Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/

Un terreno se considera que es malo o inadecuado si no cumple con determinadas condiciones o propiedades que lo hagan apto para los requerimientos de un proyecto. Por ejemplo, para el caso de un terraplén, el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG3), clasifica los materiales que se pueden utilizar como suelos inadecuados, marginales, tolerables o seleccionados. Pero estos requerimientos varían en función del tipo de proyecto del que estemos hablando (edificación, puentes, presas, carreteras, etc.).

Cuando un terreno no es inadecuado, se pueden tomar distintas decisiones al respecto (Nicholson, 2015):

  1. Abandonar el proyecto. Esta solución se considera adecuada cuando es posible encontrar otra ubicación a nuestro proyecto o bien cuando es inviable desde el punto de vista económico, social o ambiental.
  2. Extraer y reemplazar el terreno inadecuado. Es una práctica habitual que puede ser inapropiada cuando el coste de la retirada del terreno y la aportación de los materiales seleccionados no es competitivo, no se encuentran disponibles o existen restricciones medioambientales.
  3. Redimensionar o cambiar el proyecto para que sea compatible con las características del terreno. Es el caso del uso de pilotes para trasladar las cargas a un estrato competente.
  4. Modificar el suelo o la roca para mejorar sus propiedades o su comportamiento a través de técnicas de mejora de terrenos.

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata de incrementar la capacidad portante, reducir la deformabilidad, disminuir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que aplicables a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora. Con todo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en los tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden organizar las técnicas de mejora del terreno en función de su temporalidad (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo el refuerzo y la mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

También es posible clasificar las técnicas de mejora del terreno atendiendo a la fase en la que se encuentra un proyecto (Nicholson, 2015):

a) Mejoras previas a la construcción. Se trata de métodos eficientes en cuanto a coste, y por tanto, deseables si son posibles. Se trata de mejorar el emplazamiento de la obra como parte de la planificación de las tareas definidas en el proyecto. Como ejemplos tenemos la compactación, la preconsolidación, el rebajamiento del nivel freático o las inyecciones.

b) Mejoras durante la construcción. Estas técnicas se realizan a la vez que el proyecto y pueden quedar como parte permanente del mismo. Sería el caso de las columnas de grava, tratamientos superficiales del terreno (compactación superficial, estabilización con cal o cemento, etc.), congelación de suelos, geosintéticos, anclajes, claveteado del terreno, etc.

c) Mejora tras la construcción. Se trata normalmente de técnicas de reparación, normalmente caras y que suponen la última alternativa para resolver un problema como pudiera ser la estabilización de una ladera o problemas de filtración de agua. Entre estas técnicas se encontrarían el rebajamiento del nivel freático, micropilotes de refuerzo, etc.

Os dejo a continuación un vídeo explicativo de las clasificaciones de las técnicas de mejora del terreno.

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • NICHOLSON, P.G. (2015). Soil improvement and ground modification methods. Elsevier, Butterworth-Heinemann, 472 pp.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Electroósmosis como técnica de drenaje del terreno

Figura 1. Proceso de electroósmosis (Terrancorp.com, 2014)

Muchos problemas de ingeniería tienen que ver con la estabilidad de los terrenos. Para solucionar estos problemas se utilizan distintos métodos que permiten aumentar la resistencia del mismo mediante tratamientos de tipo granular, químico o térmico. Una forma de estabilizar los suelos finos saturados o parcialmente saturados es la electroósmosis, que no solo permite mejorarlos, sino también se utiliza con técnica de drenaje. Otro de los usos habituales de este técnica es para combatir la humedad por capilaridad, con lo que se combaten las eflorescencias. Sin embargo, en este artículo nos centraremos en el uso de la electroósmosis como técnica de mejora del terreno y como técnica de drenaje del nivel freático.

La electroósmosis es un fenómeno basado en la precipitación eléctrica de sustancias coloidales en suspensión, observado por el físico Reuss (1808) quien introdujo dos tubos verticales abiertos en sus extremos dentro de un bloque de arcilla húmeda llenándolos de agua hasta la mitad de su altura. Después de situar un par de electrodos en su interior, hizo pasar por ellos una corriente eléctrica comprobando que el nivel de agua subía en uno de los tubos mientras descendía en el otro. Esto demostraba la existencia de un flujo de agua de un tubo al otro a través de la arcilla.

Más tarde Casagrande (1.952) llevó a la práctica el sistema aplicándolo para consolidar un suelo arcilloso en la excavación de un talud. Para ello, colocó como cátodos, dos series de tubos porosos de 10 cm de diámetro y 7 m de profundidad en tomo a los cuales situó un relleno de gravilla para facilitar la entrada del agua. Entre cada dos cátodos separados 9 m se intercalaron como ánodos, tubos de 12 mm de diámetro. El paso de una corriente de 90 voltios y una potencia de 1,5 kw provocó la acumulación del agua en los tubos porosos (cátodos) de los cuales se pudo extraer fácilmente por bombeo.

La electroósmosis es un método de drenaje eléctrico empleado para estabilizar arcillas blandas y limos al incrementar su resistencia por la reducción de humedad. Téngase en cuenta que son terrenos que presentan problemas para aplicar las técnicas de pozos con sistema de vacío convencional. El sistema deja de ser efectivo en arenas finas con permeabilidades inferiores a 3·10-5 m/s. La diferencia con otros procedimientos es que el movimiento del agua no se produce por gravedad sino por efecto de un campo eléctrico. Con la electroósmosis se desatura el suelo, aumenta su resistencia y se consolida, como un efecto principal y, en consecuencia, se mejoran las condiciones del terreno con su estabilización.

El agua fluye de los ánodos (+) a los cátodos (-) en un medio poroso saturado (Figuras 2 y 3). Dan buenos resultados cátodos de un diámetro de 120 mm colocados cada 3-5 m y barras de acero o aluminio como ánodos intercalados de 100 mm de diámetro. En el cátodo se sitúa un wellpoint o un pozo drenante, que es un tubo abierto por el fondo. Los ánodos y cátodos son tubos abiertos por el fondo. Los gradientes de potencial varían entre 30 y 180 V. A mayor voltaje, más volumen de agua drenada, aunque pueden producirse fenómenos de hidrólisis, por lo que deben hacerse ensayos para establecer los parámetros energéticos más convenientes. Se necesitan de 0,5 a 1,4 kW/m3 de suelo drenado en excavaciones grandes, y hasta un máximo de unos 14 kW/m3 en las pequeñas. Este movimiento del agua genera consolidación, con un aumento temporal de las tensiones efectivas.

La conductividad eléctrica del agua depende de su salinidad y ello influye en la eficiencia de la corriente y el voltaje aplicado. En un suelo con mayor salinidad, el volumen de agua drenada con la electroósmosis es mayor y la consolidación es más eficiente y rápida.

Figura 2. Disposición del equipo para el drenaje
Figura 3. Disposición del equipo para el drenaje (Bell, 1993)

Las desventajas de este método radican en el alto costo de la energía necesaria y en los problemas relacionados con la seguridad de los operarios al trabajar con un circuito de corriente continua. Los elevados costes de ejecución y a la poca práctica en su uso, limitan la aplicación de la electroósmosis a casos especial en los que el caudal a evacuar sea escaso. Su uso más frecuente es la mejora permanente de las propiedades de los cimientos o en la estabilidad de los taludes. En la Figura 4 se muestra el principio de la electroósmosis empleado en el drenaje previo a la excavación de un túnel.

Figura 4. Tratamiento por electroósmosis previo a la excavación de un túnel (Bielza, 1999)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Técnicas constructivas: Estructuras de contención y mejora de suelos

Hemos considerado interesante presentar un curso sobre “Técnicas Constructivas de la Ingeniería Civil para Profesionales de la Edificación: Estructuras de contención y procedimientos de construcción en mejora de suelos” porque pensamos que la transferencia de conocimiento y experiencia del campo de la ingeniería civil a otros profesionales centrados en la edificación puede mejorar sus competencias en la construcción de obras en general.

El link al curso de la Universidad Politécnica de Valencia es el siguiente enlace.

Os paso el contenido del curso, por si os pudiera servir de interés:

Descargar (PDF, 8KB)