¿Cuántas piezas de repuesto debo tener en mi almacén de obra?

La gestión de inventarios o de stocks no es algo nuevo. Sin embargo, a veces no sabemos muy bien cuántas piezas de repuesto deberíamos tener en nuestro almacén de obra. Pues bien, en esta entrada dejo una forma sencilla de calcularlo basada en la probabilidad prevista de fallos para un periodo de tiempo determinado. Espero que os sea útil.

Para un buen funcionamiento de una máquina es necesario mantener un stock de piezas de recambio y un utillaje adecuado. Si bien mantener estas existencias significa una fuerte suma de capital inactivo, también es cierto que la falta de recambios puede suponer pérdidas importantes en la producción.

La previsión de los repuestos necesarios de un elemento de una máquina para un periodo de tiempo determinado depende de su tasa de fallos. Cuando los fallos aparecen de forma independiente, la distribución de Poisson proporciona la probabilidad de que un suceso con una tasa de fallos constante l ocurra r veces en un intervalo de tiempo t:

 

Se comprueba que para r = 1 la distribución de Poisson describe el modelo exponencial de fallo descrito anteriormente.

Para el cálculo del número de repuestos, se puede acumular la probabilidad de tener r fallos o menos en un intervalo de tiempo t:

A continuación os dejo un Polimedia donde se explica con detalle la función de distribución de Poisson. Espero que os sea útil.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la investigación operativa?

La investigación de operaciones o investigación operativa es una rama de las matemáticas que consiste en el uso de modelos matemáticos, estadística y algoritmos con objeto de modelar y resolver problemas complejos  determinando la solución óptima y permitiendo, de este modo, tomar decisiones.  Frecuentemente trata del estudio de complejos sistemas reales, con la finalidad de mejorar (u optimizar) su funcionamiento. La investigación de operaciones permite el análisis de la toma de decisiones teniendo en cuenta la escasez de recursos, para determinar cómo se puede optimizar un objetivo definido, como la maximización de los beneficios o la minimización de costos.

Aunque su nacimiento como ciencia se establece durante la Segunda Guerra Mundial y debe su nombre a las operaciones militares, los verdaderos orígenes de la Investigación Operativa se remontan mucho más atrás en el tiempo, hasta el siglo XVII. Esta disciplina nació en Inglaterra durante la Segunda Guerra Mundial como estrategia para encontrar soluciones a problemas militares, para ello fue necesario crear un Grupo de Investigación de Operaciones Militares conformado por un grupo de científicos multidisciplinares. Al terminar la guerra este método fue empleado en darle solución a problemas generales como el control de inventarios, asignación de recursos, líneas de espera, entre otros. Esta técnica cumplió sus objetivos en la década de los cincuenta y sesenta, hasta su desarrollo total en la actualidad. Sin embargo su auge es debido, en su mayor parte, al gran desarrollo de la informática, gracias a la cual es posible resolver problemas en la práctica y obtener soluciones que de otra forma conllevarían un enorme tiempo de cálculo. Debido a este éxito, la Investigación Operativa  se extendió a otros campos tales como la industria, física, informática, economía, estadística y probabilidad, ecología, educación, servicio social, …, siendo hoy en día utilizada prácticamente en todas las áreas. Algunos de los promotores más importantes de la filosofía y aplicación de la investigación de operaciones son C.W. Churchman, R.L. Ackoff y R. Bellman. Actualmente la Investigación Operativa incluye gran cantidad de ramas como la Programación Lineal, Programación No Lineal, Programación Dinámica, Simulación, Teoría de Colas, Teoría de Inventarios, Teoría de Grafos, etc.

Os presento ahora un vídeo, que no llega a 3 minutos de duración sobre el tema. Espero que os guste.