Selección de dragas en función del terreno

Figura 1. https://www.publicdomainpictures.net/es/view-image.php?image=89500&picture=draga

Para planificar un proyecto de dragado es fundamental disponer de información geotécnica detallada del material a extraer. Esto permitirá seleccionar el equipo adecuado, estimar los rendimientos y prever la necesidad de sobre-excavación. Es importante tener en cuenta el tipo de terreno a dragar para identificar los más apropiados.

Las Tablas que se presentan resumen las características de las dragas en función del terreno, lo que facilita la elección del equipo adecuado y contribuye a una ejecución más eficiente del dragado.

 

 

Tabla 1. Comportamiento de las dragas en función del terreno (Vigueras, 1997)

Tabla 2. Equipos más adecuados para cada terreno (Vigueras, 1997)

Tabla 3. Uso de los equipos de dragado en función del emplazamiento y las características de los materiales a dragar (Vigueras, 1997)

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

VIGUERAS, M. (1997). Organización y ejecución de las obras. Conferencia 7. Curso General de Dragados Ente Público Puertos del Estado.

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Influencia de la ubicación en la selección de equipos de dragado

Figura 1. Draga de cuchara. https://pxhere.com/es/photo/1274135

El emplazamiento influye en la selección del equipo de dragado. Entre los factores que intervienen se incluyen las dimensiones del área a dragar, la profundidad de dragado, la exposición ambiental, la ubicación de los puntos de descarga, las restricciones medioambientales del lugar, entre otros. A continuación, se presenta una breve descripción de cada uno de ellos.

Dimensiones de la zona a dragar

Las dimensiones de la zona donde se llevarán a cabo el dragado condicionan la selección de los equipos. En espacios reducidos, como en canales estrechos, no es posible emplear máquinas de gran tamaño que requieren cierto espacio para funcionar de manera óptima. Además, grandes dimensiones a menudo requieren grandes volúmenes de dragado, por lo que el uso de dragas de cuchara no suele estar recomendado debido a su baja producción real.

Profundidad de dragado

El calado de la zona de trabajo es crucial, pues las dragas están diseñadas para operar a una profundidad específica. Aunque es posible aumentar el calado, esto suele encarecer el costo de la draga. Este desafío se agrava en dragados de pequeña escala, donde elegir equipos grandes para mejorar la profundidad de dragado, puede producir un sobredimensionamiento excesivo y un aumento significativo en los costes.

Las bombas sumergibles modernas permiten que los equipos de dragado hidráulico alcancen calados significativos. Si bien los equipos mecánicos también alcanzan grandes profundidades, su rendimiento se ve condicionado por la mayor duración del ciclo de trabajo.

La profundidad del área de trabajo afecta la maniobrabilidad del equipo. La draga autoportante opera en aguas profundas y es capaz de excavar con fondos de 30 m o incluso más. Sin embargo, con menor profundidad, los equipos grandes pueden encallar debido a que alcanzan calados de 6 a 10 m cuando van cargados. A profundidades reducidas se recomienda el uso de cualquier tipo de draga que esté equipada sobre pontona, por el pequeño calado nominal que presentan.

Algunos equipos son capaces de trabajar en cauces de calado más bajo al necesario para su desplazamiento, pues van abriendo camino mientras realizan el dragado. Este es el caso de las dragas de pala o de retroexcavadora cuando operan en avance.

Grado de agitación

En zonas con oleaje fuerte, no se recomiendan las dragas estacionarias debido a que el oleaje puede dañar la embarcación y los anclajes. Igualmente, el uso de barcazas también presenta riesgos, pues pueden sufrir daños durante la maniobra de acercamiento debido a los choques con los gánguiles.

Al usar una draga estacionaria, se deben tomar precauciones adicionales y tener un remolcador disponible para llevar la embarcación a un lugar seguro en caso de un temporal inesperado. Además, los anclajes de la draga y las tuberías de vertido pueden causar problemas de navegación para las embarcaciones cercanas, por lo que es importante considerar el tráfico marítimo antes de seleccionar el equipo y los métodos de operación.

En resumen, las condiciones del agua, como las mareas y las tormentas, son factores críticos en dragados en aguas interiores, costeras o ríos caudalosos. Por ejemplo, en regeneración de playas y excavación de zanjas cercanas a la costa, las condiciones del mar dictarán el método y el rendimiento del trabajo.

Ubicación del punto de vertido

El emplazamiento del vertido es un factor crucial al elegir el equipo de dragado. Cuando los puntos de vertido se encuentran cerca de la zona de extracción, se recomienda utilizar una draga con cabezal cortador. Sin embargo, si no es posible instalar tuberías flotantes, las mejores opciones son las dragas de rosario o de succión.

Por otro lado, si los puntos de vertido se alejan más de un kilómetro de la zona de dragado, se deben descartar las tuberías o el vertido por impulsión. En este caso, se recomiendan las dragas de succión si el material decanta adecuadamente en la cántara, y, de lo contrario, las dragas mecánicas combinadas con gánguiles de transporte.

Requerimientos medioambientales de la zona

Las restricciones medioambientales en la zona a dragar y en el recorrido del transporte pueden condicionar los proyectos de dragado. En algunos casos, la presencia de fauna y flora protegidos impide llevar a cabo estas operaciones, mientras que en otros se requieren equipos especiales para evitar el enturbiamiento del agua, como dragas de succión o cucharas cerradas para terrenos fangosos. Por este motivo, es necesario utilizar sistemas de posicionamiento precisos. Además, es importante valorar los impactos de las operaciones de dragado en los núcleos urbanos cercanos. Esto incluye considerar los olores y ruidos generados por la utilización de equipos mecánicos, en especial cuando se dragan rocas.

Figura 2. Conducciones de dragado en playa. https://www.publicdomainpictures.net/es/view-image.php?image=93081&picture=playa-de-dragado

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las obras de dragado

Figura 1. Dragado mediante una retroexcavadora. https://es.wikipedia.org/

Las operaciones de dragado implican, en esencia, la eliminación de materiales de los fondos marinos y fluviales y su transporte y descarga en ubicaciones específicas. Su uso es muy versátil y abarca principalmente la ingeniería civil y la minería. En un artículo anterior ya se destacó la importancia de las obras de dragado.

En este artículo, clasificaremos las obras de dragado según su objetivo, ubicación y las características del terreno a trabajar. Es crucial destacar que el dragado es un medio y no un objetivo en sí mismo.

Según el objetivo o destino del dragado

El dragado es de gran importancia en la ingeniería portuaria, ya sea para mantener y mejorar los calados, desarrollar nuevas instalaciones o crear puertos. Muchos puertos requieren periódicamente trabajos de dragado para optimizar la navegación. Además, estas obras pueden mantener o ampliar los cauces de los ríos, mejorar su capacidad de drenaje y facilitar la extracción de materiales de construcción y minerales en ambientes marinos.

Otro empleo cada vez más frecuente de los materiales de dragado es como material de relleno o sustitución. Estos rellenos son necesarios en diversas obras, como el trasdosado de muelles, la construcción de carreteras, aeropuertos o el reemplazo de terrenos de baja calidad para mejorar las condiciones geotécnicas en la cimentación de muelles y otras estructuras. El dragado también se utiliza para excavar zanjas para tuberías y cables.

En algunos casos, forma parte de proyectos de restauración ambiental, como la limpieza de fondos marinos contaminados o el drenaje de zonas pantanosas. En los últimos años, el dragado ha cobrado importancia en relación con la regeneración y protección de playas mediante la adición artificial de arena

Actualmente, las técnicas de dragado son esenciales en proyectos que buscan ampliar las áreas de uso en el mar, frecuentemente relacionados con el transporte de mercancías y pasajeros, como es el caso de la isla artificial construida en Hong Kong para alojar un aeropuerto (véase la Figura 2).

Figura 2. Aeropuerto Internacional de Hong Kong, China. https://www.guiaviajesa.com/aeropuertos-mas-estranos-en-islas-artificiales/

Según el emplazamiento:

Las condiciones en las que se llevan a cabo las obras de dragado varían según su ubicación en relación con la costa. Pueden realizarse en el mar abierto, en la zona costera o en aguas protegidas, como en el interior de un puerto, un río o un lago.

Según las características del terreno:

Los terrenos a dragar varían en su composición, desde rocas duras hasta fangos, lo que afecta su comportamiento durante la excavación, transporte y vertido. Por lo tanto, la naturaleza del material a dragar tiene una gran influencia en la elección de la draga y la técnica de dragado.

He grabado un vídeo explicativo sobre este tema, que espero sea de interés.

Os dejo un vídeo donde se describe el dragado del Canal de Panamá.

En este otro vídeo vemos la draga empleada en el puerto de Nueva York.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la producción de una draga de succión en marcha aplicando el método BBL

Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/

Una draga hidráulica de succión en marcha o de arrastre es una embarcación autopropulsada y autoportante que draga de forma continua elevados volúmenes de material en aguas profundas, incluso admitiendo condiciones marítimas desfavorables. Este tipo de dragas suponen algo menos de la cuarta parte del parque mundial de dragas hidráulicas. En un artículo anterior tuvimos ocasión de explicar este tipo de dragas.

Para calcular la producción de una draga de succión en marcha podemos aplicar el método BBL (Bray, Bates y Land, 1997), que estima los rendimientos de las dragas aplicando factores de reducción que representan pérdidas de tiempo sobre la producción teórica.

A continuación os paso un problema resuelto que espero que os sea de utilidad.

Descargar (PDF, 320KB)

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038. Valencia, 74 pp.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno, Madrid, 323 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Fueron los romanos más ingenieros que arquitectos?

Reconstrución de un Polyspastos romano en Bonn, Alemania.

En una entrada anterior tuvimos la ocasión de repasar brevemente algunos aspectos de la ingeniería romana, como fue la construcción de calzadas o puentes. Como podréis comprobar, el tema da para varias enciclopedias y el objetivo aquí es simplemente dar un par de pinceladas para despertar la curiosidad sobre aspectos históricos de la ingeniería. Además, en internet existen multitud de enlaces que permiten ampliar el tema considerablemente.

Podríamos empezar por la ingeniería municipal. Las ciudades del imperio romano disponían de sistemas de drenaje y suministro de agua, calefacción, baños públicos, calles pavimentadas, mercados de carne y pescado y otras infraestructuras municipales comparables a las actuales. La aplicación de la ingeniería en las artes militares y en los problemas de navegación, adecuación de puertos y bahías implicó, como en los otros casos, el uso de máquinas, materiales y procesos, que hablan del grado de desarrollo de la ingeniería romana, de la cual quedó constancia escrita en muchos tratados escritos en aquel tiempo y entre los cuales descuellan los trabajos de Marco Vitruvio. Su libro De Archítectura, lo escribió durante primer siglo d.C., donde incluyó el concocimiento del momento sobre materiales y métodos de construcción, hidráulica, mediciones, diseño y planificación urbana. Otra innovación en el ámbito urbano fue la invención del alumbrado público en la ciudad de Antioquía, aproximadamente hacia el año 3~0 d.C. Una innovación interesante de esa época fue la reinvención de la calefacción doméstica central indirecta, que se había usado cerca de 1200 a.C., en Beycesultan, Turquía. Lo extraño es que, tras la caída del Imperio Romano, este tipo de calefacción no se volviera a utilizar.

Restos de los acueductos Aqua Claudia y Anio Novus, integrados como portones de la Muralla Aureliana en el año 271.

Los romanos también fueron buenos ingenieros hidráulicos. En comparación con los anteriores, sus acueductos eran mayores y más numerosos. Casi todo lo que se sabe actualmente del sistema romano de distribución de aguas proviene del libro “De Aquis Urb’is Romae” de Sexto Julio Frontino, quien fue autor del Aquarum de Roma, de 97 a 104 a.C. Frontino llevaba registros de la utilización del agua, que indican que el emperador usaba el 17%, el 39% se usaba en forma privada, y el 44% en forma pública. Se calcula que en Roma diariamente se consumían entre 380 y 1 100 millones de litros de agua. La fracción del 44% para uso público estaba subdividida adicionalmente en un 3% para los cuarteles, el 24% para los edificios públicos, incluidos once baños públicos, un 4% para los teatros, y un 13% para las fuentes. Había 856 baños privados a la fecha del informe. En todo caso, la administración del agua en Roma era una tarea considerable e importante. Gran parte del agua que supuestamente debería entrar a la ciudad jamás lo hizo, debido a las derivaciones que tenían escondidas los usuarios privados.

Para resolver el problema de la toma de agua para las ciudades, los romanos construyeron acueductos  siguiendo en esencia el mismo diseño, que usaba arcos semicirculares de piedra montados sobre una hilera de pilares. Cuando un acueducto cruzaba una cañada, con frecuencia requería niveles múltiples de arcos. Uno de los mejor conservados de la actualidad es el Pont du Gard en Nimes, Francia, que tiene tres niveles. El nivel inferior también tenía una carretera. Los romanos usaron tubería de plomo y luego comenzaron a sospechar que no eran salubres. Sin embargo, el envenenamiento por plomo no se diagnosticó específicamente, sino hasta que Benjamín Franklin escribió una carta en 1768 relativa a su uso.

Las técnicas utilizadas en la edificación por los romanos eran muy depuradas empleando, ya en aquellos tiempos, en sus edificios públicos el hormigón y el ladrillo, construyendo grandes bóvedas, como la del Panteón de Roma de 44 m de luz, realizada en el siglo II a.C. e impresionantes acueductos. Estas técnicas no fueron superadas en Europa hasta cerca del 1800. Uno de los grandes triunfos de la construcción pública durante este periodo fue el Coliseo, que fue el mayor lugar de reunión pública hasta la construcción del Yale Bowl en 1914.

El Coliseo de Roma

En el campo de las cimentaciones de los edificios, una de las innovaciones reseñables son sus plataformas de hormigón en masa, donde la capacidad hidráulica del cemento puzolánico permitió la colocación de las plataformas de cimentación incluso bajo el agua. En algunos casos, la utilización de estas cimentaciones continuas de gran espesor (losa de cimentación), supuso una solución eficaz en suelos pobres, con riesgo de asientos diferenciales. Así, por ejemplo, El Coliseo se alza sobre el antiguo lago del palacio de Nerón, sobre un anillo macizo de 12 m de profundidad y 170 m de diámetro, compuesto de hormigón y de grandes bloques de piedra. De forma similar, el Panteón descansa sobre un anillo sólido de 4,5 m de profundidad y más de 7 m de anchura.

El Panteón de Agripa o Panteón de Roma.

La ingeniería civil romana, y sobre todo la rama que se dedicó a las obras marítimas, experimentó un gran avance cuando descubrió la forma de fabricar morteros y hormigones hidráulicos. Vitruvio comentaba las condiciones para la construcción de distintas obras marítimas. Por ejemplo, en el caso de un dique vertical de hormigón en masa establecía que era necesaria la existencia de una playa apropiada, calidad de los fondos aceptable, posibilidad de utilizar en obra el cemento puzolánico y solicitaciones de oleaje de pequeña entidad. El procedimiento constructivo comenzaba construyendo un recinto tablestacado mediante la hinca de maderas de roble. Posteriormente, se procedía a sanear sus capas superficiales dragando, al mismo tiempo que se realizaba el perfilado de la cimentación. Las dragas eran manuales, iguales a las que se han utilizado hasta principios del siglo XIX. Posteriormente, se hormigonaba bajo el agua, llenando el recinto de conglomerado hidráulico. Se desencofraba retirando las tablestacas y se procedía a un nuevo avance repitiendo los pasos descritos. Se finalizaba la obra coronando el dique con un cabecero realizado mediante muros perimetrales de ladrillo o sillería. El hueco entre ellos se rellenaba de “todo uno” y sobre este material disgregado, se construía la calzada. Se desarrollaron grúas y barcazas que se utilizaron intensivamente en la construcción. Otro de los procedimientos constructivos a destacar es la de los cajones flotantes celulares herméticos, precursor de los diques monolíticos actuales. También hicieron uso de diques con baja cota de coronación (como en Cesarea Marítima, Israel en el 20 a.C.) para reducir la energía del oleaje antes de alcanzar el dique principal. El mayor complejo portuario artificial fue el Puerto Imperial de Roma, diseñado por Trajano, con una dársena hexagonal y un tráfico de trigo con Egipto y Francia de 300,000 t anuales.

Por supuesto, nos dejamos para otros posts, otros aspectos que irán surgiendo sobre la ingeniería y la arquitectura romanas.

Os dejo un vídeo explicativo de la construcción de los muros en este periodo.

 

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingenierías íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gánguil o pontón

https://www.omarsub.com/dragados-marinos-equipos/buque-ganguil-elmar-dos/

El gánguil, también llamado pontón o barcaza, es una embarcación plana, con una cántara o depósito donde se almacena el material dragado y que sirve para transportarlo hasta el lugar de vertido.

Presenta una capacidad entre 50 y 2000 m³. Pueden ser autopropulsados (mar abierto) o remolcados (aguas poco profundas).

 

https://sectormaritimo.es/wp-content/uploads/2016/07/Greenport_1_3.jpg

Según el modo de descarga, los gánguiles se pueden clasificar en:

  • Gánguil cerrado: descarga por medios mecánicos auxiliares
  • Gánguil de compuerta de fondo: descarga por la apertura de una compuerta giratoria
  • Gánguil de charnela: vaciado por apertura longitudinal del casco
  • Gánguil de volcado lateral

Vamos a ver en un par de vídeos varios ejemplos de cómo funciona esta máquina de transporte. En el primer vídeo veremos un gánguil de 57 m de eslora y 11,20 m de manga, con una capacidad de transporte de 1400 toneladas de escollera.

En el segundo, podremos ver el sistema de apertura de cántara de doble sentido y de velocidad controlable.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Importancia de las obras de dragado

https://es.m.wikipedia.org/wiki/Archivo:Dragagem_Luschi.jpg
https://es.m.wikipedia.org/wiki/Archivo:Dragagem_Luschi.jpg

El dragado es un proceso que implica la eliminación de rocas, sedimentos y otros materiales subacuáticos en ambientes marinos, fluviales o lacustres. Incluye las etapas de extracción, transporte y disposición de estos materiales. El dragado puede tener como objetivo profundizar ríos, canales o puertos para mejorar la navegación o evitar inundaciones en zonas aguas abajo, aumentando la capacidad de transporte de agua. La extracción se lleva a cabo con equipos especializados, mientras que el transporte puede ser por medio de la misma embarcación, gánguiles o tuberías. Finalmente, el material se descarga en el fondo de la embarcación transportadora o se bombea a través de tuberías. Cada vez más frecuente es el aprovechamiento de los materiales obtenidos mediante el dragado.

La aplicación de los dragados es muy amplia, fundamentalmente ingeniería civil y minería. Se clasifican según: objetivo del dragado, emplazamiento y características de los terrenos a dragar. El dragado se considera como un medio para conseguir un objetivo determinado. Entre otros, se podrían enunciar los siguientes:

  • Construcción y ampliación de puertos
  • Mantenimiento y mejora de calados en puertos y cauces
  • Mantenimiento y mejora de capacidad de desagüe en ríos y canales
  • Recuperación de zonas bajas inundables y drenaje de zonas pantanosas
  • Sustitución de terrenos de bajas características geotécnicas
  • Creación de suelo ganando terreno al mar
  • Cimentación y protección de Obras marítimas (offshore)
  • Construcción de rellenos para bases de carreteras, diques y aeropuertos
  • Trincheras submarinas para oleoductos, tuberías y emisarios
  • Extracción de materiales para la construcción y minerales
  • Extracción de sedimentos y áridos marinos
  • Extracción de arenas para la regeneración de playas
  • Creación de Islas artificiales en aguas costeras
  • Limpieza de fondos contaminados y sustitución de los mismos
  • Actuaciones de regeneración de hábitats subacuáticos

 

Draga con tolva continua. https://es.m.wikipedia.org/wiki/Archivo:Draga_con_tolva_continua.jpg
Draga con tolva continua. https://es.m.wikipedia.org/wiki/Archivo:Draga_con_tolva_continua.jpg

Las inversiones en maquinarias y medios especializados son un factor clave en las operaciones de dragado, por lo que la selección adecuada de equipos es crítica. Los equipos de dragado se pueden clasificar según los métodos de excavación, forma de operación y disposición del material. Estas categorías incluyen dragas mecánicas, hidráulicas y especiales. Las dragas mecánicas utilizan medios mecánicos para la excavación y la disposición, mientras que las hidráulicas utilizan medios hidráulicos. Los medios especiales son muy variados y están diseñados para usos específicos.

Antes de realizar una operación de dragado, es importante conocer aspectos como la batimetría, las características geotécnicas y geológicas del material a dragar y las condiciones medioambientales de las zonas de dragado, transporte y disposición. Esta información ayudará a minimizar los costos ambientales y económicos asociados.

También podéis consultar mi canal YouTube para ver más vídeos de obras marítimas y dragados: https://www.youtube.com/playlist?list=PLcy8Kq2fLuWlw_QLb3O6M3tvYxyFoqYNG

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Draga retroexcavadora

Draga retroexcavadora. Fuente: http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html
Figura 1. http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html

La draga retroexcavadora (backhoe/dipper dredge, en inglés) es una draga mecánica montada sobre un pedestal situado en un extremo de una pontona. Está equipada con un cazo con una capacidad entre 1 y 20 m³. Desarrollada a partir de las retroexcavadoras hidráulicas terrestres, en ciertas ocasiones se fijan directamente estas últimas a un pontón. Para asegurar su estabilidad durante la excavación, la barcaza se ancla mediante tres pilones: uno en la popa y dos en los costados de la proa. Las dragas de retroexcavadora son típicas en Europa, mientras que en Estados Unidos es más normal el uso de palas frontales.

La draga retroexcavadora es apta para suelos de diferentes tipos, incluso rocas con una resistencia a compresión simple de hasta 10 MPa. La profundidad de dragado oscila entre 2 y 24 m. Puede trabajar en condiciones de oleaje con alturas máximas de 1,5 m y velocidades máximas de corriente de 2 nudos. Aunque es adecuada para trabajar en espacios reducidos, su empleo en regeneraciones costeras es limitado debido a la necesidad de barcazas o vertido directo. Además, su operación discontinua reduce su producción en comparación con otras dragas. El campo de aplicación de la draga retroexcavadora es similar al de las dragas de rosario, siendo más adecuada para dragar rocas y suelos con menor resistencia al oleaje.

La cuchara de la retroexcavadora tiene una cara cóncava orientada hacia atrás, lo que permite que durante la excavación el cucharón se acerque a la plataforma. La cuchara entra en la capa de material a extraer de arriba hacia abajo. Este método de trabajo es similar al de las dragas de pala frontales excavando coronas circulares. Sin embargo, estos equipos pueden operar tanto en avance como en retroceso, lo que resulta en menos derrames y un fondo dragado de mejor calidad. La capacidad de trabajar en ambas direcciones mejora el rendimiento en la extracción de materiales compactos o rocas rotas. Las dragas retroexcavadoras con cables son muy efectivas en el dragado de arcillas cohesivas, pues se pueden instalar empujadores en la parte inferior del brazo de excavación que facilitan la descarga del material.

Figura 2. Draga retroexcavadora con accionamiento por cables o hidráulico

Método de operación:

  • Situación del pontón en la zona de trabajo (estacionaria)
  • Descenso de los 3 pilonos de anclaje (spuds) que absorben esfuerzos horizontales de la excavación
  • Descenso del brazo de la retroexcavadora, extracción y elevación del material
  • Carga sobre gánguiles
  • Izado de los 2 spuds situados en el tercio delantero. El spud de popa hace girar a la draga sobre su eje (eje motor). Reinicio del proceso.

 

Figura 3. Ciclo de trabajo de la draga de retroexcavadora (Bray et al., 1997)

La draga de retroexcavadora presenta varias ventajas, tales como: la capacidad de dragar diferentes tipos de terrenos, incluso aquellos con escombros y cantos; la capacidad de trabajar en espacios reducidos y controlar la posición y profundidad con precisión; la ausencia de necesidad de anclajes; la dilución mínima del material dragado; y un tiempo de ciclo más corto en comparación con una draga de cuchara de tamaño similar. Además, los componentes clave del equipo se producen en serie, lo que reduce los costos de instalación y mejora la calidad y el control. Se requiere solo una persona para realizar las operaciones de dragado, aunque por motivos de seguridad y ayuda en la maniobra del pontón, se recomienda un equipo de 2 o 3 personas.

El principal desafío de la draga de retroexcavadora es su baja capacidad de producción en comparación con otros equipos de dragado que trabajan de forma continua. Este inconveniente es común entre la mayoría de los equipos de dragado mecánicos, excepto la draga de rosario, que también depende de la disponibilidad de los gánguiles de descarga. La habilidad del operador es crucial para lograr un perfil final de trabajo uniforme, sin embargo, también es importante tener en cuenta las características del terreno a dragar.

He grabado un vídeo sobre esta draga, que espero os sea de interés.

Os dejo unos vídeos donde podréis ver cómo funciona esta draga. Espero que os gusten.

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dragas de succión en marcha o de arrastre

Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/
Figura 1. Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/

Una draga hidráulica de succión en marcha o de arrastre es una embarcación autopropulsada y autoportante que draga de forma continua elevados volúmenes de material en aguas profundas, incluso admitiendo condiciones marítimas desfavorables. Este tipo de dragas suponen algo menos de la cuarta parte del parque mundial de dragas hidráulicas.

El material se aspira mediante una tubería que presenta en su extremo un cabezal de succión. La bomba de dragado, centrífuga, puede ser sumergible (esta se instala en la tubería de succión a medio camino entre el cabezal y la conexión del tubo de succión al forro exterior del casco), o estar a bordo. La bomba pone en suspensión al material suelto y al agua, aspira dicha mezcla mientras el barco sigue en movimiento y la almacena en la cántara de la propia draga. El material sólido se decanta y el agua se evacua por rebose. La cántara puede almacenar entre 1000 y 20000 m³, pudiéndose transporta el material a grandes distancias. Se descarga el material por apertura del fondo o por bombeo.

Esta draga es muy útil en terrenos blandos, no demasiados compactos ni cohesivos (fangos, arcillas blandas, arenas y algunas gravas). La profundidad de trabajo de esta draga se encuentra habitualmente entre los 4 y 50 m, aunque ya se han alcanzado profundidades de trabajo que llegan a 120-150 m. La velocidad de navegación, de 17 nudos. Puede trabajar hasta con una altura de ola de 5 m. El tamaño máximo de partícula es de 300 mm y la resistencia máxima al corte del material a dragar es de 75 kPa.

Figura 2. Ciclo de trabajo de las dragas de succión en marcha (Sanz, 2001)

Os paso un vídeo donde podéis observar cómo trabajan estas dragas. Espero que os guste.

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dragas con inyectores de agua

Figura 1. http://tecnologia-maritima.blogspot.com.es/

La draga de inyección de agua, también conocida como jet dredger o wid en inglés, es una máquina autopropulsada o remolcable que funciona por medio de la agitación de agua a baja presión sobre materiales finos, creando una pulpa de menor densidad que se desplaza por gravedad por la diferencia de gradiente de densidad y las corrientes marinas. Este método es adecuado cuando el material se encuentra en un plano inclinado descendente. Con una pendiente de 1:1000 se pueden mover fangos hasta una distancia de 1 km. Se originó en Países Bajos a principios de los años 80 y se utiliza principalmente en el dragado de puertos. En Estados Unidos, se emplea ampliamente en el dragado de ríos y cauces fluviales.

Por otro lado, las dragas niveladoras o de remoción se emplean para mover materiales corta distancia o para ayudar en las tareas de dragado de otros equipos. Sin embargo, su principal característica es que no extraen el material del fondo marino fuera del agua, sino que lo transfieren de un punto a otro, siempre por debajo del nivel del agua.

El equipo está compuesto por la unidad propulsora, la toma de agua, la escala, los cables de elevación y los inyectores de agua. Se controla y se mueve mediante sus hélices de proa y popa, lo que le permite operar en áreas pequeñas.

Entre sus ventajas se destacan su alta eficiencia y productividad en condiciones adecuadas, su maniobrabilidad y bajo calado. Sin embargo, la producción depende de la capacidad de los jets, la longitud del brazo y la inclinación del fondo marino, mientras que la profundidad no tiene una gran influencia en su rendimiento. Lamentablemente, su uso está restringido a materiales finos y sueltos y no es viable en presencia de fuertes corrientes contrarias. Además, su efectividad está estrechamente ligada a las pendientes del lecho marino y se limita a desplazamientos de material locales. Es importante tener en cuenta la posibilidad de fallos debido a obstáculos. Además, se desconoce el destino final del material removido, lo que puede dificultar las labores de medición con ciertos equipos hidrográficos si se remueve excesivamente sedimento de la zona a dragar.

Método de operación:

—Posicionamiento de la draga

—Descenso de las boquillas inyectoras de agua hasta penetrar en la capa de material

—Inyección de agua a baja presión

—Desplazamiento de la draga hacia delante (dirección de desplazamiento de la pulpa) hasta la zona de acumulación del material

El funcionamiento del ciclo de estos equipos presenta una desventaja: solo se puede utilizar el trayecto de ida de la embarcación para realizar la impulsión del material fluidificado. Durante la vuelta, es necesario levantar el cabezal y retroceder o girar la embarcación y navegar hacia adelante hasta el punto de partida. En cualquier caso, el tiempo invertido en el trayecto de regreso no contribuye a aumentar la producción.

Figura 2. Ciclo de producción de las dragas de inyección de agua (Bray et al, 1997)
ecnologia-maritima.blogspot.com.es

La draga de inyección de agua tiene limitaciones en su uso. La profundidad máxima a la que se puede operar varía en función del tipo de barco y la manera en que está conectado el equipo inyector. Con el empleo de equipos rígidos, se pueden trabajar solo en aguas menos profundas de 15 m. Sin embargo, si se usan conductos flexibles, se puede operar en profundidades más grandes. En cualquier caso, la utilización efectiva de esta draga depende de sus características particulares, aunque también se pueden establecer límites en función de la viabilidad económica.

Las limitaciones en cuanto a profundidad de operación para dragas pequeñas son de un mínimo de 3 m, mientras que para las dragas grandes con un conductor rígido son de un máximo de 15 m. El equipo es sensible al oleaje, siendo la altura máxima de ola permitida es de 0,5 m. En cuanto al tipo de terreno, se puede dragar en aquellos que sean muy blandos y de baja cohesión, así como en terrenos muy sueltos o con una granulometría fina disgregada.

Os dejo un vídeo para que veáis su funcionamiento.

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.