Normativas de seguridad y prevención de riesgos laborales en logística y transporte

Imagen generada por IA. Seguro que encontráis problemas de seguridad.

Las actividades de logística y transporte requieren el cumplimiento de normativas específicas para garantizar la seguridad de las personas involucradas en estos procesos. La legislación y los estándares internacionales establecen requisitos para minimizar riesgos y mejorar las condiciones laborales en este sector, lo que resulta esencial para garantizar la continuidad operativa y la protección del personal. En el contexto de las empresas de transporte y logística, estas normativas no solo buscan prevenir accidentes, sino también optimizar la eficiencia de los procesos mediante la implementación de medidas de seguridad adecuadas.

Legislación sobre prevención de riesgos laborales

La Ley 31/1995 de Prevención de Riesgos Laborales (LPRL) constituye el marco normativo español en materia de seguridad y salud en el trabajo. Su propósito es prevenir incidentes mediante la identificación y control de los peligros presentes en los entornos laborales. Esta legislación reconoce el derecho de las personas trabajadoras a desempeñar sus funciones en condiciones seguras y establece la obligación de las empresas de adoptar medidas preventivas. También regula la consulta y participación del personal en la adopción de decisiones relacionadas con la seguridad y la prevención de riesgos laborales.

Las empresas del sector logístico y del transporte deben integrar la prevención de riesgos laborales en su estructura organizativa. Esto implica evaluar riesgos específicos, como la manipulación de cargas pesadas, la exposición a productos peligrosos, el uso de maquinaria especializada y la conducción de vehículos de gran tonelaje. La LPRL exige que los planes de prevención se adapten a la naturaleza de las operaciones de cada empresa y garanticen que cada área de trabajo cuente con las medidas de seguridad apropiadas. Además, obliga a que el personal reciba formación periódica para que puedan identificar y evitar riesgos.

Normas internacionales de gestión de seguridad y salud laboral

La norma ISO 45001 ha reemplazado a la OHSAS 18001 como el estándar de referencia para la gestión de la seguridad y salud en el trabajo. Su aplicación permite a las organizaciones establecer un sistema que no solo cumpla con la legislación vigente, sino que también optimice la prevención de riesgos mediante un enfoque estructurado. La ISO 45001 fomenta la identificación y reducción de peligros, así como la participación activa del personal en la gestión de la seguridad.

En empresas logísticas, la aplicación de la ISO 45001 implica la implementación de medidas concretas como la evaluación de riesgos ergonómicos en almacenes, el establecimiento de protocolos de carga y descarga seguros y la gestión de emergencias ante posibles incendios o derrames de sustancias peligrosas. También exige la realización de inspecciones periódicas de vehículos y equipos de transporte para detectar fallos mecánicos que puedan comprometer la seguridad del personal.

A diferencia de su predecesora, esta norma adopta un enfoque proactivo, haciendo hincapié en la eliminación de peligros antes de que se generen incidentes. Además, su estructura facilita la integración con otros sistemas de gestión, como los de calidad y medio ambiente, y proporciona una visión global de la seguridad en la empresa.

Seguridad vial en el transporte

Para reducir los incidentes en carretera, la norma ISO 39001 establece criterios específicos para la gestión de la seguridad vial en las organizaciones. Su aplicación es especialmente relevante para empresas de transporte de mercancías y pasajeros, operadores logísticos y cualquier entidad cuya actividad dependa del desplazamiento de personas o bienes.

Las empresas de transporte que implementan la ISO 39001 pueden establecer controles sobre los tiempos de conducción y descanso, garantizando que el personal conductor no sobrepase las horas de trabajo recomendadas. Además, esta norma fomenta la formación en conducción segura y la adopción de tecnologías que ayuden a minimizar el riesgo de accidentes, como sistemas de supervisión en tiempo real, mantenimiento predictivo de vehículos y análisis de rutas seguras.

Los operadores logísticos también deben aplicar esta normativa en la gestión de flotas, estableciendo programas de mantenimiento preventivo y procedimientos de actuación en caso de incidentes viales. La combinación de estas medidas contribuye a reducir las tasas de siniestralidad y a mejorar la eficiencia operativa del sector.

Responsabilidades empresariales y derechos del personal

La legislación en materia de prevención de riesgos laborales impone a las empresas la responsabilidad de garantizar un entorno seguro. Esto implica proporcionar equipos de protección, señalizar adecuadamente los espacios de trabajo y supervisar el cumplimiento de las normativas. También se exige la realización de reconocimientos médicos periódicos, siempre con el consentimiento del personal, y la impartición de formación obligatoria en prevención de riesgos.

En el ámbito del transporte y la logística, las empresas deben proporcionar formación específica para cada puesto, de modo que el personal que opera maquinaria pesada, trabaja en muelles de carga o conduce vehículos de larga distancia conozca los riesgos asociados y las medidas de seguridad correspondientes.

Por su parte, las personas trabajadoras tienen la obligación de utilizar correctamente los medios de protección, informar sobre situaciones de riesgo y contribuir al cumplimiento de las medidas de seguridad. En el caso de los trabajadores del transporte de mercancías, es fundamental que sigan los protocolos establecidos para la correcta manipulación de cargas y la distribución equitativa del peso en los vehículos, con el fin de evitar accidentes causados por una carga mal asegurada.

La falta de aplicación de estos principios puede derivar en sanciones administrativas, responsabilidades civiles e incluso penales para la empresa en casos de incumplimiento grave. Las empresas que no garanticen la seguridad de su personal pueden enfrentarse a multas económicas, a la suspensión de sus operaciones o, en los casos más graves, penas de prisión para sus responsables.

Conclusión

El cumplimiento de las normativas de seguridad y prevención de riesgos en logística y transporte no solo protege a quienes trabajan en el sector, sino que también mejora la eficiencia operativa y reduce los costos derivados de incidentes laborales. La aplicación de la LPRL y de estándares internacionales como ISO 45001 e ISO 39001 permite a las empresas gestionar la seguridad de manera estructurada y efectiva. Una adecuada implementación de estas normativas es esencial para garantizar entornos laborales seguros y minimizar los riesgos asociados a las actividades logísticas y de transporte. Además, una gestión eficaz de la seguridad fortalece la imagen de la empresa y contribuye a la sostenibilidad de sus operaciones en el largo plazo.

Os dejo una presentación de clase sobre este tema. Forma parte de una asignatura denominada «Sostenibilidad, calidad y seguridad», del segundo curso del Grado en Gestión del Transporte y Logística de la Universitat Politècnica de València. También os dejo un mapa mental de dicha presentación.

Descargar (PDF, 1.23MB)

 

18 años de la lectura de mi tesis doctoral: Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW

Hoy 4 de septiembre, pero del año 2002, tuve la ocasión de defender mi tesis doctoral titulada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW“. La tesis fue dirigida por el profesor Josep Ramon Medina Folgado y el tribunal estuvo presidido por José Aguilar, acompañado por José Vicente Colomer, Francesc Robusté, Francisco García Benítez y Jesús Cuartero. La calificación fue de sobresaliente «cum laude» por unanimidad.

Por tanto, mi tesis ya ha cumplido la mayoría de edad. Es un buen momento para reflexionar sobre lo que este trabajo supuso para mí. La realicé a los 38 años, tras haber adquirido una buena trayectoria profesional en la empresa privada (Dragados y Construcciones) y en la administración pública (Generalitat Valenciana). De alguna forma, ya tenía la vida más o menos solucionada, con experiencia acumulada, pero con muchas inquietudes. En aquel momento era profesor asociado a tiempo parcial y, en mis ratos libres, me dediqué a hacer la tesis doctoral. Es innecesario decir las dificultades que supone para cualquiera sacar tiempo de donde no lo hay para hacer algo que, en aquel momento, era simplemente vocacional. No hubo financiación de ningún tipo, ni reducción de la jornada laboral, ni nada por el estilo. En aquel momento ni se me pasó por la cabeza que años después acabaría como catedrático de universidad. Entre 2002 y 2008 seguí trabajando como profesor asociado en la administración pública. Por último, gracias al sistema de habilitación nacional, accedí directamente a la universidad como profesor titular desde la categoría de profesor asociado, algo bastante inusual en aquel momento. Gracias a que era una verdadera oposición con el resto de candidatos, tuve la oportunidad de demostrar mi valía ante un tribunal. Luego la cátedra vino por el sistema de acreditación y la plaza, tras una larga espera a causa de la crisis y de las cuotas de reposición. Pasé en seis años de ser profesor asociado a tiempo parcial a estar habilitado como catedrático de universidad (12 de mayo de 2014). Todo eso se lo debo, entre otras cosas, a la gran producción científica que pude llevar a cabo y que tuvo su origen en esta tesis doctoral.

Por cierto, en aquella época la tesis doctoral tenía que ser inédita, es decir, ningún artículo de la tesis tenía que haberse publicado. Hoy en día es todo lo contrario: conviene tener de 3 a 4 artículos buenos antes de pasar por la defensa. Luego publiqué algunos artículos sobre este tema en revistas nacionales e internacionales, pero sobre todo en actas de congresos.

La tesis supuso, en su momento, aprender en profundidad lo que eran la algoritmia, el cálculo computacional y, sobre todo, la optimización heurística. En aquel momento, al menos en el ámbito de la ingeniería civil, no se sabía nada o muy poco al respecto, aunque era un campo muy activo a nivel internacional. Luego comprobé que todo lo aprendido se pudo aplicar al ámbito de las estructuras, especialmente a los puentes, pero esa es otra historia.

Os dejo las primeras páginas de la tesis y la presentación de PowerPoint que utilicé. Para que os hagáis una idea del momento, la presentación también la imprimí en acetato, ya que aún se empleaba la proyección de transparencias en las clases.

Referencia:

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2.

Descargar (PDF, 340KB)

Descargar (PDF, 5.92MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización heurística mediante aceptación por umbrales

En algunos posts anteriores hemos comentado lo que es un modelo matemático de optimización, qué son las metaheurísticas, o cómo poder optimizar las estructuras de hormigón. A continuación os presentamos un Polimedia donde se explica brevemente cómo podemos optimizar siguiendo la técnica de optimización heurística mediante aceptación por umbrales. Podréis comprobar cómo se trata de un caso similar a la famosa técnica de la cristalización simulada. Espero que os sea útil.

Podéis consultar, a modo de ejemplo, algunos artículos científicos que hemos escrito a ese respecto en las siguientes publicaciones:

  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • YEPES, V.; MEDINA, J.R. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. Journal of Transportation Engineering, ASCE, 132(4): 303-311. (link)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la optimización combinatoria?

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, reciben el nombre de problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor de entre un número finito o numerable de soluciones viables. Sin embargo la enumeración de este conjunto resulta prácticamente imposible, aún para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y gestión de operaciones y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

¿Por qué son tan complicados los problemas de distribución física?

Aspecto de diversas soluciones al problema de rutas
Aspecto de diversas soluciones al problema de rutas

Los problemas de distribución física consisten básicamente en asignar una ruta a cada vehículo de una flota para repartir o recoger mercancías. Los clientes se localizan en puntos o arcos y a su vez pueden presentar horarios de servicio determinados; el problema consiste en establecer secuencias de clientes y programar los horarios de los vehículos de manera óptima. Los problemas reales de transporte son extraordinariamente variados. Yepes (2002) propone una clasificación que contiene un mínimo de 8,8·109 combinaciones posibles de modelos de distribución. Si alguien fuese capaz de describir en un segundo cada uno de ellos, tardaría cerca de 280 años en enunciarlos todos. La investigación científica se ha centrado, por tanto, en un grupo muy reducido de modelos teóricos que además tienden a simplificar excesivamente los problemas reales. Son típicos problemas de optimización matemática combinatoria. Continue reading “¿Por qué son tan complicados los problemas de distribución física?”

¿Qué son las metaheurísticas?

 ¿Cómo se podrían optimizar en tiempos de cálculo razonable problemas complejos de redes de transporte, estructuras de hormigón (puentes, pórticos de edificación, túneles, etc.) y otro tipo de problemas de decisión empresarial cuando la dimensión del problema es de tal calibre que es imposible hacerlo con métodos matemáticos exactos? La respuesta son los métodos aproximados, también denominados heurísticas. Este artículo divulgativo trata de ampliar otros anteriores  donde ya hablamos de los algoritmos, de la optimización combinatoria, de los modelos matemáticos y otros temas similares. Para más adelante explicaremos otros temas relacionados específicamente con aplicaciones a problemas reales. Aunque para los más curiosos, os paso en abierto, una publicación donde se han optimizado con éxito algunas estructuras de hormigón como muros, pórticos o marcos de carretera: (González et al, 2008).

Desde los primeros años de la década de los 80, la investigación de los problemas de optimización combinatoria se centra en el diseño de estrategias generales que sirvan para guiar a las heurísticas. Se les ha llamado metaheurísticas. Se trata de combinar inteligentemente diversas técnicas para explorar el espacio de soluciones. Osman y Kelly (1996) nos aportan la siguiente definición: “Los procedimientos metaheurísticos son una clase de métodos aproximados que están diseñados para resolver problemas difíciles de optimización combinatoria, en los que los heurísticos clásicos no son ni efectivos ni eficientes. Los metaheurísticos proporcionan un marco general para crear nuevos algoritmos híbridos combinando diferentes conceptos derivados de la inteligencia artificial, la evolución biológica y la mecánica estadística”.

Aunque existen diferencias apreciables entre los distintos métodos desarrollados hasta el momento, todos ellos tratan de conjugar en mayor o menor medida la intensificación en la búsqueda –seleccionando movimientos que mejoren la valoración de la función objetivo-, y la diversificación –aceptando aquellas otras soluciones que, aun siendo peores, permiten la evasión de los óptimos locales-.

Las metaheurísticas son susceptibles de agruparse de varias formas. Algunas clasificaciones recurren a cambios sucesivos de una solución a otra en la búsqueda del óptimo, mientras otras se sirven de los movimientos aplicados a toda una población de soluciones. El empleo, en su caso, de memoria que guíe de la exploración del espacio de elecciones posibles permite otro tipo de agrupamiento. En otras circunstancias se emplean perturbaciones de las opciones, de la topología del espacio de soluciones, o de la función objetivo. En la Figura se recoge una propuesta de clasificación de las heurísticas y metaheurísticas empleadas en la optimización combinatoria (Yepes, 2002), teniendo en común todas ellas la necesidad de contar con soluciones iniciales que permitan cambios para alcanzar otras mejores. Es evidente que existen en este momento muchas más técnicas de optimización, pero puede ser dicha clasificación un punto de partida para una mejor taxonomía de las mismas.

 

Taxonomía de estrategias empleadas en la resolución aproximada de problemas de optimización combinatoria sobre la base de soluciones iniciales.
Figura. Taxonomía de estrategias empleadas en la resolución aproximada de problemas de optimización combinatoria sobre la base de soluciones iniciales (Yepes, 2002)

Las  metaheurísticas empleadas en la optimización combinatoria en podrían clasificarse en tres grandes conjuntos. Las primeras generalizan la búsqueda secuencial por entornos de modo que, una vez se ha emprendido el proceso, se recorre una trayectoria de una solución a otra vecina hasta que éste concluye. En el segundo grupo se incluyen los procedimientos que actúan sobre poblaciones de soluciones, evolucionando hacia generaciones de mayor calidad. El tercero lo constituyen las redes neuronales artificiales. Esta clasificación sería insuficiente para aquellas metaheurísticas híbridas que emplean, en mayor o menor medida, estrategias de unos grupos y otros. Esta eventualidad genera un enriquecimiento deseable de posibilidades adaptables, en su caso, a los diferentes problemas de optimización combinatoria.

Referencias

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)

OSMAN, I.H.; KELLY, J.P. (Eds.) (1996). Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La logística y los problemas de distribución física

Empezamos una serie de artículos que van a tratar aspectos relacionados con el transporte, la logística, la distribución de mercancías, la investigación de las operaciones y, en definitiva, la toma de decisiones en las empresas. Como siempre, el objeto es divulgativo, abriendo puertas a la reflexión y no pretendiendo, ni mucho menos, abarcar todos los aspectos relativos a un tema determinado. Empezamos, pues.

El National Council of Physical Distribution Management definió, en 1979 (ver Ballou, 1991) la gestión de la distribución física como “todas aquellas actividades encaminadas a la planificación, implementación y control de un flujo creciente de materias primas, recursos de producción y productos finales desde el punto de origen al de consumo”. Entre estas tareas se encuentran el servicio al cliente, la previsión de la demanda, el control de inventarios, los servicios de reparación, el manejo de mercancías, el procesamiento de pedidos, la selección de la ubicación geográfica de las fábricas y los almacenes, las compras, el empaquetado de productos, el tratamiento de las mercancías devueltas, la recuperación y tratamiento de desperdicios, la distribución y el transporte, y el almacenamiento. Sin embargo, otros autores prefieren emplear el término de logística empresarial.

La importancia de la eficacia y la eficiencia de la gestión de la distribución adquiere su verdadera magnitud cuando se consideran los costes. Kotler (1991) indica que los principales elementos de los costes de la distribución física son el transporte (37%), el control de existencias (22%), el almacenamiento (21%) y otros como la recepción de órdenes, el servicio al cliente, la distribución y la administración (20%). El mismo autor cree, al igual que otros expertos, que pueden conseguirse ahorros sustanciales en el área de la distribución física, la cual ha sido descrita como “la última frontera para obtener economías en los costes” y “el continente oscuro de la economía”. Drucker (1962) describió las actividades logísticas que se llevaban a cabo tras la fabricación como las “áreas peor realizadas y a la vez más prometedoras dentro del mundo industrial”.

Muchas empresas sostienen que el objetivo último de la distribución física es obtener las mercancías necesarias, llevarlas a los lugares oportunos a su debido tiempo y al coste más bajo posible. Sin embargo, y tal como afirma Kotler (1991), no existe ningún sistema de distribución que pueda, simultáneamente, maximizar el servicio al cliente y minimizar los costes de distribución, puesto que lo primero supone un elevado coste de existencias, un transporte rápido y múltiples almacenes, factores que incrementan los costes. Se trata de buscar un equilibrio que contemporice los intereses contrapuestos.

La gestión de la distribución física presenta una gran variedad de problemas de decisión que afectan a la planificación en el ámbito estratégico, táctico y operativo. La localización de plantas y almacenes, o la reconfiguración de la red de transporte son decisiones estratégicas, mientras que los problemas relacionados con la dimensión de la flota, o si ésta debe ser propia o alquilada pertenecen al ámbito de las decisiones tácticas. Los problemas habituales en las operaciones son: (a) el establecimiento de rutas para vehículos que, con cierta limitación de capacidad, deben distribuir o recoger mercancías a un grupo de clientes; y (b) la programación de horarios o precedencias entre destinos para satisfacer estos recorridos.

Un estudio del National Council of Physical Distribution (ver Ballou, 1991) estima que el transporte sumó un 15% del Producto Interior Bruto de Estados Unidos en 1978, constituyendo más del 45% de todos los costes logísticos de las organizaciones. El sector de las empresas de servicios públicos y transportes estadounidenses movió en 1991 aproximadamente 506 millardos de dólares, según el Informe del Presidente de 1994 (ver Fisher, 1997). King y Mast (1997) señalan que la valoración anual que implican los excesos de coste en los viajes en Estados Unidos ascienden a 45 millardos de dólares. En Reino Unido, Francia y Dinamarca, por ejemplo, el transporte representa cerca del 15%, 9% y 15% del gasto nacional respectivamente (Crainic y Laporte, 1997; Larsen, 1999). En Japón, los costes logísticos suponen un 26,5% de las ventas, y los de transporte, un 13,5% (Kobayashi, 1973). Estas mismas cifras son del 14,1% y 2,5% en Australia (Stephenson, 1975), y del 16% y 5,5% en Reino Unido (Murphy, 1972). En España, según datos del Ministerio de Fomento (ver CTCICCP, 2001), la participación del sector transporte en el valor añadido bruto del año 1997 se situó en un 4,6%. En cuanto al empleo, 613.400 personas se encontraban ocupadas en el año 1999 en el sector del transporte público en nuestro país, lo cual supone el 3,69% de la población activa.

Existe una gran variación entre los costes logísticos de las distintas empresas. Ballou (1991) indica que estas cifras oscilan entre menos del 4% sobre las ventas en aquellas empresas que producen y distribuyen mercancías de alto valor, hasta más de un 32% en aquellas otras que lo hacen en las de bajo valor. El mismo autor apunta que los costes de transporte representan entre una tercera y dos terceras partes del total de costes logísticos. Se estima que los costes de distribución suponen casi la mitad del total de los costes logísticos en algunas industrias, y que en las de alimentación y bebidas pueden incrementar un 70% el coste de las mercancías (De Backer et al., 1997; Golden y Wasil, 1987). Además, la importancia de la programación de rutas se manifiesta claramente con el dato aportado por Halse (1992) informando que en 1989, el 76,5% de todo el transporte de mercancías se realizó con vehículos.

Así, las actividades que conforman la planificación operativa de la distribución física implican un gran número de pequeñas decisiones interrelacionadas entre sí. Además, la cifra de planes posibles crece exponencialmente con la dimensión del problema. Incluso para flotas pequeñas y con un número moderado de peticiones de transporte, la planificación es una tarea altamente compleja. Por tanto, no es de extrañar que los responsables de estos asuntos simplifiquen al máximo los problemas y utilicen procedimientos particulares para despachar sus vehículos basándose, en multitud de ocasiones en la experiencia de errores anteriores. Existe un amplio potencial de mejora claramente rentable para las unidades de negocio.

La planificación y la gestión de las redes de distribución exige la disposición de técnicas eficientes de optimización de rutas, puesto que no sólo afecta al desarrollo de las operaciones, sino que también incide en las decisiones tácticas y estratégicas (tamaño óptimo de flota, estimación de costes, políticas de publicidad y rotura de servicio, etc.

Medina y Yepes (2000) proporcionan un ejemplo práctico que muestra cómo la aplicación de técnicas de optimización condiciona críticamente el desarrollo de ciertas operaciones de distribución. Se trata de un negocio de venta de paquetes turísticos con transporte incluido; donde los precios se fijan mucho antes de que la demanda sea conocida, y donde son frecuentes las cancelaciones de última hora así como la llegada de nuevos clientes. Si el número de pasajeros es pequeño, en comparación con la máxima capacidad de carga del vehículo, los beneficios o las pérdidas generadas por el transporte dependen fuertemente de la eficiencia del sistema de optimización de rutas. La figura que sigue describe la influencia de la optimización de operaciones en la planificación y gestión de redes de distribución de baja demanda.

Planificación y gestión de redes de distribución. Fuente: Medina y Yepes (2000).
Planificación y gestión de redes de distribución. Fuente: Medina y Yepes (2000).

En apretada síntesis, la planificación y la gestión de las redes de distribución genera una gran variedad de problemas de decisión, cuyo éxito depende críticamente de la optimización de las operaciones, donde el espectro de soluciones posibles es enorme y además creciente exponencialmente con el número de destinos y el tamaño de la flota. Esta explosión combinatoria de soluciones y la complejidad de las variables impiden que la optimización sea, en muchas situaciones reales, abordable con técnicas de resolución exactas. Afortunadamente, existen procedimientos alternativos que, si bien no garantizan la solución óptima, sí proporcionan soluciones de calidad a los problemas cotidianos.

De esta forma, la resolución de los problemas de distribución se convierte en una de las parcelas notables de la Investigación Operativa. Incluso el recorte de una pequeña fracción de los costes puede aflorar enormes ahorros económicos y una reducción de los impactos medioambientales ocasionados por la polución y el ruido, además de incrementar significativamente la satisfacción de los requerimientos de los clientes.

Referencias

BACKER DE, B.; FURNON, V.; PROSSER, P.; KILBY, P.; SHAW, P.(1997). Local Search in Constraint Programming: Application to the Vehicle Routing Problem. Presented at the CP-97 Workshop on Industrial Constraint-based Scheduling, Schloss Hagenberg, Austria.

BALLOU, R.H. (1991). Logística empresarial. Control y planificación. Ed. Díaz de Santos, Madrid. 655 pp.

COMISIÓN DE TRANSPORTES DEL COLEGIO DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS (2001). Libro Verde del Transporte en España. Disponible en internet. 111 pp.

CRAINIC, T.G.; LAPORTE, G. (1997). Planning Models for Freight Transportation. European Journal of Operational Research, 97: 409-438.

DRUCKER, P. (1962). The Economy’s Dark Continent. Fortune, april: 265-270.

GOLDEN, B.L.; WASIL, E.A. (1987). Computerized Vehicle Routing in the Soft Drink Industry. Operations Research, 35: 6-17.

HALSE, K. (1992). Modeling and Solving complex Vehicle Routing Problems. Ph.D. thesis, Department for Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

KING, G.F.; MAST, C.F. (1997). Excess Travel: Causes, Extent and Consequences. Transportation Research Record, 1111: 126-134.

KOBAYASHI, I. (1973). Management of Physical Distribution Cost. Proceedings of International Distribution Conference, Tokyo.

KOTLER, P. (1991). Marketing Management. Analysis, Planning, Implementation, and Control. Prentice Hall International. United Kingdom.

FISHER, M.L. (1997). Vehicle routing. In BALL, M.O.; MAGNANTI, T.L.; MONMA, C.L.; NEMHAUSER, G.L. (Eds.), Network Routing, volume 8 of Handbooks in Operations Research and Management Science, chapter 1, 1-79. North-Holland.

MEDINA, J.R.; YEPES, V. (2000). Optimización de redes de distribución con algoritmos genéticos, en Colomer, J.V. y García, A. (Eds.): Calidad e innovación en los transportes. Actas del IV Congreso de Ingeniería del Transporte. Vol. 1, pp. 205-213. Valencia.

MURPHY, G.J. (1972). Transport and Distribution. Business Books. London.

STEPHENSON, A.R. (1975).  Productivity Promotion Council of Australia: 7-10.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Valencia. 352 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.