Drenaje de excavaciones mediante zanjas perimetrales

Figura 1. Bombeo desde sumidero y zanja perimetral. https://gharpedia.com/blog/dewatering-methods-for-waterlogged-area/

El agotamiento del agua a cielo abierto (open sump pumping) de grandes excavaciones puede realizarse mediante bombeo desde zanjas perimetrales a la excavación (dewatering by constructing drains). Estas zanjas, más profundas que la excavación principal, llevan el agua a unos pozos o sumideros donde una bomba la evacua fuera de la excavación.

En el caso de áreas extensas, incluso se pueden disponer zanjas intermedias, además de las perimetrales. Se trata de un sistema de poca complejidad y, normalmente, de menor coste frente a otros sistemas. El rebajamiento conseguido por este método rara vez supera 1,50 m.

Tanto las zanjas como los sumideros se realizan con maquinaria de excavación convencional. Las bombas deben ser suficientemente robustas como para afrontar el manejo de partículas sólidas y finos. Este sistema presenta problemas con suelos granulares, por su poca estabilidad cuando se encuentran saturados. Se trata de un sistema que solo es útil cuando el volumen de agua aportado por el terreno no es muy alto; sirve en obras pequeñas o rebajes limitados en suelos cementados y arenas gruesas limpias. La zanja drenante se rellena de árido graduado para garantizar su integridad y retener los finos, evitando la erosión del suelo; pero si los suelos son suficientemente estables y cohesivos, no se precisa de dicho relleno.

En el caso de que se deba drenar una cantidad de agua importante, se debe incrementar la sección de la zanja, aumentar la pendiente, e incluso, colocar tuberías horizontales fisuradas dentro de la zanja drenante para favorecer la circulación del agua hacia los sumideros. Antes de disponer los áridos que rodean esta tubería, se coloca una membrana de geotextil para evitar la salida de finos. En ocasiones se pueden omitir las tuberías drenantes, de forma que la parte inferior de la zanja quedaría completamente rellena de material drenante, con unas dimensiones de 0,50 m x 0,50 m (o superior), constituyendo un dren denominado ciego o francés (French drain), cuya construcción se puede observar en la Figura 2.

Figura 2. Dren francés. https://construblogspain.wordpress.com/2014/01/23/dren-frances-ejecucion-y-caracteristicas/

El sistema es adecuado para descensos someros del nivel freático, entre 1 y 2 m, donde el nivel previo al bombeo se encuentre próximo a la superficie del terreno. En efecto, en condiciones de presión atmosférica, el máximo nivel de aspiración real de la bomba se reduce a unos 5 a 6 m. Es por eso que excavaciones a mayor profundidad requeriría de una batería escalonada de bombas o bien utilizar bombas sumergibles.

Figura 3. Sistema de bombeo con zanja perimetral desde pozos abiertos (Pérez-Valcárcel, 2004)

La profundidad de las zanjas y sumideros puede aumentarse a medida que avanza la excavación (Figura 4). El fondo de las zanjas debe mantenerse 0,30-0,60 m por debajo del fondo de la excavación. En excavaciones pequeñas, la profundidad de las zanjas puede ser de 0,30 a 0,60 m con un ancho de 0,40 m y una relación de inclinación de 1:1-1:1,5. También se dispone una pequeña pendiente mínima del 0,5 % para el buen drenaje de la zanja. Los sumideros suelen ser cúbicos, de 1 m de lado. El espaciamiento de centro a centro de los sumideros a lo largo de la línea central de las zanjas puede variar de 20 a  a 30 m. El sumidero final debe ser lo suficientemente profundo como para que, cuando se bombee hacia afuera, se drene toda la excavación. El fondo del sumidero se sitúa entre 0,40 y 1,00 m por debajo de las zanjas. Las paredes del sumidero se pueden reforzar con tablas de madera y otro material. Para evitar el arrastre de partículas finas suele revestirse el sumidero con un material filtrante. El bombeo debe realizarse de forma continua hasta que terminen las operaciones.

Figura 4. Profundización de zanjas perimetrales y sumideros. https://link.springer.com/chapter/10.1007/978-981-10-0669-2_4

Uno de los problemas del sistema es que la corriente subterránea de agua puede arrastrar partículas finas y aumentar la presión intersticial del terreno colindante, con el consiguiente riesgo de subsidencias o asientos indeseados en estructuras colindantes. Este efecto se acentúa en aquellos terrenos con estratos de arena fina o limo. En casos extremos se podría producir erosión interna, sifonamiento, roturas de fondo o deslizamiento de taludes. Este fenómeno puede producirse cuando las pendientes son pronunciadas o existe un potencial hidráulico elevado. Cuando hay filtración de agua por el talud de la excavación y se tienen taludes poco inclinados, a veces es suficiente proteger la base del talud (batter protection) con una berma de gravas o sacos de arena (Figura 5) para evitar su erosión o fallo por colapso; pero en otros casos, sobre todo en zonas urbanas, el riesgo de inestabilidad de los taludes de la excavación aconseja la construcción de recintos cerrados con muros pantalla o tablestacas y bombear el agua que penetre en el recinto. En este caso resulta imprescindible asegurarse de que no existe levantamiento del fondo, sifonamiento o erosión interna.

Figura 5. Protección de talud mediante sacos de arena. https://grupoivda.com/productos/geobolsas/

A continuación os dejo un vídeo donde os explico los aspectos más destacados de este tipo de drenaje. Espero que os sea de interés.

REFERENCIAS:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 23 de marzo de 2020 y termina el 4 de mayo de 2020. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 87 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos constructivos de pozos profundos para drenaje de excavaciones

Figura. commons.wikimedia.org (U.S. Navy photo by Mass Communication Specialist Seaman Ernesto Hernandez Fonte/Released)

Las tecnologías de perforación se utilizan en la construcción y la minería para una amplia gama de operaciones: sondeos de reconocimiento, ejecución de pilotes de desplazamiento, barrenado para explosivos y ejecución de pozos. Centrándose en la ejecución de pozos profundos cuya finalidad sea el control del nivel freático de una excavación, las técnicas empleadas son muy variadas.

La elección de la técnica más adecuada de perforación dependerá de la dureza y abrasividad del terreno, de la estabilidad de la perforación, del sistema de extracción de los residuos y de la posible extracción de testigos. No existe una correspondencia biunívoca entre una única técnica de perforación eficiente en todos los suelos y terrenos.

Normalmente, la forma tradicional de perforar un pozo en una zona determinada suele ser la de mayor eficacia, pues la experiencia suele decantar el mejor procedimiento. Sin embargo, conviene estar atento a las innovaciones y desarrollo de nuevas tecnologías que pueden suponer importantes ahorros en casos determinados.

A continuación se resumen brevemente alguna de las técnicas empleadas en la perforación de pozos empleados en el control de agua en obras de ingeniería, remitiendo al lector a otros artículos publicado en este blog relacionados para ampliar información al respecto.

La mejor opción pasa por entender las características litológicas del terreno y las limitaciones de cada método de perforación (diámetro y profundidad de la perforación). A todo caso, siempre se debe distinguir el diámetro necesario de la electrobomba sumergible a colocar en el pozo, el diámetro de la tubería de revestimiento y el diámetro de la perforación.

 

  • Perforación con inyección: Se hinca una tubería de revestimiento inyectando agua a presión a través de una segunda tubería interior. Este sistema es el utilizado en las lanzas de drenaje (wellpoint). El agua recircula los residuos al exterior, dejando la tubería limpia.

 

  • Perforación rotativa con balde o cazo (bucket auger boring): Se perfora con un cazo cilíndrico, a una profundidad máxima de unos 30 m, en terrenos sedimentarios no consolidados o poco cementados. Se puede perforar a un diámetro mínimo de 450 mm, aunque puede llegar a 900 mm, aunque los pozos de drenaje requieren menores dimensiones.

 

  • Perforación a rotación: El arranque de las partículas se realiza mediante el giro de una herramienta de corte que se impulsa por un varillaje. Se utilizan fluidos de perforación para extraer el residuo generado por el tricono o trialeta situado en la punta de la sarta de perforación. Es una técnica efectiva en diámetros de hasta 450 mm. La perforación directa o convencional hace circular al fluido de perforación por el interior del varillaje, retornando a la superficie, junto con el detritus, por el anillo formado por el varillaje y la perforación. En la circulación inversa el fluido entra por el espacio anular y se eleva a la superficie por el interior del varillaje. En el caso de circulación inversa el diámetro habitual es de 600 mm o mayor. Estas técnicas de rotación no suelen utilizarse habitualmente para la ejecución de pozos para el control de aguas subterráneas por su coste. Además, hay que tener presente que los fluidos de perforación, especialmente en el caso de la circulación directa, reducen la permeabilidad en suelos ya de por sí poco permeables.

 

  • Perforación a percusión con cable: Se basa en el golpeteo con una pesada herramienta de corte (trépano) que se eleva con un cable y que cae por gravedad, fragmentando el suelo. Frente a otros sistemas de perforación, es más lento que otros métodos alternativos, pero sus diámetros de perforación habituales de 400 a 700 mm son una ventaja, en una amplia variedad de suelos. No utiliza lodos de perforación para la estabilización de los suelos granulares perforados, empleándose, si fuera necesario, tubos para la contención del suelo (es el caso de formaciones no coherentes, granulares o arcillosas). No suele ser utilizado para pozos de drenaje, excepto si se reutiliza el sondeo realizado por un ensayo de bombeo previo, que requiere mayores diámetros. Se utiliza el método principalmente en rocas compactas, friables y de dureza media, así como en formaciones fisuradas, donde las pérdidas de lodos de perforación sea excesiva. Como inconvenientes cabe destacar la interrupción de la perforación para extraer el detritus por media de cucharas de limpieza, así como cierta dificultad de avance en suelos blandos, libres de piedras o rocas.

 

  • Perforación a rotopercusión: Es una técnica que combina la rotación con la percusión, empleándose en rocas duras y semiduras, donde la rotación no es económica. El principio de perforación de estos equipos se basa en el impacto de una pieza de acero llamada pistón, sobre un útil, que a su vez transmite la energía al fondo del barreno, por medio de un elemento final denominado boca o bit. Utiliza un martillo de fondo, accionado por la inyección de aire comprimido. El aire asciende por el espacio anular del sondeo arrastrando el detritus, al mismo tiempo que lubrifica la perforación. Junto al aire comprimido, se emplea espumante y agua para ayudar a la limpieza del sondeo. Aquí también existe la circulación directa e inversa.

 

  • Perforación con recubrimiento: Se trata la perforación dúplex o dual consistente en la entubación del taladro al mismo tiempo que se avanza en la perforación. Se basa en los mismos principios que la perforación a rotación en circulación directa, pero utilizando como fluido de perforación el aire y, en menor medida, el agua. Los dos métodos más extendidos de perforación con recubrimiento son los conocidos como método OD (overburden drilling) y método ODEX (overburden drilling with the eccentric). La técnica es rentable hasta diámetros de 300 mm y 50 m de profundidad, suficiente para una tubería de 225 mm y una bomba sumergible de 30 l/s. La experiencia indica que bastan perforaciones de 250 mm de diámetro, tuberías de 140 mm y bombas sumergibles de 7 l/s. Por debajo de 5 l/s se conocen como “pozos de baja capacidad” (low capacity wells).

 

  • Perforación sónica: Se trata de una tecnología reciente donde un cabezal hidráulico combina la presión descendente con impactos vibratorios de alta frecuencia (50-180 hz). Utiliza doble tubería, sin necesidad de fluidos de perforación, siendo una técnica poco invasiva en el medio ambiente. Su avance es rápido, pero sus diámetros actuales se limitan a 120 mm, lo cual es poco competitivo para su uso en pozos de drenaje. Sin embargo, no funciona óptimamente en suelos muy duros.

Destacamos, por último, la tendencia de los fabricantes de equipos de perforación para pozos de disponer de equipos multisistema con compresores, varillaje liso, varillaje de doble pared, etc., de forma que se pueden realizar perforaciones mixtas tanto a rotación a circulación inversa como a rotopercusión con un mismo equipo.

Os dejo vídeos explicativos sobre algunas de estas técnicas. Espero que os sean de interés.

Os dejo un vídeo donde se observa la ejecución de un pozo de drenaje.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes de penetración transversal: drenes californianos

Figura 1. Drenes californianos. http://civogal.com/drenes-californianos

Cuando se quiere reducir las presiones intersticiales en taludes y zonas de difícil acceso, son muy útiles los drenes de penetración transversal. Son perforaciones ascendentes comúnmente llamadas drenes californianos (horizontal drains), debido a que el Departamento de Carretas de California empezó a utilizarlo a partir de los últimos años de la década de 1930.

Son perforaciones de pequeño diámetro y gran longitud realizadas frecuentemente con los mismos carros perforadores empleados en la instalación de bulones o ejecución de sondeos. En su interior se dispone un tubo de policloruro de vinilo (PVC) ranurado, de un diámetro mínimo de 50 mm capaces de soportar cierta carga por si la perforación colapsara, tubo en ocasiones rodeado de un geotextil que actúe de filtrante para evitar el taponamiento o la erosión interna del terreno al escapar los finos. No obstante, si las deformaciones esperadas superan al radio del tubo, entonces se utilizan drenes metálicos. Asimismo, se pueden disponer drenes sin tubo interior, especialmente en roca sana, donde no se esperen movimientos que obstruyan la perforación, ni materiales que puedan obstruirla.

Los drenes se disponen con una pequeña inclinación, de al menos el 3% sobre la horizontal, normalmente entre 5-10º, para evacuar el agua por gravedad, debiéndose introducir, al menos, en 2-3 m en la zona de acumulación de agua. Es por ello que a veces también se llaman drenes subhorizontales. Se debe dejar también, entre 2 y 3 m del tubo más próximo a la boca del taladro sin orificios ni ranuras. En otras ocasiones se pueden disponer más inclinados, incluso en vertical en galerías de drenaje.

Los drenes de penetración transversal tienen como objeto reducir las presiones intersticiales, agotar un embalsamiento de agua o rebajar el nivel freático. En el caso de taludes, los drenes se utilizan para estabilizar deslizamientos profundos, tal y como se puede apreciar en la Figura 2. Son especialmente eficaces en terrenos permeables, rocas fisuradas o cuando interceptan capas permeables saturadas, perdiendo eficacia en suelos arcillosos homogéneos.

Figura 2. Localización del nivel freático antes y después de la instalación de un dren horizontal

Si bien la disposición de los drenes depende de las condiciones hidrogeológicas y morfológicas del talud o ladera, normalmente se disponen 1-2 filas de tubos distanciados entre 7 y 30 m, siendo lo más frecuente entre 10 y 15 m. En el caso de taludes de más de 60 m de altura, se disponen bermas y una línea de drenes al pie de cada berma, recogiendo el agua a una cuneta impermeable. Con alturas superiores a 100 m, la longitud de perforación necesaria es tan alta que su coste se dispara. Si en nivel freático se encuentra entre 30 y 60 m por encima del pie del talud, se prolongan los drenes desde el pie hasta una profundidad igual a la altura del talud, con un máximo de 90-100 m.

La perforación simultánea de los drenes con desmontes de alturas superiores al de la maquinaria ordinaria facilita su ejecución y mejora las condiciones de drenaje durante la excavación. No se emplean lodos tixotrópicos durante la perforación, sino entubaciones provisionales al atravesar terrenos inestables o tramos de falla, hasta instalar el tubo definitivo. El agua drenada por los tubos debe canalizarse adecuadamente a cunetas u otros elementos del drenaje superficial. Además, estos drenes deben someterse a revisiones periódicas, con un mantenimiento que incluya su limpieza con aire a presión.

Los drenes de penetración transversal presentan como ventajas su rápida y sencilla instalación en comparación con otros sistemas de drenaje profundo, permite alcanzar toda la superficie del talud, puede ejecutarse una vez iniciadas las inestabilidades y el desagüe se realiza por gravedad, sin el uso de bombas o sistemas auxiliares. Sin embargo, su área de influencia es limitada en comparación con otros sistemas de drenaje profundo y se ejecutan una vez hecho el talud, por lo que su estabilidad puede complicarse.

Como información complementaria, os dejo la ficha técnica realizada por GEOCISA sobre al ejecución de anclajes y drenes californianos en el castillo de Jadraque (Guadalajara).

Descargar (PDF, 277KB)

REFERENCIAS:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.