Antecedentes de las conducciones de fundición dúctil

Figura 1. Tubería de fundición. Palacio de Versalles (1748). https://www.pamline.es/tuberia-fundicion-traves-historia

No se puede entender una civilización sin estudiar el desarrollo tecnológico de las tuberías para el transporte del agua, pues esta infraestructura define fuertemente la calidad de vida de sus habitantes. Si ya se utilizaban tuberías de arcilla cruda 4000 años A.C. en Babilonia, se han utilizado otros materiales desde la antigua Roma como la cerámica, la madera y el plomo. Sin embargo, tuvo que ser la fundición gris la que trajo un material seguro que tuviese una vida útil suficientemente larga bajo tierra. La fundición gris era conocida ya en la prehistoria. El arte de la fundición en arena llegó a Europa desde China, donde el acero se fundía en moldes de arena hacía más de 2500 años.

La fundición es una aleación hierro-carbono en la que el contenido de carbono en forma de grafito varía entre un 3,4 y un 4,5% en peso. Con un porcentaje de carbono inferior al 1,7%, tendríamos un acero. Si el grafito se presenta en forma laminar se obtiene una fundición gris y si es esferoidal, se tiene una función nodular o fundición dúctil (Figura 2). La fundición gris presenta buena moldeabilidad y resistencia a la abrasión, pero es frágil. La fundición dúctil es un material con buena moldeabilidad y que resulta muy dúctil, es decir, se puede deformar plásticamente con grandes deformaciones bajo la acción de una fuerza.

Figura 2. Fundición gris (izquierda) y función dúctil (derecha). https://www.construtec.com/que-es-la-fundicion-ductil-que-quiere-decir-ductil/

Se ha documentado que la primera tubería de fundición gris se instaló en Alemania en 1455, para conducir agua al castillo Dillenberg. Aunque este mismo tipo de canalizaciones se utilizaron en las fuentes del palacio de Versalles (Francia), ordenadas construir entre 1664 por Luis XIV (Figura 1);  o en España en el Palacio de la Granja de San Ildefonso en 1720, por orden de Felipe V. Los 35 km  de tuberías de fundición de Versalles se sellaban entre sí con juntas de plomo o cuero, permitiendo el funcionamiento, a una presión máxima de 15 bar, de las instalaciones del palacio por casi trescientos años. En Londres, hacia el año 1746, se instaló la primera tubería de fundición de Inglaterra, y en Estados Unidos se usó por vez primera en Filadelfia en 1817, usando tubos importados de Inglaterra.

Sin embargo, los tubos de fundición dúctil, tal y como se conocen actualmente, se instalaron por primera vez en 1948 en Europa, y se usaron ya de forma habitual a partir de 1955. Tuvieron tal éxito que en la década de los años setenta del siglo XX sustituyeron prácticamente a la antigua fundición gris, de menor resistencia y susceptibles de rotura frágil. La fundición debe ser dulce, tenaz y dura, sin embargo debe poder ser cortada y taladrada. En general, los tubos de fundición pueden obtenerse en foso de colada o por centrifugación, siendo estos últimos de calidad superior. Además de centrifugados, para obtener características mecánicas de mayor nivel, los tubos se someten a un tratamiento térmico de grafitización y ferritización. En la actualidad, las excelentes propiedades mecánicas de la fundición dúctil hace que su uso se extienda a las canalizaciones de agua potable, regadío y saneamiento en una gran parte del mundo.

Figura 3. Tubería de fundición dúctil. https://www.pamline.es

Entre las ventajas de la conducción de fundición dúctil destacan la elevada resistencia al choque y a los asentamientos del terreno, capacidad para aguantar altas presiones (tanto interiores como exteriores), amortiguan los golpes de ariete, se ven poco afectadas por la corrosión del suelo (incluso en terrenos húmedos), la mayoría de los terrenos no los atacan químicamente, no se oxidan por las acciones del agua o la atmósfera, y como consecuencia de todo lo anterior, estas tuberías tienen una larga vida útil. Por contra, son caras respecto a otras tuberías no metálicas para diámetros inferiores a 140 mm, su peso es comparativamente mayor, presentan incrustaciones interiores (especialmente con aguas duras). Además, en conducciones de gran longitud, que atraviesan terrenos de diversa naturaleza, pueden producirse fenómenos electro químicos (que se pueden evitar con juntas aislantes). Para evitar estos problemas, los tubos de conducción dúctil presentan un revestimiento exterior de zinc metálico con una capa de acabado de producto bituminoso o resina sintética y un revestimiento interior de mortero de cemento.

En el vídeo que sigue se puede ver la fabricación de los tubos de fundición dúctil de la empresa Saint-Gobain PAM. Espero que os sea de interés.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bandejas vibratorias o placas vibrantes

Figura 1. Bandeja Vibratoria Reversible VDR 26H

Son máquinas que transmiten su vibración mediante una bandeja accionada por el giro de masas excéntricas unidas a ella. Decaladas convenientemente las masas, se consigue una resultante de la fuerza centrífuga en el sentido de la marcha del operador. Las bandejas vibratorias con movimiento sólo de avance tienen una excéntrica situada en la parte delantera de la placa, mientras que las bandejas con movimiento en ambos sentidos, tienen dos. Las dos excéntricas permiten la regulación gradual de la velocidad. Son accionados por motores de gasolina o diésel, e incluso por motores eléctricos.

El motor y el manillar se montan sobre una placa separada, que está aislada de la bandeja vibratoria por muelles de acero o amortiguadores de goma. Tienen una longitud entre 0,50 y 1,00 m, con anchos entre 30 y 80 cm. Su velocidad varía entre 20 y 25 m/min. Se clasifican según su peso y frecuencia en:

  • Ligeros: alrededor de 100 kg, 100 Hz.
  • Medios: 500-1000 kg, 50 Hz.
  • Pesados: 1500-3000 kg, 20 Hz.

Las bandejas ligeras operan normalmente a altas frecuencias y bajas amplitudes. Son adecuadas para la compactación de arena y grava, cuando trabajan en capas delgadas (10-15 cm). Cuando se equipan con sistema de riego, también son útiles para el tratamiento de superficies asfálticas. Las bandejas vibratorias medio-pesadas (>400 kg) son efectivas sobre suelos semicohesivos -hasta 12-15% de finos- debido a su peso y sus mayores amplitudes. Evidentemente, no se aconsejan para trabajos de alto volumen. Suelen ser muy útiles en la compactación de rellenos de zanjas.

Se pueden acoplar varias placas a una máquina sobre neumáticos o sobre orugas constituyendo un compactador de multiplacas vibrantes.

Figura 2. Compactador de multiplacas vibrantes

 

Figura 3. Placa vibrante acoplada al brazo de una retroexcavadora. Imagen: V. Yepes

Os dejo algún vídeo para que veáis el funcionamiento de esta máquina.

 

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Apertura de zanja en la instalación de tuberías

Figura 1. Zanjadora. https://riusa.net/alquiler-de-zanjadoras-en-cantabria/

Las zanjas constituyen excavaciones abiertas y asentadas en el terreno, accesibles a los operarios, y realizadas con medios manuales o mecánicos. La excavación debe hacerse con sumo cuidado para que la alteración de las características mecánicas del suelo sea la mínima inevitable. Su anchura no suele ser mayor a 2 m ni su profundidad superior a 7 m, en cuyo caso se consideraría la excavación un vaciado.

La apertura de una zanja tiene dos fases: una de excavación y otra de entibación, pudiendo presentarse o no esta última en función de las características del terreno, y el tiempo estimado en el que la zanja va a estar abierta. Cuando la excavación de la zanja se realice por medios mecánicos, además, será necesario que el terreno admita talud en corte vertical para esa profundidad y que la separación entre el tajo de la máquina y la entibación no sea mayor de vez y media la profundidad de la zanja en ese punto. Los productos de excavación de la zanja, aprovechables para su relleno posterior, se podrán depositar en caballeros situados a un solo lado de la zanja, y a una separación del borde de la misma de un mínimo de 0,60 m. De emplearse entibación, distancias entre 0,50 y 0,90 m suelen ser suficientes para facilitar la circulación del personal de montaje y reducir la posibilidad de caída de piedras sobre la tubería.

Si bien las zanjas pueden abrirse manualmente, hoy en día la excavación se realiza con maquinaria, fundamentalmente con palas retroexcavadoras de tipo universal y con zanjadoras, máquinas diseñadas exclusivamente para excavar zanjas (Figura 1). De algunos de estos tipos ya hemos hablado en entradas anteriores: zanjadora de brazo inclinable, zanjadora de ruedas de cangilones, incluso cortadora de disco con picas para zanjas estrechas. Estas máquinas proporcionan buenos rendimientos, siempre que se den las condiciones adecuadas. Así, las zanjadoras, cuyos rendimientos son realmente elevados, presentan el inconveniente de que para su utilización es preciso que el terreno sea adecuado, es decir, cuando es tierra franca o terreno de tránsito y no hay demasiados obstáculos. Las retroexcavadoras, aunque obtienen menores rendimientos que las zanjadoras, se pueden utilizar en terrenos más variados, permitiendo su utilización en la carga, descarga y colocación de los tubos y superando mejor los obstáculos del terreno. En las ciudades, generalmente no se presentan los problemas anteriores, pero aparece el problema de la gran cantidad de conducciones en el subsuelo correspondientes a distintos servicios. Ello implica excavar manualmente las zonas de cruce con la zanja y utilizar maquinaria en el resto de zonas.

La anchura mínima del fondo de la zanja depende del espacio que necesitan los operarios para colocar los tubos, por lo que se considera una anchura mínima de 0,60 m. En los puntos donde deba colocarse una junta, se realizan unos ensanchamientos de la zanja cuyas dimensiones dependen del tipo de junta y de la manipulación necesaria para su montaje. La norma UNE-EN 1610 indica el ancho mínimo de la zanja en función del diámetro nominal de la tubería (Tabla 1) y de la profundidad de zanja (Tabla 2).

Figura 2. Espacio de trabajo mínimo. UNE-EN 1610.

La calidad del fondo de la zanja es fundamental para la buena conservación de las canalizaciones, puesto que la presencia en ella de zonas de distinta dureza hace que la tubería no quede en buenas condiciones de sustentación. Por lo anterior, es conveniente no efectuar nunca excavación de más, así como limpiar el fondo de piedras, realizando el refino final cuidadosamente. Por otra parte, si aparecen materiales de rigidez excesiva, como rocas o cimentaciones en desuso, se deberá excavar por debajo de la rasante y realizar un relleno posterior de unos 10-15 cm perfectamente compactado. Además, no se recomienda utilizar como relleno materiales con alto contenido de componentes orgánicos, ni instalar las tuberías en suelos orgánicos sin tomar precauciones especiales (empleo de geotextiles, etc.)

La profundidad de la zanja debe indicarse en el proyecto, pero en cualquier caso, y habida cuenta tanto del efecto de las cargas del tráfico como de las posibles heladas, la separación entre la generatriz superior del tubo y la superficie del terreno debe de tener un valor mínimo de 0,60 m.

En general, se evitará la entrada de aguas superficiales a las excavaciones, achicándolas lo antes posible cuando se produzcan, y adoptando las soluciones previstas para el saneamiento de las profundas. Debe intentarse que la zanja esté abierta el menor tiempo posible para evitar los peligros de desprendimientos, inundaciones y meteorización del terreno, así como las posibles alteraciones que puede sufrir la tubería ya montada debido a los agentes atmosféricos. Es por ello que es conveniente establecer un programa de ejecución que coordine, por tramos de longitud adecuada, las fases de apertura de zanja, montaje y terraplén. Si fuera preciso mantener la zanja abierta durante algún tiempo, es conveniente, para evitar la meteorización, dejar por lo menos 0,20 m sin excavar, realizando esta excavación poco antes del montaje.

La estabilidad de las paredes de la zanja puede conseguirse dándoles el talud adecuado, pero en algunos casos en que esto no es posible, bien por el coste económico de la excavación, bien por la imposibilidad física de espacio, es preciso la entibación. Las zanjas son especialmente peligrosas para los operarios, por lo que, como regla general, no se debe excavar sin entibación una profundidad mayor a 1,20 m. Si se entiba, la zanja se realiza con paredes verticales, debiendo ser la entibación tanto más compleja cuanto mayor sea la inestabilidad del terreno. Hay que tener presente que existe una altura crítica de una excavación sin entibación. Se realizará la excavación por franjas horizontales de altura no mayor a la separación entre codales más 30 cm, que se entibará a medida que se excava. Además, debe tenerse en cuenta en el diseño de la entibación, que se debe permitir la colocación y el montaje de la tubería. Por último, indicar que mientras se efectúe la consolidación definitiva de las paredes y fondo de la excavación, se conservarán las contenciones, apuntalamientos y apeos realizados para la sujeción de las construcciones y/o terrenos adyacentes, así como de vallas y/o cerramientos.

Os dejo algunos vídeos sobre la excavación de zanjas. Espero que os sean de interés.

Referencias:

AENOR (2000). UNE-EN 805. Abastecimiento de agua. Especificaciones para redes exteriores a los edificios y sus componentes. 

AENOR (2016). UNE-EN 1610. Construcción y ensayos de desagües y redes de alcantarillado.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Relleno de la zanja en la instalación de tuberías

Figura 1. Colocación de tubería. Gadea Hermanos.

Podemos definir la instalación de una tubería como el conjunto de acciones que hay que realizar para colocarla en su posición definitiva, garantizando el cumplimiento de la función hidráulica y mecánica para la que ha sido diseñada. Una vez realizada la excavación a la profundidad y anchura necesarias, hay que asegurar que el fondo de la excavación se encuentra exento de elementos gruesos, se debe rasantear y nivelar y, en condiciones especiales como un nivel freático alto, se deben colocar geotextiles, material granular y otros elementos.

El relleno de zanja tiene como misión la de garantizar la solidez en la zona de los riñones y los laterales del tubo. La calidad del material de relleno, así como su correcta ejecución, son aspectos que influir en el comportamiento y funcionalidad a lo largo del tiempo de la tubería instalada. La tubería, aunque se haya fabricado y dimensionado correctamente, puede fallar si no se instala adecuadamente, pues debe soportar los esfuerzos de todo tipo.

Según las Normas UNE EN 805 y UNE EN 1610, en una zanja para instalación de tuberías se distinguen las siguientes partes (Figura 2):

  • Cama de apoyo: es el relleno que se extiende en el fondo de la zanja para eliminar desigualdades en su base.
  • Asiento: parte del relleno que proporciona a la tubería el ángulo de apoyo previsto en proyecto.
  • Apoyo: conjunto formado por la cama de apoyo y el asiento del tubo.
  • Relleno lateral: es la zona del relleno lateral de la tubería, comprendida entre el asiento y la generatriz superior de la tubería.
  • Relleno inicial: son los 30 cm de relleno sobre la clave de la tubería.
  • Recubrimiento: zona de relleno alrededor y hasta 30 cm sobre la generatriz superior del tubo.
  • Relleno principal: es la altura de relleno por encima del relleno inicial, hasta alcanzar la rasante del terreno, incluyendo la posible calzada.
  • Altura de relleno: zona que cubre el tubo, desde su generatriz superior hasta la superficie de rodadura de la calzada.
Figura 2. Ejemplo de instalación de zanja (UNE-EN 805)

El apoyo debe realizarse de forma que los tubos reposen a lo largo de toda su caña. En caso necesario, deberá excavarse alojamiento en la capa de apoyo para acomodar a las uniones. El tendido de la cama de arena o material granular debidamente compactado es imprescindible para que la tubería no descanse sobre salientes o piedras que pudieran existir en la base de la zanja. Si el fondo no satisface las condiciones de apoyo de los tubos, deberá sobreexcavarse y rellenar con un material seleccionado adecuado, colocado siguiendo correctamente el perfil longitudinal, y compactado. Solo se puede prescindir de la cama cuando el material del terreno natural de la zanja tenga la calidad y granulometría adecuadas (arenas, zahorras naturales, etc.) según la normativa. También se debe cuidar el ángulo de apoyo previsto en proyecto, soportándose mejor las cargas externas cuando mayor sea el ángulo de apoyo. Para ello es preciso retacar el material de relleno que proporciona el apoyo en la zona inferior de la tubería, asegurando que se consigue el ángulo de apoyo buscado.

Figura 3. Sección tipo de instalación de tubería. https://www.aristegui.info/caracteristicas-de-las-zanjas-para-tuberias-plasticas-enterradas/

La altura del relleno será tal que se impida la congelación de los tubos; si ello no fuera posible, deberán emplearse otros dispositivos alternativos de protección antihielo. El relleno de la zanja, desde la cama de apoyo hasta 30 cm sobre la clave del tubo, se debe hacer por tongadas de 15-20 cm, compactadas hasta alcanzar el grado de compactación considerado en proyecto, no menor del 95% del Proctor Normal. Debe compactarse por debajo de la tubería y a ambos lados simultáneamente, para impedir movimientos de la tubería. El resto del relleno hasta alcanzar la superficie del terreno natural se debe hacer por tongadas de 30 cm como máximo, con un grado de compactación del 100% del Proctor Normal.

En la compactación del relleno de la zanja, desde la cama hasta 30 cm sobre la generatriz superior del tubo, se deben usar pisones vibradores mecánicos ligeros (peso máximo en funcionamiento de 0,30 kN), o placas vibratorias ligeras (peso máximo en régimen de funcionamiento de 1 kN), y con los espesores adecuados de las capas de tierra a compactar. También se pueden utilizar compactadores específicos como la rueda compactadora de zanjas. Las características del material de relleno serán las siguientes:

  • Que no existan componentes de piedra de granulometría mayor de 50 mm.
  • Para tuberías de diámetro nominal entre 200 y 600 mm, la granulometría máxima será de 30 mm.
  • El material tendrá capacidad portante suficiente y no será cohesivo.
  • Una compactación del 92% del Proctor Normal, por ejemplo, debe garantizar una rigidez de 3 N/mm2.
Figura 4. Instalación con solera de hormigón. https://www.obrasurbanas.es/buenas-practicas-tubos-hormigon/

En el relleno sobre la clave del tubo no se deben utilizar elementos de compactación pesados hasta alcanzar una altura de, al menos, 1 m.

El relleno de las zanjas se debe realizar en dos etapas. La primera es un relleno parcial antes de las pruebas en obra, y la segunda etapa corresponde al terraplenado definitivo después de dichas pruebas.

El material utilizado para el relleno parcial debe situarse uniformemente en la zanja. Hasta una altura de 30 cm por encima de la clave del tubo, el material de relleno debe colocarse en capas de 15 cm muy bien consolidadas lateralmente y asegurando la ausencia de coqueras bajo los riñones del tubo. Las juntas deben quedar libres hasta el relleno definitivo tras las pruebas de obra.

Siempre que el terreno natural tenga la calidad adecuada, se empleará en el relleno el mismo material procedente de la excavación debidamente seleccionado, evitando la caída de piedras u otros objetos que pudieran dañar al golpear los tubos durante el vertido. Cuando las pruebas de presión en obra sean satisfactorias, se procederá al relleno de las juntas descubiertas para completar el relleno de la zona del tubo, cuidando el relleno y retacado en los riñones de manera que no queden coqueras al objeto de que el tubo quede perfectamente apoyado en el ángulo de apoyo previsto en proyecto.

Para terminar el relleno hasta la rasante del suelo, se pueden utilizar materiales ordinarios en los que se hayan eliminado los terrones y piedras gruesas. Este relleno será completado por capas de alrededor de 30 cm de espesor, niveladas y cuidadosamente apisonadas, utilizando pisones mecánicos ligeros o placas vibratorias ligeras.

Los compactadores pesados se permiten a partir de una altura de relleno igual o mayor a 1 m sobre la generatriz superior de la tubería. En tanto las obras no hayan terminado se deberán evitar cargas mayores (por ejemplo, tránsito de vehículos pesados, incluidos los de obra). Estas sobrecargas no están contempladas normalmente en los cálculos de proyecto.

Si por necesidades de obra deben pasar camiones de obra u otro tráfico no previsto o no calculados e proyecto, se deberán realizar cálculos complementarios para comprobar que las tuberías de proyecto son válidas para esas hipótesis de cargas.

Os dejo a continuación algunos vídeos que espero sean de vuestro interés.

Referencias:

AENOR (2000). UNE-EN 805. Abastecimiento de agua. Especificaciones para redes exteriores a los edificios y sus componentes. 

AENOR (2016). UNE-EN 1610. Construcción y ensayos de desagües y redes de alcantarillado.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Libro Blanco de las Tecnologías sin Zanja

La Asociación Ibérica de Tecnología Sin Zanja (IbSTT) ha recopilado en un libro, en el cual he participado como autor de un capítulo, de las técnicas sin zanja más actuales, guías de Perforación Dirigida, así como Manuales de rehabilitación de tuberías sin zanja y buenas prácticas y casos de éxito a lo largo de un recorrido por 587 páginas distribuidas en 12 capítulos, con más de 500 imágenes a color, recopilando el temario, capítulo por capítulo y módulo por módulo, del Curso de Postgrado Especialista en Tecnologías SIN zanja que llevamos impartiendo desde 2015 anualmente. En formato muy manejable de 15 cm. x 21 cm y tapa blanda.

Si quieres solicitar un ejemplar, puedes acudir a la página de IbSTT o bien acceder directamente aquí: https://docs.google.com/forms/d/e/1FAIpQLSfIUusGTfTicMUnuzAmhifC1uHDpDrDj6dWW3S2BfSAP7mOlw/viewform 

Os paso a continuación el índice del libro por si os interesa:

Descargar (PDF, 98KB)

Tendido de cable para fibra óptica sin abrir zanjas

Ditch Witch JT60
Ditch Witch JT60

En este post me gustaría incidir en el tema de la instalación de fibra óptica. La fibra óptica es un medio de transmisión, empleado habitualmente en redes de datos y telecomunicaciones, consiste en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir.

Las microzanjas podría ser una de las alternativas a emplear, sobre todo en las calles. En el vídeo que os dejo a continuación la empresa andaluza Magtel nos explica las ventajas de su técnica.

Sin embargo, la perforación horizontal dirigida se está convirtiendo en una alternativa real y económica frente a los métodos tradicionales de aperturas de zanjas. A continuación os dejo el ejemplo de máquinas que utilizan esta tecnología. El vídeo que presento es de la empresa Ditch Witch. En este caso la maquina puede realizar trabajos de instalación de tubos o fibra óptica en tramos de 300 a 400 m, presenta una fuerza de tiro de 26,7 toneladas y puede perforar incluso roca.

Punto de funcionamiento de una bomba centrífuga. Problema resuelto.

Bomba centrífuga. https://es.wikipedia.org/

 

El punto de funcionamiento o de operación de una bomba centrifuga se define como el flujo volumétrico de fluido que esta enviara cuando se instale en un sistema dado. El régimen de trabajo se determina por el punto de intersección de las características de la bomba y de la tubería, y por eso, al ser la característica de la conducción (tubería) invariable, salvo que se actúe sobre la válvula de impulsión, el cambio del número de revoluciones de la bomba provocará el desplazamiento del punto de trabajo a lo largo de la característica de la tubería. Si ésta corta a una parábola de regímenes semejantes, al cambiar el número de revoluciones y pasar a otra curva característica, la semejanza se conservará, pudiéndose considerar en este caso que el cambio del número de revoluciones de la bomba no alterará la semejanza de los regímenes de trabajo.

Para aclarar un poco más este tema, os dejo un problema resuelto con los conceptos básicos resueltos. Espero que os sea de interés.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Descargar (PDF, 215KB)

Zanjadora de brazo inclinable

Zanjadora de brazo inclinable (BARTH K 130)
Zanjadora de brazo inclinable (BARTH K 130)

Llamada en cierta bibliografía excavadora “ladder ditcher”, consiste en una serie de cangilones o cuchillas montados generalmente sobre orugas, que excavan en la dirección del eje de avance de la máquina y vierte las tierras, sobre una cinta transportadora dispuesta en dirección transversal a la excavadora. La tierra excavada se deposita en un cordón lateral o se carga en las unidades de transporte.

Sus elementos esenciales son:

  • El brazo de cangilones, móvil mediante cilindros hidráulicos hasta una inclinación máxima de 55º respecto a la horizontal, que tienen montados cangilones con cuchillas para terrenos no rocosos, dientes cónicos o picas en terrenos rocosos y dientes cuadrados en terrenos congelados.
  • Nivelador de fondo, con el que se consiguen zanjas de fondo limpio, llevando una zapata en su estructura que impide a la máquina excavar a más profundidad de la requerida.
  • Transportador de descarga, situado transversalmente al eje longitudinal, y consiste en una cinta transportadora con altura de descarga regulable.
Excavadora de brazo inclinable
Excavadora de brazo inclinable

La máquina empieza excavando sin moverse, descendiendo el brazo de cangilones hasta la profundidad deseada, posteriormente avanza y mantiene una velocidad compatible con la naturaleza del terreno, al igual que la velocidad de los cangilones.

Zanjadora utilizada en la segunda fase del postrasvase den Villena. Fuente: http://www.diarioinformacion.com/elda/2010/03/22/monstruo-terreno/991803.html
Zanjadora utilizada en la segunda fase del postrasvase den Villena. Fuente: http://www.diarioinformacion.com/elda/2010/03/22/monstruo-terreno/991803.html

De las zanjadoras, el de tipo de brazo inclinable es el que permite cavar la trinchera más ancha. Con cangilones normales, esta anchura llega hasta 0,90 m y con los dientes desbordantes, alcanza 1,45 m. El radio de las curvas que pueden abordarse sin levantar el brazo es de unos 25 a 50 m. En zanjas estrechas no se usa esta máquina.

Una de las zanjadoras más grandes del mundo se ha utilizado en Villena para acelerar las obras del post-trasvase Júcar-Vinalopó. Es una máquina de 180 t, con una longitud de 4 m de ancho y 9 m de largo. Con esta máquina se pueden abrir de 100 a 120 m de zanja al día.

Os dejo a continuación varios vídeos que explican el funcionamiento de esta máquina.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Coeficiente de carga de las tierras sobre tubo instalado en zanja

80a
http://blogplastics.com/

El empuje de las tierras sobre un tubo instalado en zanja influye decisivamente en su dimensionamiento. Su magnitud depende tanto de las características geométricas de la zanja y del tubo como de las características propias del terreno. A continuación os dejo un enlace a una página donde podéis entender cómo varía el coeficiente de carga de las tierras sobre un tubo instalado en zanja, en función de las características del terreno, las dimensiones del tubo y la geometría de la propia zanja. Para ello se debe seleccionar: el ancho de la zanja (hasta un máximo de 5 m), la altura de relleno (hasta un máximo de 10 m), el ángulo de rozamiento interno del relleno y el ángulo de rozamiento del relleno contra la zanja (ambos en grados sexagesimales, hasta 50º). No se admiten valores negativos.

El enlace es el siguiente: https://laboratoriosvirtuales.upv.es/eslabon/TierrasZanja/default.aspx

Zanaja

 

El túnel de Eupalinos en la isla de Samos

https://es.wikipedia.org/wiki/T%C3%BAnel_de_Eupalino
https://es.wikipedia.org/wiki/T%C3%BAnel_de_Eupalino

El túnel de la isla de Samos, en aguas del mar Egeo, es el primero del que se conoce el nombre del ingeniero que lo construyó, Eupalinos de Megara, hijo de Naustrophos. Se trata de una obra de un kilómetro de longitud, que trascurre bajo el monte Kastro, construida hacia el 530 a.C., durante el mandato del tirano Polícrates. El túnel se excavó manualmente en roca caliza, con una sección cuadrada de 1,75 m x 1,75 m, sirviendo de apoyo para la construcción del acueducto de la capital de la isla (que hoy es llamado Pitagoreión) y como vía de escape en caso de asedio. Se extrajeron 7000 m3 de roca, para lo cual se emplearon unos 4000 esclavos y se tardó más de una década tanto para la construcción del túnel como del acueducto. El historiador Herodoto describió la obra en su Libro III.

El túnel, que estuvo funcionando durante más del mil años, fue considerado como una de las tres maravillas del Mundo Heleno, y desde luego, una de las obras maestras de la ingeniería de la antigüedad. En efecto, el problema más importante al que se tuvo que enfrentar Eupalinos fue superar los errores en la medición, de forma que los dos equipos que excavaban el túnel desde los dos extremos se encontraran. Al final sólo hubo una desviación lateral de 6 m y vertical de 60 cm. A lo largo de la galería todavía se puede ver la línea de nivel que servía de guía para la excavación, que tiene una pendiente bastante regular de 0.4%. También se conservan inscripciones de los responsables de cada grupo de trabajo a lo largo del túnel. Os propongo que expliquéis cómo se podría realizar el cálculo usando sólo triángulos rectángulos y alcanzar dicha precisión. Aunque también podéis ver alguno de estos vídeos que os dejo, donde se explica el procedimiento.