Drenaje de excavaciones mediante bombeo desde zanjas perimetrales

Figura 1. https://gharpedia.com/blog/dewatering-methods-for-waterlogged-area/

El agotamiento del agua a cielo abierto (open sump pumping) de grandes excavaciones puede realizarse mediante bombeo desde zanjas perimetrales a la excavación (dewatering by constructing drains). Estas zanjas, más profundas que la excavación principal, llevan el agua a unos pozos o sumideros donde una bomba la evacua fuera de la excavación. En el caso de áreas extensas, incluso se pueden disponer zanjas intermedias, además de las perimetrales. Se trata de un sistema de poca complejidad y, normalmente, de menor coste frente a otros sistemas.

Tanto las zanjas como los sumideros se realizan con maquinaria de excavación convencional. Las bombas deben ser suficientemente robustas como para afrontar el manejo de partículas sólidas y finos. Este sistema presenta problemas con suelos granulares, por su poca estabilidad cuando se encuentran saturados. Se trata de un sistema que solo es útil cuando el volumen de agua aportado por el terreno no es muy alto. La zanja drenante se rellena de árido graduado para garantizar su integridad y retener los finos, evitando la erosión del suelo; pero si los suelos son suficientemente estables y cohesivos, no se precisa de dicho relleno.

En el caso de que se deba drenar una cantidad de agua importante, se debe incrementar la sección de la zanja, aumentar la pendiente, e incluso, colocar tuberías horizontales fisuradas dentro de la zanja drenante para favorecer la circulación del agua hacia los sumideros. Antes de disponer los áridos que rodean esta tubería, se coloca una membrana de geotextil para evitar la salida de finos. A este tipo zanja con tubería horizontal fisurada, de unas dimensiones de 0,50 m x 0,50 m (o superior) se le denomina drenaje francés (French drain).

El sistema es adecuado para descensos someros del nivel freático, entre 1 y 2 m, donde el nivel previo al bombeo se encuentre próximo a la superficie del terreno. En efecto, en condiciones de presión atmosférica, el máximo nivel de aspiración real de la bomba se reduce a unos 7,5 m, como mucho. Es por eso que excavaciones a mayor profundidad requeriría de una batería escalonada de bombas o bien utilizar bombas sumergibles.

Figura 2. Sistema de bombeo con zanja perimetral desde pozos abiertos.

La profundidad de las zanjas y sumideros puede aumentarse a medida que avanza la excavación (Figura 3). El fondo de las zanjas debe mantenerse 0,30-0,60 m por debajo del fondo de la excavación. En excavaciones pequeñas, la profundidad de las zanjas puede ser de 0,30 a 0,60 m con un ancho de 0,40 m y una relación de inclinación de 1:1-1:1,5. También se dispone una pequeña pendiente de 0,2-0,5 % para el buen drenaje de la zanja. Los sumideros suelen ser cúbicos, de 1 m de lado. El espaciamiento de centro a centro de los sumideros a lo largo de la línea central de las zanjas puede variar de 20 a  a 30 m. El sumidero final debe ser lo suficientemente profundo como para que, cuando se bombee hacia afuera, se drene toda la excavación. El fondo del sumidero se sitúa entre 0,40 y 1,00 m por debajo de las zanjas. Las paredes del sumidero se pueden reforzar con tablas de madera y otro material. Para evitar el arrastre de partículas finas suele revestirse el sumidero con un material filtrante. El bombeo debe realizarse de forma continua hasta que terminen las operaciones.

Figura 2. Profundización de zanjas perimetrales y sumideros. https://link.springer.com/chapter/10.1007/978-981-10-0669-2_4

Uno de los problemas del sistema es que la corriente subterránea de agua puede arrastrar partículas finas y aumentar la presión intersticial del terreno colindante, con el consiguiente riesgo de subsidencias o asientos indeseados en estructuras colindantes. En casos extremos se podría producir erosión interna, sifonamiento, roturas de fondo o deslizamiento de taludes. Este fenómeno puede producirse cuando las pendientes son pronunciadas o existe un potencial hidráulico elevado. Cuando hay filtración de agua por el talud de la excavación, a veces es suficiente proteger la base del talud (batter protection) con una berma de gravas o sacos de arena para evitar su erosión o fallo por colapso; pero en otros casos, sobre todo en zonas urbanas, el riesgo de inestabilidad de los taludes de la excavación aconseja la construcción de recintos cerrados con muros pantalla o tablestacas y bombear el agua que penetre en el recinto. En este caso resulta imprescindible asegurarse de que no existe levantamiento del fondo, sifonamiento o erosión interna.

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las técnicas de control del nivel freático en excavaciones

Figura. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático.

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua del recinto de la excavación conforme se produce su filtración. Las filtraciones se controlan y evacúan durante la excavación.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.