Normativas de seguridad y prevención de riesgos laborales en logística y transporte

Imagen generada por IA. Seguro que encontráis problemas de seguridad.

Las actividades de logística y transporte requieren el cumplimiento de normativas específicas para garantizar la seguridad de las personas involucradas en estos procesos. La legislación y los estándares internacionales establecen requisitos para minimizar riesgos y mejorar las condiciones laborales en este sector, lo que resulta esencial para garantizar la continuidad operativa y la protección del personal. En el contexto de las empresas de transporte y logística, estas normativas no solo buscan prevenir accidentes, sino también optimizar la eficiencia de los procesos mediante la implementación de medidas de seguridad adecuadas.

Legislación sobre prevención de riesgos laborales

La Ley 31/1995 de Prevención de Riesgos Laborales (LPRL) constituye el marco normativo español en materia de seguridad y salud en el trabajo. Su propósito es prevenir incidentes mediante la identificación y control de los peligros presentes en los entornos laborales. Esta legislación reconoce el derecho de las personas trabajadoras a desempeñar sus funciones en condiciones seguras y establece la obligación de las empresas de adoptar medidas preventivas. También regula la consulta y participación del personal en la adopción de decisiones relacionadas con la seguridad y la prevención de riesgos laborales.

Las empresas del sector logístico y del transporte deben integrar la prevención de riesgos laborales en su estructura organizativa. Esto implica evaluar riesgos específicos, como la manipulación de cargas pesadas, la exposición a productos peligrosos, el uso de maquinaria especializada y la conducción de vehículos de gran tonelaje. La LPRL exige que los planes de prevención se adapten a la naturaleza de las operaciones de cada empresa y garanticen que cada área de trabajo cuente con las medidas de seguridad apropiadas. Además, obliga a que el personal reciba formación periódica para que puedan identificar y evitar riesgos.

Normas internacionales de gestión de seguridad y salud laboral

La norma ISO 45001 ha reemplazado a la OHSAS 18001 como el estándar de referencia para la gestión de la seguridad y salud en el trabajo. Su aplicación permite a las organizaciones establecer un sistema que no solo cumpla con la legislación vigente, sino que también optimice la prevención de riesgos mediante un enfoque estructurado. La ISO 45001 fomenta la identificación y reducción de peligros, así como la participación activa del personal en la gestión de la seguridad.

En empresas logísticas, la aplicación de la ISO 45001 implica la implementación de medidas concretas como la evaluación de riesgos ergonómicos en almacenes, el establecimiento de protocolos de carga y descarga seguros y la gestión de emergencias ante posibles incendios o derrames de sustancias peligrosas. También exige la realización de inspecciones periódicas de vehículos y equipos de transporte para detectar fallos mecánicos que puedan comprometer la seguridad del personal.

A diferencia de su predecesora, esta norma adopta un enfoque proactivo, haciendo hincapié en la eliminación de peligros antes de que se generen incidentes. Además, su estructura facilita la integración con otros sistemas de gestión, como los de calidad y medio ambiente, y proporciona una visión global de la seguridad en la empresa.

Seguridad vial en el transporte

Para reducir los incidentes en carretera, la norma ISO 39001 establece criterios específicos para la gestión de la seguridad vial en las organizaciones. Su aplicación es especialmente relevante para empresas de transporte de mercancías y pasajeros, operadores logísticos y cualquier entidad cuya actividad dependa del desplazamiento de personas o bienes.

Las empresas de transporte que implementan la ISO 39001 pueden establecer controles sobre los tiempos de conducción y descanso, garantizando que el personal conductor no sobrepase las horas de trabajo recomendadas. Además, esta norma fomenta la formación en conducción segura y la adopción de tecnologías que ayuden a minimizar el riesgo de accidentes, como sistemas de supervisión en tiempo real, mantenimiento predictivo de vehículos y análisis de rutas seguras.

Los operadores logísticos también deben aplicar esta normativa en la gestión de flotas, estableciendo programas de mantenimiento preventivo y procedimientos de actuación en caso de incidentes viales. La combinación de estas medidas contribuye a reducir las tasas de siniestralidad y a mejorar la eficiencia operativa del sector.

Responsabilidades empresariales y derechos del personal

La legislación en materia de prevención de riesgos laborales impone a las empresas la responsabilidad de garantizar un entorno seguro. Esto implica proporcionar equipos de protección, señalizar adecuadamente los espacios de trabajo y supervisar el cumplimiento de las normativas. También se exige la realización de reconocimientos médicos periódicos, siempre con el consentimiento del personal, y la impartición de formación obligatoria en prevención de riesgos.

En el ámbito del transporte y la logística, las empresas deben proporcionar formación específica para cada puesto, de modo que el personal que opera maquinaria pesada, trabaja en muelles de carga o conduce vehículos de larga distancia conozca los riesgos asociados y las medidas de seguridad correspondientes.

Por su parte, las personas trabajadoras tienen la obligación de utilizar correctamente los medios de protección, informar sobre situaciones de riesgo y contribuir al cumplimiento de las medidas de seguridad. En el caso de los trabajadores del transporte de mercancías, es fundamental que sigan los protocolos establecidos para la correcta manipulación de cargas y la distribución equitativa del peso en los vehículos, con el fin de evitar accidentes causados por una carga mal asegurada.

La falta de aplicación de estos principios puede derivar en sanciones administrativas, responsabilidades civiles e incluso penales para la empresa en casos de incumplimiento grave. Las empresas que no garanticen la seguridad de su personal pueden enfrentarse a multas económicas, a la suspensión de sus operaciones o, en los casos más graves, penas de prisión para sus responsables.

Conclusión

El cumplimiento de las normativas de seguridad y prevención de riesgos en logística y transporte no solo protege a quienes trabajan en el sector, sino que también mejora la eficiencia operativa y reduce los costos derivados de incidentes laborales. La aplicación de la LPRL y de estándares internacionales como ISO 45001 e ISO 39001 permite a las empresas gestionar la seguridad de manera estructurada y efectiva. Una adecuada implementación de estas normativas es esencial para garantizar entornos laborales seguros y minimizar los riesgos asociados a las actividades logísticas y de transporte. Además, una gestión eficaz de la seguridad fortalece la imagen de la empresa y contribuye a la sostenibilidad de sus operaciones en el largo plazo.

Os dejo una presentación de clase sobre este tema. Forma parte de una asignatura denominada «Sostenibilidad, calidad y seguridad», del segundo curso del Grado en Gestión del Transporte y Logística de la Universitat Politècnica de València. También os dejo un mapa mental de dicha presentación.

Descargar (PDF, 1.23MB)

 

Aprendizaje no supervisado en la ingeniería civil

El aprendizaje no supervisado es una rama del aprendizaje automático (Machine Learning) que se centra en analizar y estructurar datos sin etiquetas ni categorías predefinidas. A diferencia del aprendizaje supervisado, en el que los modelos se entrenan con datos etiquetados, en el aprendizaje no supervisado los algoritmos deben identificar de manera autónoma patrones, relaciones o estructuras ocultas dentro de los datos. Se trata de una herramienta poderosa para explorar y entender datos complejos sin la necesidad de etiquetas predefinidas, descubriendo patrones y estructuras ocultas que pueden ser de gran valor en diversas aplicaciones prácticas.

El aprendizaje no supervisado permite analizar datos sin un objetivo definido o sin conocimiento previo de su estructura. Este enfoque es ideal para explorar patrones latentes y reducir la dimensionalidad de grandes conjuntos de datos, lo que facilita una mejor comprensión de su estructura. Además, al no depender de etiquetas previamente asignadas, permite adaptarse de manera flexible a diversos tipos de datos, incluidos aquellos cuya estructura subyacente no es evidente. Esta característica lo hace especialmente valioso en ámbitos como la exploración científica y el análisis de datos de mercado, donde los datos pueden ser abundantes, pero carecer de categorías predefinidas.

A pesar de sus ventajas, el aprendizaje no supervisado plantea desafíos como la interpretación de los resultados, ya que sin etiquetas predefinidas puede ser difícil evaluar la precisión de los modelos. Además, la elección del número óptimo de grupos o la validación de las reglas de asociación descubiertas puede requerir la intervención de expertos y métodos adicionales de validación.

El aprendizaje no supervisado incluye diversas técnicas que permiten analizar y extraer patrones de grandes conjuntos de datos sin necesidad de etiquetas. Una de las principales técnicas es el agrupamiento (clustering), que busca dividir los datos en grupos basados en similitudes inherentes. Existen dos tipos de algoritmos de agrupamiento: el agrupamiento duro, que asigna un dato a un único grupo, y el agrupamiento suave, que permite que un dato pertenezca a varios grupos con diferentes grados de pertenencia. Técnicas como k-means y k-medoids se utilizan mucho en este contexto. Mientras que k-means busca minimizar la distancia entre los datos y los centros de los grupos, k-medoids es más robusto frente a valores atípicos y adecuado para datos categóricos. Por otro lado, el agrupamiento jerárquico genera un dendrograma que permite explorar relaciones jerárquicas en los datos. Los mapas autoorganizados, que emplean redes neuronales, se utilizan para reducir la dimensionalidad de los datos sin perder su estructura y facilitar su interpretación en campos como la bioinformática y la economía.

En situaciones donde los datos tienen relaciones difusas, el agrupamiento suave, como el fuzzy c-means, asigna grados de pertenencia a cada dato, lo que resulta útil en áreas como la biomedicina. Los modelos de mezcla gaussiana, que utilizan distribuciones normales multivariadas, también se aplican a problemas complejos como la segmentación de mercado o la detección de anomalías. Además, el aprendizaje no supervisado incluye técnicas de asociación que buscan descubrir relaciones entre variables en grandes bases de datos, como el análisis de la cesta de la compra, donde se identifican productos que suelen comprarse juntos. También se utilizan técnicas de reducción de la dimensionalidad, que simplifican los datos de alta dimensionalidad sin perder mucha variabilidad. El análisis de componentes principales (PCA) es una técnica común en este ámbito, ya que transforma los datos en combinaciones lineales que facilitan su visualización y análisis, especialmente en casos de datos ruidosos, como los procedentes de sensores industriales o dispositivos médicos. Otras técnicas, como el análisis factorial y la factorización matricial no negativa, también se utilizan para reducir la complejidad de los datos y hacerlos más manejables, y son útiles en áreas como la bioinformática, el procesamiento de imágenes y el análisis de textos.

El aprendizaje no supervisado tiene diversas aplicaciones, como el análisis de clientes, que permite identificar segmentos con características o comportamientos similares, lo que optimiza las estrategias de marketing y la personalización de los servicios. También se utiliza en la detección de anomalías, ya que ayuda a identificar datos atípicos que pueden indicar fraudes, fallos en los sistemas o comportamientos inusuales en áreas industriales y financieras; en este campo, el análisis factorial revela dinámicas compartidas entre sectores económicos, lo que mejora la predicción de tendencias de mercado. En el procesamiento de imágenes, facilita tareas como la segmentación, que consiste en agrupar píxeles con características similares para identificar objetos o regiones dentro de una imagen. Además, en el análisis de textos, técnicas como la factorización matricial no negativa permiten descubrir temas latentes en grandes colecciones de documentos, mejorando los sistemas de recomendación y el análisis de sentimientos. En la investigación genómica, el clustering suave ha permitido identificar genes implicados en el desarrollo de enfermedades, lo que ha contribuido a avanzar en la medicina personalizada. Esta capacidad para analizar patrones complejos en datos biológicos ha acelerado el descubrimiento de biomarcadores y posibles dianas terapéuticas. Este enfoque también permite identificar correlaciones entre variables macroeconómicas que de otra manera podrían pasar desapercibidas. Por otro lado, el PCA se ha aplicado con éxito en la monitorización de sistemas industriales, ya que permite predecir fallos y reducir costes operativos mediante el análisis de variaciones en múltiples sensores. En el ámbito de la minería de textos, la factorización no negativa permite descubrir temas latentes, lo que mejora los sistemas de recomendación y análisis de sentimiento. Esto resulta particularmente valioso en aplicaciones de marketing digital, donde la segmentación precisa del contenido puede aumentar la eficacia de las campañas.

El aprendizaje no supervisado ha encontrado diversas aplicaciones en el ámbito de la ingeniería civil, ya que permite optimizar procesos y mejorar la toma de decisiones. A continuación, se destacan algunas de ellas:

  • Clasificación de suelos y materiales de construcción: Mediante técnicas de agrupación (clustering), es posible agrupar muestras de suelo o materiales de construcción según sus propiedades físicas y mecánicas. Esto facilita la selección adecuada de materiales para proyectos específicos y optimiza el diseño de cimentaciones y estructuras.
  • Análisis de patrones de tráfico: El aprendizaje automático permite identificar patrones en los flujos de tráfico, detectando comportamientos anómalos o recurrentes. Esta información es esencial para diseñar infraestructuras viales más eficientes y aplicar medidas de control de tráfico.
  • Monitorización de estructuras: Mediante la reducción dimensional y el análisis de datos procedentes de sensores instalados en puentes, edificios y otras infraestructuras, se pueden detectar anomalías o cambios en el comportamiento estructural. Esto contribuye a la prevención de fallos y al mantenimiento predictivo.
  • Optimización de rutas para maquinaria pesada: En proyectos de construcción a gran escala, el aprendizaje no supervisado ayuda a determinar las rutas más eficientes para la maquinaria, considerando factores como el terreno, el consumo de combustible y la seguridad, lo que se traduce en una mayor productividad y reducción de costes.
  • Segmentación de imágenes por satélite y aéreas: Las técnicas de aprendizaje no supervisado permiten clasificar y segmentar imágenes obtenidas de satélites o drones, identificando áreas urbanas, vegetación, cuerpos de agua y otros elementos. Esto es útil para la planificación urbana y la gestión de recursos naturales.
  • Análisis de datos de sensores en tiempo real: En la construcción de túneles y excavaciones, el análisis en tiempo real de datos de sensores puede realizarse mediante algoritmos no supervisados para detectar condiciones peligrosas, como deslizamientos de tierra o acumulación de gases, lo que mejora la seguridad en las obras.

En conclusión, el aprendizaje no supervisado es una herramienta versátil y potente para abordar problemas complejos y descubrir patrones ocultos en datos sin etiquetar. Su aplicación trasciende sectores, ya que ofrece soluciones prácticas para la investigación, la industria y el análisis de datos. En un mundo impulsado por el crecimiento exponencial de la información, el dominio de estas técnicas se presenta como una ventaja competitiva fundamental. La capacidad para analizar grandes volúmenes de datos y extraer información útil sigue siendo un motor clave de innovación y progreso.

Os dejo un mapa mental acerca del aprendizaje no supervisado.

Para profundizar en este tema, puedes consultar la siguiente conferencia:

Descargar (PDF, 1.18MB)

Referencia:

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Gestión de la cadena de suministro en obras

Una cadena de suministro es un sistema integral que crea y entrega un producto o servicio, desde el suministro de materias primas hasta la entrega al usuario final. Abarca el flujo de materiales, productos, información y capital, lo que lo convierte en un área compleja de la cadena de valor de la construcción. El término se originó en la industria manufacturera, pero su esencia se remonta a años atrás. Esta cadena supervisa todos los aspectos del proceso de producción, incluidas las actividades, la comunicación, los recursos y los componentes.

La cadena de suministro es una red complicada de organizaciones colaboradoras que trabajan juntas para proporcionar a los consumidores bienes y servicios. La gestión de la cadena de suministro comenzó en la fabricación con la idea de la entrega «justo a tiempo». El objetivo es reducir el inventario y gestionar las interacciones entre los proveedores y la línea de producción. Al integrar los procesos empresariales, el objetivo es mejorar la estructura y la gestión de la cadena mediante el reconocimiento de la interdependencia. Esto implica gestionar las operaciones y las relaciones en toda la cadena de suministro de manera integral.

El contratista principal es responsable de la empresa constructora y depende de subcontratistas y proveedores para llevar a cabo su ejecución. Una buena comunicación y colaboración entre las partes es crucial para garantizar la productividad. El promotor contrata directamente al contratista principal, quien a su vez se encarga de contratar a sus propios proveedores y subcontratistas. Su principal deber es asegurar la correcta ejecución de todos los contratos.

La subcontratación ofrece una serie de beneficios. En primer lugar, el subcontratista posee habilidades técnicas, de ingeniería y de construcción especializadas, mientras que la empresa constructora contratista generalmente tiene competencias más generalizadas. Además, los servicios subcontratados se pueden proporcionar de manera más rentable, ya que se espera que la empresa subcontratada tenga una mayor productividad en su especialidad o reduzca los gastos generales. Otra ventaja es que la subcontratación ofrece la posibilidad de aumentar la mano de obra a un costo reducido, lo que permite al contratista principal prescindir del personal permanente y gestionar de manera más eficiente los picos temporales de trabajo. Además, la subcontratación permite la utilización de recursos humanos ocasionales para un proyecto específico, sin la necesidad de contratarlos de forma permanente dentro de la empresa. Asimismo, al transferir parte de los riesgos comerciales al subcontratista, los riesgos asociados pueden minimizarse hasta cierto punto. Por último, la subcontratación mejora la capacidad empresarial para entrar en mercados inusuales, ya sea por consideraciones geográficas o por la diversificación de los servicios.

La práctica de subcontratación puede resultar en la pérdida de beneficios, sin embargo, los gerentes de proyectos pueden considerarla rentable debido a la exención de los gastos generales. Sin embargo, este enfoque solo funciona si la fuerza laboral de la empresa se emplea a tiempo completo y es capaz de realizar las tareas subcontratadas.

Las empresas que subcontratan suelen ser más pequeñas y tienen capacidades financieras limitadas. El trabajo in situ puede ser difícil de gestionar debido a la gran cantidad de mano de obra que implica. Las empresas más pequeñas pueden carecer de procedimientos de trabajo establecidos, lo que genera dudas sobre la calidad de su trabajo. Por lo tanto, los contratistas principales deben supervisar de cerca a los subcontratistas para garantizar que se cumplan los requisitos del proyecto.

En la industria de la construcción, es común contratar empresas externas para mano de obra, maquinaria, equipos y materiales. Esta práctica conocida como «contratación externa» puede representar más de las tres cuartas partes de la producción en la actualidad.

Durante la construcción, el contratista principal decide utilizar recursos internos o contratar empresas especializadas. En este último caso, se contrata a subcontratistas y también se les denomina «proveedores» si proporcionan materiales o equipos.

Los subcontratistas se enfrentan a decisiones similares a las de los contratistas principales a la hora de formar una cadena de suministro. La cadena puede tener varios niveles de subcontratación, hasta el cuarto o quinto nivel en algunos países. Los principales contratistas dependen cada vez más de otros participantes de la cadena. En España, la subcontratación tiene un máximo de tres niveles, a excepción de obras excepcionalmente complejas.

Las cadenas de suministro de la construcción presenta una serie de características. En primer lugar, los suministros se canalizan al sitio de construcción para ensamblar los componentes. Es diferente de los sistemas de fabricación convencionales. Por otra parte, la cadena de suministro de la construcción es temporal y requiere reconfiguraciones repetidas. Esta característica lo hace inestable y fragmentado. Además, es una cadena hecha a medida donde cada proyecto genera un nuevo producto. Hay muy poca repetición.

La planificación inadecuada y las medidas improvisadas pueden dañar la eficiencia de la cadena de suministro. Los pedidos tardíos de material generan dudas sobre la demanda entre los proveedores y requieren amplios márgenes de seguridad. Las solicitudes urgentes de material conducen a un almacenamiento in situ prolongado, con el riesgo de que se deteriore y se produzcan problemas de recogida y custodia.

Se recomiendan varias iniciativas pragmáticas para mejorar la cadena de suministro en la construcción. La interfaz entre las actividades de producción in situ y la cadena de suministro se puede ampliar mediante la aplicación de metodologías como la «cadena crítica» o el «último planificador». Es imperativo mejorar la cadena de suministro en sí misma, aunque la naturaleza impredecible de las actividades del desarrollador impide este esfuerzo. La transferencia de actividades del sitio de construcción a la cadena, facilitada por la prefabricación o la industrialización, es otra alternativa, aunque requiere un diseño más meticuloso y podría estar sujeta a cambios. El objetivo es integrar el trabajo con la cadena de suministro, donde el proyecto y el contrato de construcción podrían servir como un primer paso en esta dirección, aunque requiere un nivel de integración más completo.

Os paso algunos vídeos al respecto.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Recomendaciones para la distribución de las instalaciones de obra

Figura 1. Vista aérea de septiembre de 2017 de las obras del estadio de Los Ángeles en Hollywood Park. https://commons.wikimedia.org/

Las instalaciones temporales son elementos colocados durante una obra para garantizar la seguridad y eficiencia de los trabajos. Al finalizar, se retiran. Es crucial realizar un estudio previo para evitar retrasos y problemas, como acceso dificultoso o falta de infraestructuras.

Las instalaciones temporales deben cumplir con la normativa vigente y pueden incluir vallas de obra para protección, instalaciones auxiliares con baños portátiles, áreas de descanso y espacios de primeros auxilios. La señalización es relevante para informar sobre los peligros y prevenir accidentes. Estas instalaciones deben ser adecuadas al tamaño y tipo de obra, y es importante que los trabajadores estén debidamente informados y capacitados. La presencia de señales es tan valiosa como la formación de los trabajadores.

La distribución eficiente y segura de las instalaciones de obra es de vital importancia. Para lograr este objetivo, se recomienda una adecuada planificación, pues optimizará el flujo de trabajo y garantizará un entorno seguro.

En general, cuando se dispone de espacio suficiente, se pueden considerar las siguientes recomendaciones para la distribución de las instalaciones de obra que facilite su gestión eficiente:

a) Las oficinas de obra deben situarse en zonas elevadas para tener una vista panorámica de la entrada y salida de la obra.

b) Los vestuarios y barracones para el personal obrero deben ubicarse fuera de la zona de trabajo, preferiblemente fuera de la vista de los tajos.

c) Los almacenes y talleres también deben estar alejados del área de trabajo para no obstaculizar la llegada y salida de suministros, así como el tráfico normal de la instalación. Los almacenes deben tener fácil acceso desde el exterior y salida fácil hacia los talleres.

d) Es recomendable que las obras importantes dispongan de una báscula propia para camiones cerca de la entrada para facilitar el control por peso de los aprovisionamientos.

e) Si hay un gran número de vehículos en uso, se debe considerar la instalación de una gasolinera o almacén-surtidor de combustible.

f) En la medida de lo posible, se debe considerar la posibilidad de reutilizar las instalaciones después de la obra o, al menos, evitar la necesidad de demolerlas.

g) Siempre que sea posible, se debe diseñar las instalaciones aprovechando la gravedad y reducir el trabajo necesario aprovechando la orografía o las pendientes del terreno.

h) Las instalaciones deben ajustarse a la duración prevista de la obra, y su ubicación debe ser tal que no se necesite un cambio de emplazamiento durante la obra. Si un cambio es imprescindible, debe tenerse en cuenta desde el principio y planificarse cuidadosamente para evitar interrupciones en el trabajo.

Os dejo un par de vídeos al respecto, que espero os sea de interés.

Estudio del layout o de la distribución en planta de los almacenes en obra

Figura 1. Aspecto de una instalación de obra y acopios de material al aire libre. https://es.dreamstime.com/foto-de-archivo-editorial-kaliningrado-rusia-almac%C3%A9n-temporal-del-almacenamiento-de-los-productos-y-de-los-materiales-de-la-construcci%C3%B3n-image58934568

Los almacenes de materiales y maquinaria, tanto en una obra como en los parques de maquinaria, deben considerar una gran variedad de problemas interrelacionados relacionados con la sistematización física y contable. Es por ello que un almacén debería diseñarse para reducir costes y retrasos, así como interferir lo menos posible en el proceso productivo. Para ello, un sistema de almacenamiento debería cumplir los siguientes requisitos:

  • Posibilidad de una recepción cómoda de los materiales.
  • Instalaciones adecuadas al tipo de material almacenado y a sus exigencias de manipulación.
  • Posibilidad de una fácil distribución.
  • Minimizar los registros contables correspondientes a los movimientos físicos.

Para proyectar correctamente un almacén, deberíamos realizar un estudio del layout o de la distribución en planta, siendo los elementos de inventario y el espacio disponible los factores más importantes a tener en cuenta.

En la asignación del espacio de almacenamiento se deben considerar una serie de criterios relacionados con el tipo de existencias y el movimiento de materiales o maquinaria:

  1. Separar las áreas destinadas a los materiales que, por su naturaleza, vayan a ser manipulados en grandes lotes o con gran frecuencia, de los que se mueven con poca frecuencia o en pequeños lotes, aunque de forma reiterada.
  2. Reservar las zonas más accesibles o más próximas a los puntos de carga y descarga para el almacenamiento de los elementos de desplazamiento más frecuente.
  3. Considerar qué elementos pueden almacenarse al aire libre, con o sin cobertura protectora.
Figura 2. Almacenamiento mediante estantes, con pasillos para transporte. https://www.ohra.es/sectores/materiales-de-construccion

Un buen estudio planimétrico debe considerar, entre otros, los siguientes objetivos:

  • Las instalaciones deben proyectarse para asegurar su máxima utilización.
  • Debe minimizarse los tiempos muertos y reducir la congensión del flujo de trabajo.
  • Debe preverse un mantenimiento eficiente de las áreas e instalaciones del almacén, que no obstaculice el desarrollo de los trabajos.
  • Debe garantizarse la mayor velocidad del flujo de materiales y la reducción de los tiempos de trabajo.
  • Se deben considerar las condiciones del trabajo del personal, respetando las exigencias de seguridad e higiene, así como la ergonomía.

Los almacenes de materiales en obra o en el parque de maquinaria normalmente utilizan sistemas con silos y cisternas, sistemas de estanterías de diversas clases (Figura 2) o sistemas paletizados (Figura 3). Sin embargo, también son habituales los almacenes al aire libre o en áreas no provistas de edificios. En este último caso, en las obras encontramos depósitos desordenados o a granel de materiales tales como los áridos.

Figura 3. Almacenamiento paletizados de sacos de cemento. https://www.cuevadelcivil.com/2013/03/almacenamiento-de-materiales.html

Para realizar un almacenamiento adecuado se debe planificar la distribución o layout incluyendo las actividades que se indican en la Figura 4 (Serpell, 2002). De esta forma, se conseguirá una distribución eficiente de los sistemas de almacenaje que contribuirá a la mejora de la productividad en la ejecución de la obra.

Figura 4. Diseño de la distribución en obra de los materiales (Serpell, 2002).

Analicemos brevemente cada uno de los elementos indicados en la Figura 3 (Serpell, 2002):

  1. Materiales necesarios para la ejecución de la obra: la naturaleza de los materiales influye en el espacio requerido en el almacén.
  2. Formas de almacenamiento y otras exigencias: el material que entra en un almacén pasa por varios movimientos que van desde el envío y descarga en la obra hasta el despacho y carga para llevarlo al tajo correspondiente. Por tanto se pueden usar tres tipos de almacenes en obra: un área temporal que minimice la distancia al tajo, un área de acopio de materiales, de mayores dimensiones y para materiales a granel no afectados por las condiciones ambientales, y almacenes cerrados o bodegas. A parte también se encuentran en obra otras instalaciones como talleres de fabricación (ferralla, encofrados, prefabricados, etc.).
  3. Cantidad a almacenar y tamaño de la instalación: la cantidad de materiales a almacenar determinará el tamaño del almacén. Sin embargo, la planificación de la obra lamina el volumen necesario. En el layout, deberá minimizarse las áreas dedicadas a acceso, manipulación y otras actividades complementarias al propio almacenaje.
  4. Calidad de las instalaciones: las características, y por tanto, el coste del almacén será función, entre otros factores, del tipo y duración de la obra, de las condiciones ambientales, de la protección contra el fuego, disponibilidad de material, reutilización de la instalación, la protección de los materiales o las exigencias de la propiedad.
  5. Cercanía relativa: Se refiere a la proximidad de la instalación a los tajos y a la facilidad para recibir los materiales que llegan a obra.
  6. Relaciones entre áreas de almacenamiento: Se trata de reducir al máximo el movimiento de operarios, materiales y equipos entre las distintas instalaciones.
  7. Consideraciones varias: la flexibilidad de las instalaciones y la seguridad ante el robo como las correspondientes a los operarios, deberá considerarse en la planificación de los almacenes.

Os dejo un vídeo donde se explica el diseño de layout orientado al proceso.

Referencias:

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control eficiente de almacenes en obras: El método ABC

Figura 1. Método ABC para gestionar los inventarios

Ya hemos hablado de los almacenes de obra y su gestión en un artículo anterior. Ahora vamos a explicar brevemente cómo se pueden gestionar de forma eficiente a través del conocido método ABC.

Todos los sistemas de inventarios presentan un sistema de control cuya función es mantener un registro actualizado de los elementos almacenados, informar sobre el nivel de existencias, notificar las situaciones anormales y elaborar informes (Pérez Gorostegui, 2021). Sin embargo, un control minucioso solo sería necesario en unos pocos artículos, atendiendo al Principio de Pareto, según el cual, unos pocos artículos tienen mucha importancia, y muchos de ellos, poca. Este principio también suele llamarse como regla 80/20, que aplicado a un inventario significa que el 20 % de los elementos supone el 80 % de la inversión total, mientras que el 80 % de todos ellos, apenas supone el 20% de toda la inversión en stocks.

Se puede aplicar el Método ABC para controlar los elementos almacenados. Para ello se clasifican según su valor de uso anual (podría ser cualquier otro periodo), agrupándolos de acuerdo con el coste de su gasto anual: cantidad utilizada (consumida, vendida, empleada, etc.) coste unitario (o precio unitario). Para ello se dividen los elementos en tres grupos:

  • Grupo A: Suponen un porcentaje alto de la inversión total, de forma que, controlando este grupo, se tiene controlado casi todo el almacén. Representa generalmente el 10 % de los artículos, estando su valor de uso entre el 60 % y el 80 % del total.
  • Grupo C: Son aquellos cuyo control es poco interesante, pues siendo muy numeroso, su valor es pequeño. Suele ser el 50-70 % del total de artículos, significando solo entre el 5-10 % del valor total de uso
  • Grupo B: Tienen una importancia en relación al número de unidades del almacén parecida a la que tienen con referencia al valor total de la inversión del inventario. Abarca generalmente al 25 % de los artículos, y representa entre el 15-30 % del valor total de uso.

Lo sorprendente en este tipo de análisis es la similitud de la forma de las curvas ABC. En efecto, si el número de variedades es lo suficientemente grande, es similar con independencia del tipo de elementos almacenados.

Os dejo un vídeo explicativo al respecto.

Referencias:

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diagrama de recorrido como herramienta de estudio de métodos

Figura 1. Diagrama de recorridos (Velasco, 2014)

El diagrama planimétrico de flujo o diagrama de recorrido es una representación gráfica sobre plano del área en la cual se desarrolla la actividad, con las ubicaciones indicadas de los puestos de trabajo y el trazado de los movimientos de los hombres y/o de los materiales.

Por cierto, el material de este artículo forma parte del curso que puedes seguir en línea, en el siguiente enlace: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Es un diagrama que se emplea para establecer el recorrido de un solo producto o proceso. Tiene en cuenta las operaciones, inspecciones, demoras, transporte y almacenamiento. Se utiliza la misma simbología que la de un diagrama de proceso.

Este diagrama permite identificar las posibles áreas congestionadas, determinar los avances y retrocesos del proceso y facilitar el desarrollo de una mejor distribución de la planta. El objetivo, por tanto, es la mejora de métodos, eliminando o reduciendo los recorridos mediante la adecuada distribución en planta. El diagrama de recorrido puede ser bidimensional, o incluso tridimensional.

El diagrama de recorrido normalmente puede disponer dos formatos, uno referido al operario o la máquina, y otro relacionado con el material.

La manipulación de los materiales incrementa el coste de producción sin añadir valor al producto. Por tanto, para reducirla se recomienda lo siguiente:

  • Disponer los materiales a la altura en la que se va a trabajar con ellos.
  • Disminuir en lo posible las distancias que recorre el material manipulado.
  • Aprovecharse de la gravedad cuando sea posible.
  • Transportar la máxima cantidad posible.
  • Mantener despejados los lugares de paso.

Una buena disposición en planta del lugar de trabajo depende, entre otros, de los siguientes factores:

  1. Peso, tamaño y movilidad del producto. Un producto pesado es difícil de manipular, requiriendo maquinaria específica. Por tanto, se debe mover lo menos posible.
  2. Complejidad del producto. Un producto con muchas piezas pasará por distintos sitios, con más recorrido. En consecuencia, la disposición en planta tratará de reducir tiempo y energía reduciendo los transportes.
  3. Duración del proceso. Si se dedica mucho tiempo al transporte, cualquier disminución del recorrido mejorará la productividad.

Normalmente, se aconseja utilizar el diagrama de análisis del proceso con el de recorrido cuando los procesos tienen un gran número de operaciones. En una obra normalmente los procesos son suficientemente sencillos para no ser necesario representar gráficamente lo que ocurre. Por tanto, el diagrama de recorrido sería de mayor utilidad en talleres y factorías.

Veamos a continuación algunos vídeos explicativos sobre el diagrama de recorridos.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los algoritmos genéticos

Charles Darwin en una fotografía tomada por J.M. Cameron en 1869.

Resulta fascinante comprobar cómo aplicando los mecanismos básicos de la evolución ya descrita por Darwin en su obra fundamental, El origen de las especies por medio de la selección natural, o la preservación de las razas preferidas en la lucha por la vida, publicada en 1859, se pueden generar algoritmos capaces de optimizar problemas complejos. Este tipo de metaheurísticas inspiradas en la Naturaleza ya se comentaron en artículos anteriores cuando hablamos de la optimización por colonias de hormigas o de la cristalización simulada. Aunque es un algoritmo ampliamente conocido por la comunidad científica, voy a intentar dar un par de pinceladas con el único afán de divulgar esta técnica. La verdad es que las implicaciones filosóficas que subyacen tras la teoría de Darwin son de una profundidad difícil de entender cuando se lleva a sus últimos extremos. Pero el caso es que estos algoritmos funcionan perfectamente en la optimización de estructuras de hormigón, problemas de transporte y otros problemas difíciles de optimización combinatoria.

Para aquellos interesados, os paso en las referencias un par de artículos donde hemos aplicado los algoritmos genéticos para optimizar rutas de transporte aéreo o pilas de puente huecas de hormigón armado.

Sin embargo, para aquellos otros que queráis un buen libro para pensar, os recomiendo “La peligrosa idea de Darwin”, de Daniel C. Dennett. A más de uno le hará remover los cimientos más profundos de sus creencias. Os paso la referencia al final.

Básicamente, los algoritmos genéticos “Genetic Algorithms, GA”, simulan el proceso de evolución de las especies que se reproducen sexualmente. De manera muy general, se puede decir que en la evolución de los seres vivos, el problema al que cada individuo se enfrenta diariamente es el de la supervivencia. Para ello cuenta, entre otras, con las habilidades innatas provistas en su material genético. A nivel de los genes, el problema consiste en la búsqueda de aquellas adaptaciones beneficiosas en un medio hostil y cambiante. Debido en parte a la selección natural, cada especie gana cierta “información” que es incorporada a sus cromosomas.

Durante la reproducción sexual, un nuevo individuo, diferente de sus padres, se genera a través de la acción de dos mecanismos fundamentales: El primero es el cruzamiento, que combina parte del patrimonio genético de cada progenitor para elaborar el del nuevo individuo; el segundo es la mutación, que supone una modificación espontánea de esta información genética. La descendencia será diferente de los progenitores, pero mantendrá parte de sus características. Si los hijos heredan buenos atributos de sus padres, su probabilidad de supervivencia será mayor que aquellos otros que no las tengan. De este modo, los mejores tendrán altas probabilidades de reproducirse y diseminar su información genética a sus descendientes.

Holland (1975) estableció por primera vez una metaheurística basada en la analogía genética. Un individuo se puede asociar a una solución factible del problema, de modo que se pueda codificar en forma de un vector binario “string”. Entonces un operador de cruzamiento intercambia cadenas de los padres para producir un hijo. La mutación se configura como un operador secundario que cambia, con una probabilidad pequeña, algunos elementos del vector hijo. La aptitud del nuevo vector creado se evalúa de acuerdo con una función objetivo.

Los pasos a seguir con esta metaheurística serían los siguientes:

  1. Generar una población de vectores (individuos).
  2. Mientras no se encuentre un criterio de parada:
    1. Seleccionar un conjunto de vectores padre, que serán reemplazados de la población.
    2. Emparejar aleatoriamente a los progenitores y cruzarlos para obtener unos vectores hijo.
    3. Aplicar una mutación a cada descendiente.
    4. Evaluar a los hijos.
    5. Introducir a los hijos en la población.
    6. Eliminar a aquellos individuos menos eficaces.

Normalmente este proceso finaliza después de un numero determinado de generaciones o cuando la población ya no puede mejorar. La selección de los padres se elige probabilísticamente hacia los individuos más aptos. Al igual que ocurre con en la Naturaleza, los sujetos con mayor aptitud diseminan sus características en toda la población.

Esta descripción de los GA se adapta a cada situación concreta, siendo habitual la codificación de números enteros en vez de binarios. Del mismo modo se han sofisticado los distintos operadores de cruzamiento y mutación.

Os dejo a continuación un vídeo explicativo que he elaborado para mis clases de “Modelos predictivos y de optimización heurística de estructuras de hormigón“, del Máster Universitario en Ingeniería del Hormigón, de la Universitat Politècnica de València.

Referencias:

DENNETT, D.C. (1999). La peligrosa idea de Darwin. Galaxia Gutenberg. Círculo de Lectores, Barcelona.

HOLLAND, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)

MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions, 27(1): 95-112.  ISSN: 1696-2281.  (pdf)

PONZ-TIENDA, J.L.; YEPES, V.; PELLICER, E.; MORENO-FLORES, J. (2013). The resource leveling problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29(1):161-172. DOI:http://dx.doi.org/10.1016/j.autcon.2012.10.003. (link)

YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

18 años de la lectura de mi tesis doctoral: Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW

Hoy 4 de septiembre, pero del año 2002, tuve la ocasión de defender mi tesis doctoral titulada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW“. La tesis fue dirigida por el profesor Josep Ramon Medina Folgado y el tribunal estuvo presidido por José Aguilar, acompañado por José Vicente Colomer, Francesc Robusté, Francisco García Benítez y Jesús Cuartero. La calificación fue de sobresaliente «cum laude» por unanimidad.

Por tanto, mi tesis ya ha cumplido la mayoría de edad. Es un buen momento para reflexionar sobre lo que este trabajo supuso para mí. La realicé a los 38 años, tras haber adquirido una buena trayectoria profesional en la empresa privada (Dragados y Construcciones) y en la administración pública (Generalitat Valenciana). De alguna forma, ya tenía la vida más o menos solucionada, con experiencia acumulada, pero con muchas inquietudes. En aquel momento era profesor asociado a tiempo parcial y, en mis ratos libres, me dediqué a hacer la tesis doctoral. Es innecesario decir las dificultades que supone para cualquiera sacar tiempo de donde no lo hay para hacer algo que, en aquel momento, era simplemente vocacional. No hubo financiación de ningún tipo, ni reducción de la jornada laboral, ni nada por el estilo. En aquel momento ni se me pasó por la cabeza que años después acabaría como catedrático de universidad. Entre 2002 y 2008 seguí trabajando como profesor asociado en la administración pública. Por último, gracias al sistema de habilitación nacional, accedí directamente a la universidad como profesor titular desde la categoría de profesor asociado, algo bastante inusual en aquel momento. Gracias a que era una verdadera oposición con el resto de candidatos, tuve la oportunidad de demostrar mi valía ante un tribunal. Luego la cátedra vino por el sistema de acreditación y la plaza, tras una larga espera a causa de la crisis y de las cuotas de reposición. Pasé en seis años de ser profesor asociado a tiempo parcial a estar habilitado como catedrático de universidad (12 de mayo de 2014). Todo eso se lo debo, entre otras cosas, a la gran producción científica que pude llevar a cabo y que tuvo su origen en esta tesis doctoral.

Por cierto, en aquella época la tesis doctoral tenía que ser inédita, es decir, ningún artículo de la tesis tenía que haberse publicado. Hoy en día es todo lo contrario: conviene tener de 3 a 4 artículos buenos antes de pasar por la defensa. Luego publiqué algunos artículos sobre este tema en revistas nacionales e internacionales, pero sobre todo en actas de congresos.

La tesis supuso, en su momento, aprender en profundidad lo que eran la algoritmia, el cálculo computacional y, sobre todo, la optimización heurística. En aquel momento, al menos en el ámbito de la ingeniería civil, no se sabía nada o muy poco al respecto, aunque era un campo muy activo a nivel internacional. Luego comprobé que todo lo aprendido se pudo aplicar al ámbito de las estructuras, especialmente a los puentes, pero esa es otra historia.

Os dejo las primeras páginas de la tesis y la presentación de PowerPoint que utilicé. Para que os hagáis una idea del momento, la presentación también la imprimí en acetato, ya que aún se empleaba la proyección de transparencias en las clases.

Referencia:

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2.

Descargar (PDF, 340KB)

Descargar (PDF, 5.92MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.