the algorithm’s core
mechanics before delving into the customized modifications necessary for the specific
optimization task at hand. Figure 3 presents a flowchart that encapsulates the algorithm’s
proposed framework, illustrating the integrated process introduced in our study.

NSGA-II is a methodical, iterative process leveraging a population-based approach. It
draws upon the principles of natural selection and genetics to evolve solutions towards an
optimal set of trade-offs, known as the Pareto front. Central to NSGA-II is its non-dominated
sorting mechanism, which stratifies the population into various levels of Pareto fronts based
on dominance criteria. A solution is deemed to dominate another if it is equally competent
in all objectives and superior in at least one. The foremost front comprises solutions
not dominated by any others in the population, with subsequent fronts determined in a
similar fashion.

Another critical element of NSGA-II is the crowding distance assignment. This metric
gauges solution density within the objective space, ensuring diversity among solutions and
averting premature convergence to localized Pareto front regions. It aids in maintaining
a comprehensive spread of solutions across the entire range of trade-offs. Genetic opera-
tors in NSGA-II, namely selection, crossover, and mutation, play pivotal roles. Selection
processes prefer solutions from lower Pareto fronts and those with greater crowding dis-
tances, promoting the caliber and diversity of solutions. Crossover and mutation introduce
novel variations and traits into the population, encouraging a thorough exploration of the
solution space.

The iterative nature of NSGA-II involves cultivating a new population (offspring) from
the existing one via these genetic operators. The amalgamated population of parents and
offspring is then subjected to non-dominated sorting and crowding distance evaluation.
The top-tier solutions are cherry-picked to constitute the next generation, preserving a
constant population size. The efficacy of NSGA-II is manifest in its adeptness at unearthing
a diverse array of high-caliber trade-off solutions, rendering it apt for complex multi-
objective quandaries. Its utility spans diverse domains, ranging from engineering design to
resource management, where decisions necessitate juggling conflicting objectives.

Start
Initializing

random solutions

Termination
criterion?

Optimal pareto
front

End

Crossover Mutation Repair operator

Evaluate
objectives

Non dominated
sorting

Yes

No

Figure 3. Flowchart of the proposed algorithm. This diagram illustrates the step-by-step process of
the algorithm.

In this particular study, additional configurations were implemented for crossover,
mutation, and repair operators, which will be explicated in the following section

2.3. Solution Crossover, Mutation, and Repair Algorithms

In this study, the crossover operation was implemented using a Simulated Binary
Crossover (SBX) operator, while mutations were introduced via a Polynomial Mutation
(PM) operator. Additionally, three distinct repair operators were integrated: one based
on proximity, another employing random modifications, and a third leveraging statistical
concepts of mean and median for solution adjustments.

Simulated binary crossover (SBX): The SBX operator, a nuanced crossover technique,
emulates the single-point crossover observed in binary strings, but is adapted for real-coded



Mathematics 2024, 12, 730 10 of 21

genetic algorithms. It excels in generating offspring solutions proximate to their parent
solutions, thereby enabling a detailed search in the immediate solution space. The offspring
distribution’s breadth is modulated by a distribution index parameter, which determines
the offspring’s spread relative to their parents. A lower index promotes exploration by
creating offspring further from the parent solutions, while a higher index encourages
exploitation by generating offspring closer to the parent solutions.

Polynomial mutation (PM): The PM operator, designed for real-valued representations,
introduces variability by subtly modifying a solution’s variable values. Governed by a
distribution index, this mutation process mirrors the bit-wise mutation in binary-coded
genetic algorithms, yet it is specifically tailored for continuous variable contexts. PM
plays a vital role in maintaining diversity within the population and averting premature
convergence, particularly in scenarios involving continuous or real-valued parameters.

Proximity-based repair operator: The proximity-based repair operator is an approach
designed to rectify solutions that do not adhere to the constraints of an optimization prob-
lem, Algorithm 1. This operator is particularly effective in contexts where solutions involve
a mix of discrete, integer, and continuous variables. The core principle of this operator lies
in its ability to adjust each variable of a solution by selecting values that are closest to the
original, yet still within the permissible range defined by the problem’s constraints.

Algorithm 1 Proximity-Based Repair Operator

1: Function Repair(X)

2: Input: X
3: Output: repaired_X
4: repaired_X ← copy of X
5: for each solution x in repaired_X do

6: for each variable index j in x do

7: var ← variable type at index j
8: if var is Choice then

9: x[j]← value closest to x[j] in var.options
10: else if var is Integer then

11: x[j]← round x[j] to nearest integer within var.bounds
12: else if var is Real then

13: x[j]← clip x[j] within var.bounds
14: end if

15: end for

16: end for
17: return repaired_X

For each variable in a solution, the operator evaluates its type–whether it is a choice
(discrete), integer, or real (continuous). Based on the type, the operator performs the
following actions:

• Choice variables: The operator selects the option from the predefined set that is closest
to the current value of the variable.

• Integer variables: The operator rounds the variable to the nearest integer that falls
within the defined bounds, ensuring that the solution remains feasible.

• Real variables: The operator clips the variable’s value to ensure it lies within the
allowable continuous range.

Statistical-based repair operator: The statistical-based repair operator, Algorithm 2,
ingeniously integrates statistical measures–mean and median–with a probabilistic approach
to refine solutions in an optimization algorithm. This operator, in each iteration, processes
every solution and employs a probability parameter α to determine the repair strategy. If the
random number generated is less than α, the operator uses median for discrete variables
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(Choice and Integer) and mean for continuous (Real) variables. The median is particularly
beneficial for discrete variables, offering robustness against outliers and reflecting the most
common values in the population. Conversely, the mean provides an average value for
continuous variables, encapsulating the central tendency of the population.

Algorithm 2 Statistical-Based Repair Operator

1: Function StatisticalRepair(X, α)

2: Input: X, α

3: Output: repaired_X
4: repaired_X ← copy of X
5: means←mean of X along axis 0

6: medians←median of X along axis 0

7: for each solution x in repaired_X do

8: for each variable index j in x do

9: var ← variable type at index j
10: if random number < α then

11: if var is Choice or Integer then

12: choice←medians[j]
13: if var is Choice then

14: x[j]← closest value to choice in var.options
15: else

16: x[j]← round choice to nearest integer within var.bounds
17: end if

18: else if var is Real then

19: x[j]← clip means[j] within var.bounds
20: end if

21: else

22: Apply standard repair based on variable type and bounds

23: end if

24: end for

25: end for
26: return repaired_X

Random repair operator: The random repair operator, Algorithm 3, is designed to
introduce randomness into the solution repair process, which is essential for enhancing
diversity in the solution space. It operates by iterating over each solution in the population
and randomly assigning new values to the variables based on their type. For choice
variables, a random option is selected from the available choices. Integer variables are
assigned a random integer within their bounds, and real variables receive a random value
within their defined range. This randomness helps in exploring uncharted areas of the
solution space, thereby preventing the algorithm from stagnating at local optima and
encouraging a more thorough exploration.
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Algorithm 3 Random Repair Operator

1: Function RandomRepair(X)

2: Input: X
3: Output: repaired_X
4: repaired_X ← copy of X
5: for each solution x in repaired_X do

6: for each variable index j in x do

7: var ← variable type at index j
8: if var is Choice then

9: x[j]← random choice from var.options
10: else if var is Integer then

11: x[j]← random integer within var.bounds
12: else if var is Real then

13: x[j]← random real number within var.bounds
14: end if

15: end for

16: end for
17: return repaired_X

2.4. Evaluation and Decision-Making Methods

The result of the MOO conducted in this study is a set of RCPMFs that balance the
minimization of the objective functions. These solutions are evaluated by aggregating
and comparing the influence of relevant structural characteristics on the economic cost,
ELCA and SLCA scores for each repair operator. This analysis aims to identify common
trends in the optimal solution set and derive directly applicable, improvement-oriented
design approaches.

Decision-making within transportation infrastructure projects is fundamentally in-
tricate. Influences outside the purview of this research, including local regulations and
specific project mandates, frequently affect the identification of optimal solutions in civil
engineering. This study provides a framework for integrating sustainability’s multifaceted
dimensions into the optimal structural design, aiming for a more informed decision-making
process. This approach aligns well-defined MOO objectives with relevant criteria for
MCDM. Despite the inherent complexity, integrating these aspects into a well-informed
decision-making framework is essential for fostering the construction industry’s long-
term sustainability.

Utilizing MCDM techniques introduces several advantageous elements to complex
engineering decision-making processes. Sustainable construction requires the equilibrium
of intricate economic, environmental, and social criteria. The diverse stakeholders involved
in the life cycle of an infrastructure project often have different criteria with conflicting and
competing natures. Within this framework, harmonizing the criteria of the MCDM problem
with the objectives of the MOO problem, as delineated in this study, offers a pathway to
enhance the decision-making process in sustainable construction.

This research addresses a MCDM problem, represented by a decision matrix X = rij
consisting of m alternatives and n criteria, denoted as Ai = {A1, A2, . . . , Am}. The element
rij of the decision matrix X provides insight into the performance of the alternative i
concerning criterion j. Weighting the multiple criteria is a crucial step in resolving the
MCDM problem. The research employs an entropy-based method to calculate the Wj
criteria weights, [21].

The entropy-based weighting approach utilized in this research objectively calculates
the weight of each criterion according to its variability among the alternatives. This method-
ology leverages the intrinsic uncertainty or randomness linked with entropy to eliminate
subjectivity in the weighting process, with criteria deemed to offer more information to the
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decision-making process receiving higher weighting. Moreover, it fosters transparent and
inclusive decision-making when applied to sustainability criteria.

The criteria weights are computed through a four-step process. The first step involves
normalizing the decision matrix, as described in Equation (8), resulting in X′, the normal-
ized decision matrix.

X′ = rij⟨
m

∑
i=1

rij⟩−1 (8)

In the second step, the entropy of each criterion Ej is calculated using Equation (9).
A higher entropy value indicates greater variability across the i alternatives for criterion j.
In this step is assumed that, if rij = 0, then the corresponding natural logarithm is null.

Ej =
−1

ln⟨m⟩

〈
m

∑
i=1

rij · ln⟨rij⟩
〉

(9)

The third step is dedicated to assessing the variation of each criterion through
Equation (10). This evaluation yields the degree of divergence Dj for each criterion j.

Dj = 1− Ej (10)

Finally, the fourth step involves normalizing the Dj, as delineated in Equation (11),
resulting in the final criteria weights Wj.

Wj =
Dj

∑n
j=1 Dj

(11)

The subsequent phase in the decision-making process involves applying an algorithm
to address the MCDM problem. The research employed the SAW and FUCA algorithms to
resolve the optimum selection problem.

Numerous researchers in the construction sector employ SAW for decision-making
involving structural sustainability [36]. This approach, rooted in complexity-based clas-
sification, facilitates the evaluation of solutions through a well-established objective and
transparent method. Implementing the SAW algorithm within this study involves three
distinct steps. The process begins by calculating the normalized decision matrix X′.

The second step calculates the Si scores for each alternative, employing Equation (12).
The scores result from aggregating the weighted normalized performance of each alterna-
tive across all criteria.

Si =
n

∑
j=1

Wj

〈
rij⟨

m

∑
i=1

rij⟩−1

〉
(12)

In the third and concluding step, the Si values determine the ranking of the alternatives,
providing a systematic framework for identifying the most sustainable options.

The second decision-making algorithm chosen to address the MCDM problem is the
FUCA [20], while having an approach and algorithmic structure similar to the SAW, this
technique has operational differences that could lead to differing outcomes. A significant
challenge in solving engineering MCDM problems lies in selecting suitable and effective
techniques, which can evolve into a complex decision-making problem. The study conducts
a comparative analysis within this framework between the established SAW method and
the FUCA approach. This comparison aims to evaluate the feasibility and applicability of
the FUCA technique in construction engineering decision-making, highlighting its potential
advantages and differences in outcomes.

The FUCA algorithm is executed in three stages. In the first step, the solutions are
ranked according to each criterion. The second step involves calculating the scores of
the alternatives through Equation (13), where Rij denotes the rank of m solutions across
n criteria.
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Si =
n

∑
j=1

Wj · Rij (13)

The third and final step of the FUCA algorithm employed in this research is ranking
the alternatives according to previously computed Si values.

The criteria weighting procedure and the MCDM techniques outlined in this section
provide a methodical strategy for managing complex engineering decision-making prob-
lems. This structured approach provides decision-makers with a framework for informed
and transparent choices.

3. Results

In this section, the findings from a comprehensive quantitative analysis of different
repair operators applied within a multi-objective optimization framework are presented.
The performance evaluation of each repair operator, detailed in Section 3.1, highlights their
impact on key objectives: economic cost, environmental life cycle analysis, and social life
cycle analysis. Subsequently, Figure 4 utilizes violin charts for visualizing these operators’
efficacy in minimizing the MOO objectives, where the statistical-based repair operator is
shown to deliver the most consistent and effective performance across all metrics. These
outcomes are further examined through normalized radar plots in Section 3.1.1, offer-
ing a visual comparison of the operators’ effectiveness in achieving optimization goals.
The subsequent subsections delve into multi-criteria decision analysis for structural design
optimization, utilizing both tabulated results and graphical representations to elucidate the
comparative performance of the repair operators and the optimization variables involved.
This analytical approach facilitates a nuanced understanding of each operator’s strengths
and limitations in optimizing structural design parameters, setting the stage for informed
decision-making in engineering applications.

3.1. Quantitative Analysis of Repair Operators

The tuning process for the crossover and mutation operators within the NSGA-II
algorithm was conducted methodically in two phases, with the hypervolume metric serving
as the primary evaluation criterion. In the initial exploratory phase, a range of η values—0.2,
0.5, and 0.9—were examined to assess their impact on offspring distribution relative to their
parent solutions, applied to both the SBX and PM operators. Furthermore, the probabilities
for these operators were explored across a spectrum of values—0.01, 0.1, 0.2, 0.3—to identify
a broad scope of potential settings aimed at enhancing the optimization efforts. This stage
sought to identify a preliminary configuration that could facilitate a balanced exploration
and exploitation within the multi-objective optimization landscape.

Advancing to the second phase, a more focused exploitation strategy was employed,
evaluating a tighter range of η values—0.45, 0.5, 0.55—to refine the distribution tightness
of solutions. In parallel, the operator probabilities were adjusted to finer values—0.1, 0.08,
0.06, 0.04, 0.02—to optimize the frequency of generating new solutions. This phase was
instrumental in determining the precise parameter settings that maximize the hypervolume
metric, ensuring an optimal balance between Pareto front convergence and diversity
maintenance within the solution population.

Throughout the tuning process, a proximity-based operator was utilized to systemati-
cally navigate the parameter space, enabling a comprehensive evaluation of the effective-
ness of each parameter combination. This meticulous approach led to the identification of
the optimal settings for the crossover and mutation operators: SBX with a probability of 0.1
and an η value of 0.5, and PM with a probability of 0.02 and an η value of 0.5. These config-
urations were deemed most effective in achieving an ideal balance between convergence to
the Pareto front and sustaining diversity within the pool of solutions, as evidenced by the
maximized hypervolume metric.

Table 5 presents a detailed quantitative analysis of the solutions generated by different
repair operators in a multi-objective optimization problem context. The table elucidates
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each repair operator’s performance across three key objectives: economic cost, ELCA,
and SLCA.

Table 5. Multi-objective optimization results for each repair operator.

Algorithm Cost (EUR) ELCA (point) SLCA (mrh)

Proximity-Based Repair Operator 6859.12 1888.47 10,213,316.60
Proximity-Based Repair Operator 6916.66 1843.53 10,044,173.90
Proximity-Based Repair Operator 7265.14 2000.79 10,034,435.19
Proximity-Based Repair Operator 7444.46 2019.94 10,019,198.00
Random Repair Operator 5928.40 1719.59 9,374,328.45
Random Repair Operator 7628.83 1995.95 10,001,144.50
Random Repair Operator 6209.17 1724.68 9,042,720.41
Statistical-Based Repair Operator 5926.73 1642.59 9,047,905.18
Statistical-Based Repair Operator 5697.68 1699.12 9,271,219.62
Statistical-Based Repair Operator 5740.80 1653.04 8,967,342.29

Figure 4 presents the data from Table 5 using violin charts to visualize the performance
of three distinct repair operators in minimizing the MOO objectives. The statistical-based
repair operator demonstrates the most consistent performance, averaging EUR 5788.40,
1664.92 points, and 9.095 × 106 mrh, and exhibits minimal variability in all metrics. In con-
trast, the proximity-based repair operator displays the highest average values across all
metrics, with slightly more significant variability. It underperforms the statistical-based
repair operator by 23.03% in economic cost, 16.41% in ELCA, and 14.10% in SLCA. The ran-
dom repair operator occupies a middle position, with moderate median scores but higher
variability, peaking at 11.30% for economic cost.

4500 6000 7500 9000
EUR

Proximity-Based

Random

Statistical-Based

Cost

1600 1800 2000 2200
points

ELCA

0.90 1.05 1.20
mrh 7

SLCA

10

Figure 4. Multi-objective optimization results for each objective function and repair operator.

The findings indicate that the statistical-based repair operator is more effective in min-
imizing the objectives of the MOO problem in this study. Exhibiting lower average values
for all metrics and significantly less variability compared to the proximity-based repair
operator and the random repair operator, the statistical-based repair operator emerges as
the most fitting algorithm for the specific features of the MOO problem at hand.

These results have been normalized for the direct comparison in Section 3.1.1. The
proximity-based, random, and statistical-based repair operators are compared, providing
insights into their respective effectiveness in minimizing each of the objectives.

3.1.1. Data Visualization Using Normalized Radar Plots

In this research, we employed radar plots to visualize and compare the solutions pro-
posed by various algorithms in a multi-objective minimization problem. The effectiveness
of the algorithms is assessed based on three criteria: economic cost, ELCA, and SLCA.
As these objectives possess varying units and scales, a normalization process was imple-
mented to enable a fair and effective comparison between the solutions.
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For normalization, we utilized a modified approach of the Min-Max technique, scaling
the values for each objective such that the minimum value is not reduced to zero but to a
higher predefined threshold (e.g., 0.5), and the maximum value to 1. This adjusted normal-
ization technique ensures that differences between solutions are less drastic, particularly for
extreme values, and reflects the variations in each solution’s performance more equitably.

In the resulting radar plots, each axis represents one of the objectives, and each solution
is depicted as a polygon whose vertices extend towards these axes. It is crucial to note that
the most effective solutions in this minimization context are those with a smaller polygon
area. This is because a smaller area on the plot indicates lower values in the objectives,
which is desirable in our minimization problem.

In Figure 5, the results of the MOO, are presented through normalized radar plots.
Given that the problem at hand is one of minimization, it can be observed that solutions
with a smaller area indicate better performance than those with larger areas. From this per-
spective, the statistical-based repair operator generally yields superior outcomes compared
to the other two operators. Notably, the proximity-based repair operator appears to be
the least effective, exhibiting the largest area in the radar plot, which signifies suboptimal
results across the evaluated objectives.

Cost

ELCA

SLCA

0.5

0.6

0.7

0.8

0.9

1

Proximity-Based Repair Operator
Proximity-Based Repair Operator
Proximity-Based Repair Operator
Proximity-Based Repair Operator
Random Repair Operator
Random Repair Operator
Random Repair Operator
Statistical-Based Repair Operator
Statistical-Based Repair Operator
Statistical-Based Repair Operator

Figure 5. Normalized radar plot comparison of repair operators. Smaller areas indicate superior
performance in this minimization problem.

3.2. Multi-Criteria Decision Analysis for Structural Design Optimization

Table 6 displays the non-dominated optimal solutions derived from the MOO for
each of the different repair operators used. It includes the actual area, Are, for each
longitudinal reinforcement and the area per linear meter for shear reinforcement. The areas
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are determined by factoring in the rebar area, the number of bars, and the branch separation
for each result.

Table 6. Non-dominated solutions optimization variables for each repair operator.

Proximity-Based Random Statistical-Based

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

wd 0.757 0.480 0.507 1.096 0.329 0.647 0.695 0.389 0.389 0.428
usd 1.189 0.857 1.089 1.544 1.143 0.916 0.889 0.831 0.831 1.020
lsd 1.031 0.749 0.800 0.783 0.667 0.955 0.808 0.925 0.925 0.651
Awli 5.03 × 10−3 9.82 × 10−3 6.91 × 10−3 6.28 × 10−3 2.41 × 10−3 1.13 × 10−2 6.43 × 10−3 4.40 × 10−3 4.40 × 10−3 3.22 × 10−3

Awle 9.05 × 10−4 5.89 × 10−3 9.42 × 10−4 5.89 × 10−3 7.85 × 10−4 7.54 × 10−3 3.93 × 10−3 2.01 × 10−3 2.01 × 10−3 6.28 × 10−3

Awui 3.77 × 10−3 1.58 × 10−3 8.04 × 10−3 4.02 × 10−3 3.22 × 10−3 9.82 × 10−3 3.14 × 10−3 2.26 × 10−3 2.26 × 10−3 2.81 × 10−3

Awue 5.89 × 10−3 7.54 × 10−3 5.89 × 10−3 1.73 × 10−3 4.91 × 10−3 4.02 × 10−3 9.42 × 10−4 5.65 × 10−3 5.65 × 10−3 4.40 × 10−3

Aub 6.91 × 10−3 1.37 × 10−2 8.17 × 10−3 1.08 × 10−2 7.85 × 10−3 8.80 × 10−3 8.80 × 10−3 1.28 × 10−2 1.28 × 10−2 8.84 × 10−3

Aur 1.26 × 10−2 1.37 × 10−2 1.26 × 10−2 6.84 × 10−3 5.23 × 10−3 8.84 × 10−3 1.28 × 10−2 4.83 × 10−3 4.83 × 10−3 8.80 × 10−3

Aut 3.14 × 10−3 2.04 × 10−3 1.61 × 10−2 1.58 × 10−3 1.81 × 10−3 1.57 × 10−3 5.89 × 10−3 2.49 × 10−3 2.49 × 10−3 1.10 × 10−3

Alb 2.71 × 10−3 6.87 × 10−3 2.41 × 10−3 2.26 × 10−3 5.89 × 10−3 4.91 × 10−3 2.41 × 10−3 3.93 × 10−3 3.93 × 10−3 2.81 × 10−3

Alr 1.93 × 10−2 7.64 × 10−3 5.03 × 10−3 5.03 × 10−3 6.84 × 10−3 5.03 × 10−3 9.42 × 10−3 1.77 × 10−2 1.77 × 10−2 6.03 × 10−3

Alt 6.28 × 10−3 4.83 × 10−3 2.51 × 10−3 3.14 × 10−3 1.01 × 10−2 4.02 × 10−3 2.36 × 10−3 2.94 × 10−3 2.94 × 10−3 5.23 × 10−3

Alc 2.71 × 10−3 2.26 × 10−3 3.14 × 10−3 9.42 × 10−4 1.58 × 10−3 5.89 × 10−3 2.41 × 10−3 1.13 × 10−3 1.13 × 10−3 3.22 × 10−3

Auc 2.81 × 10−3 1.13 × 10−3 1.10 × 10−3 1.81 × 10−3 6.91 × 10−3 3.14 × 10−3 9.42 × 10−4 2.71 × 10−3 2.71 × 10−3 1.61 × 10−3

Auv 6.55 × 10−3 1.78 × 10−3 3.28 × 10−3 2.97 × 10−3 1.68 × 10−3 4.53 × 10−3 3.99 × 10−3 2.14 × 10−3 2.14 × 10−3 1.38 × 10−3

Alv 1.95 × 10−3 3.60 × 10−3 2.15 × 10−3 2.94 × 10−3 5.66 × 10−4 7.82 × 10−4 9.16 × 10−4 6.37 × 10−4 6.37 × 10−4 4.32 × 10−3

lcv 1.459 2.089 1.212 2.930 2.062 2.408 1.319 2.726 2.726 1.291
lch 3.982 3.510 4.877 3.384 4.587 4.081 4.371 4.712 4.712 4.073
ucv 1.594 1.499 1.237 1.170 1.988 1.503 1.040 1.000 1.000 1.236
uch 3.350 3.181 2.595 4.985 4.334 2.791 1.629 1.516 1.518 2.007
uvl 3.084 3.841 3.146 4.975 3.194 3.061 2.149 3.192 3.192 3.629
lvl 2.324 2.259 1.170 4.497 1.700 2.286 1.282 3.140 2.813 2.423
url 6.276 7.225 7.050 7.686 6.209 5.968 7.436 9.551 9.551 5.290
lrl 7.303 5.233 5.204 5.045 5.658 7.680 5.533 9.061 9.110 5.201
cg 25.00 25.00 30.00 25.00 30.00 25.00 35.00 35.00 30.00 35.00
sg 500.00 500.00 500.00 500.00 400.00 500.00 400.00 400.00 400.00 500.00

Figure 6 illustrates the results for the geometry variables associated with each repair
operator. A notable advantage of applying MOO techniques to the structural design
problem is avoiding preconditioning. In this sense, the designs produced by the proximity-
based and random repair operators exhibit sections with variable depths. The lateral walls
and upper slab depths are consistently larger than those found in designs generated by the
statistical-based repair operator.

0.4 0.8 1.2 1.6 2.0
Depth (m)

Proximity-Based

Random

Statistical-Based

Upper slab

0.4 0.6 0.8 1.0 1.2
Depth (m)

Lower slab

0.0 0.4 0.8 1.2 1.6
Depth (m)

Lateral walls

Figure 6. Multi-objective optimization results main geometry characteristics for each repair operator.

Figure 7 displays the outcomes for the reinforcement design variables, specifically
concentrating on the middle-span area of the upper and lower slabs and the overall rein-
forcement density RCPMF. Notably, the statistical-based algorithm identified two distinct
solutions exhibiting very similar characteristics, which differ in their selection of concrete
grades. Regarding the grades of structural materials, the analysis reveals a varied distri-
bution: four solutions employ concrete with a strength of 25 MPa, three utilize 30 MPa
concrete, and the remaining three opt for 35 MPa. In terms of steel reinforcement, the ma-
jority of the designs favor the higher grade steel, with approximately 40% of them choosing
400 MPa steel.
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Figure 7. Multi-objective optimization results main reinforcement characteristics for each
repair operator.

Selecting the most suitable option in structural design scenarios is inherently complex.
Table 7 displays the decision matrix for the MCDM problem formulated in this research
within this framework. Additionally, it presents the entropy weight assigned to each
criterion, along with the scores and rankings derived from addressing the MCDM problem
through the SAW and FUCA techniques.

Table 7. Multi-criteria decision-making results.

Cost ELCA SLCA Scores Ranks

Wj 0.33540 0.33243 0.33216 SSAW
i SFUCA

i RSAW
i RFUCA

i

A1 6859.12 1888.47 1.02133 × 107 0.91433 6.99676 7 7
A2 6916.66 1843.53 1.00441 × 107 0.90446 6.66756 6 6
A3 7265.14 2000.79 1.00344 × 107 0.98085 8.99676 9 9
A4 7444.46 2019.94 1.00191 × 107 0.95596 8.33595 8 8
A5 5928.4 1719.59 0.93743 × 107 0.82081 4.00305 4 4
A6 7628.83 1995.95 1.00011 × 107 0.98915 9.00296 10 10
A7 6209.17 1724.68 0.90427 × 107 0.83616 5.00143 5 5
A8 5926.73 1642.59 0.90479 × 107 0.79841 2.00296 2 2
A9 5697.68 1699.12 0.92712 × 107 0.80425 2.32919 3 3
A10 5740.80 1653.04 0.89673 × 107 0.78957 1.66783 1 1

The SAW and FUCA methodologies yield the same ranking order for the alternatives,
yet they assign different scores to each. Figure 8 compares the set of scores from each
method and illustrates the correlation between them, which is notably high at 0.9816.
The normalization of scores from both methods is achieved using the modified Min-Max
technique detailed in Section 3.1.1. This technique scales the values for each objective
so that the minimum value is set to a predefined threshold higher than zero (e.g., 0.5).
In contrast, the maximum value is adjusted to 1.

Alternative A10, when evaluated using the SAW and FUCA methodologies, consis-
tently achieved the highest scores. This consistency leads to the conclusion that, according
to the MOO criteria defined in this study, the most efficient alternative is the last solution
produced by NSGA-II in conjunction with the statistical-based repair operator. Moreover,
the statistical-based repair operator demonstrates superior performance compared to the
proximity-based and random repair operators. All solutions generated by the statistical-
based repair operator are among the top-ranked alternatives in the MCDM problem as
solved by both methods. The random repair operator, on the other hand, presents a wide
range of outcomes, securing both the fourth highest and the lowest scores, which reflects
the inherent variability of this algorithm.
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Figure 8. Multi-criteria decision-making results obtained through SAW and FUCA where: (a) sets of
normalized scores comparison; (b) correlation between the two sets of scores.

4. Conclusions

This paper introduces a novel method to enhance decision-making in transportation
infrastructure. The research integrates MOO techniques with MCDM methodologies for
designing and selecting modular structures, aiming for high economic, social, and environ-
mental efficiency. Specifically, it addresses the design problem of a RCPMF, encompassing
three objective functions that represent the pillars of structural life cycle sustainability:
economic cost, ELCA, and SLCA.

The MOO problem in this research is formulated through a Python-developed mathe-
matical model and resolved using a tailored NSGA-II algorithm. This customized version
of the algorithm is designed to manage the different nature of the variables in the MOO
problem: choice (discrete), integer, and real (continuous). Additional configurations are
introduced for the crossover and mutation operations, along with three distinct repair oper-
ators. Subsequently, the MCDM problem, which comprises the non-dominated solutions
derived from the MOO, is addressed using the SAW and FUCA methodologies. The criteria
weights in the MCDM problem are calculated based on entropy theory.

The primary geometric and reinforcement design characteristics of the MOO results
are addressed, revealing designs featuring variable thicknesses and significantly dense
reinforcement. The proximity-based and random repair operators yield varied results in
terms of geometry, assembly layout, and the employment of structural materials. Con-
versely, the statistical-based repair operator discerns two closely related solutions, primarily
differentiated using 30 MPa and 35 MPa concrete. The optimal solution is identified using
35 MPa concrete, characterized by slender sections complemented by a densely reinforced
design utilizing B500S steel.

The solution to the MCDM problem employing the SAW and FUCA techniques reveals
that both methodologies rank the alternatives similarly. However, a detailed examination
of the scores for each methodology, normalized using the modified Min-Max technique,
uncovers minor differences along with a notable correlation of 0.9816. The findings suggest
that, despite the operational differences between the two algorithms, they converge on very
similar outcomes. This convergence highlights the solution generated by the statistical-
based repair operator as the most efficient in the case study.

The outcomes of this study hold significant implications for the field of structural
engineering in transportation infrastructure. The case study exemplifies the development,
implementation, and evaluation of innovative methodologies that incorporate full life cycle
sustainability into the design and selection of RCPMF. The customization of the NSGA-II
algorithm, coupled with the subsequent assessment of the developed repair operators,
provides a clear picture of how the statistical-based repair operator algorithm is optimally
suited for the MOO problem. Moreover, applying the SAW and FUCA techniques facilitates
the identification of designs attained through said repair operator that exhibit superior
efficiency under the predefined criteria.
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While this study presents a detailed framework for enhancing sustainable transporta-
tion infrastructure, it operates within certain constraints, including limitations to specific
geographical areas, climatic conditions, and project sizes. Recognizing these limitations
provides valuable directions for future research. Future work could broaden the scope
of our methodology to encompass a wider range of geographical environments, climate
issues, and project dimensions. Such expansion aims to test our optimization and decision-
making framework’s resilience and flexibility and increase its applicability across a wider
range of structural engineering challenges. By incorporating designs that represent diverse
real-world situations, future research could make our findings more universally applicable.
This strategy aims to significantly improve the practicality and impact of our contributions
to sustainable development in transportation infrastructure, ensuring our work continues
to address the complex issues in this essential sector effectively.

Author Contributions: Conceptualization, A.R.-V. and J.G.; methodology, A.R.-V., J.G., J.A. and V.Y.;
software, A.R.-V. and J.G.; validation, A.R.-V., J.A. and V.Y.; formal analysis, A.R.-V.; investigation,
A.R.-V. and J.G.; resources, A.R.-V., J.A. and V.Y.; data curation, A.R.-V.; writing—original draft prepa-
ration, A.R.-V.; writing—review and editing, J.G., J.A. and V.Y.; visualization, A.R.-V.; supervision,
J.A. and V.Y.; project administration, V.Y.; funding acquisition, V.Y. All authors have read and agreed
to the published version of the manuscript.

Funding: Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF
A way of making Europe”.

Data Availability Statement: All the data used in the research can be found in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MOO Multi-objective optimization
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ELCA Environmental life cycle analysis
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