Impermeabilización de túneles

El drenaje y la impermeabilización de los túneles tiene una gran importancia técnica y económica. Favorece la calidad y el “confort” de terminación y mejora las condiciones de mantenimiento del túnel. De este modo, la correcta elección de los materiales con respecto a las condiciones de un determinado momento y lugar es muy importante en la impermeabilización del túnel. Con ello se van a impedir filtraciones que pueden dañar el revestimiento estructural, evitando la disgregación del hormigón y la corrosión de las instalaciones. Es necesario analizar las condiciones físicas y químicas del agua para garantizar que no deterioran el sistema de impermeabilización.

 

 

Impermeabilización túneles

El sistema de impermeabilización dependerá directamente del caudal de agua infiltrado en el túnel. Estos caudales dependen de la geología, la climatología y la geomorfología. Los parámetros hidrogeológicos de más interés serán los siguientes: la porosidad, la permeabilidad, el gradiente hidráulico y la transmisividad. Se pueden distinguir tres tipos de impermeabilización, dependiendo del agua contenida en el macizo donde se excava:

  • Si el agua hace presencia en la franja capilar, se deberá impermeabilizar en toda la construcción subterránea, pues se deben cerrar los poros para evitar que la humedad llegue al interior por capilaridad. Se pueden usar pinturas impermeables y con menos frecuencia, membranas.
  • En el caso de zonas saturadas, de debe desviar el agua para que no genere presiones. Se recoge el agua en un drenaje longitudinal del túnel. Se usan morteros hidrófugos o bien membranas o láminas impermeables.
  • En aguas subterráneas se usa una impermeabilización flexible, cerrada y resistente a la presión de dicha agua. Se usan membranas o láminas impermeables y con menor asiduidad morteros hidrófugos.

El tipo de impermeabilización que usemos también dependerá del uso que vaya a tener el túnel, que determinará el grado de estanqueidad o la cantidad de filtraciones permitidas. La norma española UNE 104424 ofrece la siguiente tabla indicativa:

Impermeabilización

También os dejo varios enlaces de interés: http://www.ossaint.com/esp/impermeabilizacion.aspx?BtnSubMenu=43, y éste de Terratest: http://www.terratest.es/docs/impermeabilizacionydrenajedetunelesconfotos.pdf.

También os dejo varios vídeos. El primero es de la impermeabilización de los túneles de Pajares.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Suelo reforzado con geosintéticos

Figura 1. Detalle de la estructura de un muro reforzado con geotextil. Fuente: geotexan.com

También se pueden construir muros compuestos por geosintéticos resistentes a las tracciones producidas por la presión del suelo (Figura 1). Se pueden utilizar en los muros distintos tipos de geosintéticos: los geotextiles, las geomallas y los geocompuestos de refuerzo.

El geotextil es un material textil plano, permeable, deformable, formado por fibras poliméricas. Su función es la de refuerzo, trabajando a tracción, además de evacuar el agua. Se introduce una longitud mínima de anclaje para evitar deslizamientos (Figura 2). El refuerzo se introduce junto con el relleno en capas de unos 50 cm, coincidiendo con el espesor del terraplenado. Son muros económicos y fáciles de construir. Presentan una gran flexibilidad y deformación. Además, la capa de geotextil puede convertirse en una superficie débil que favorezca los desplazamientos. Otro inconveniente es la susceptibilidad del geotextil a componerse ante la luz solar. A menudo se hidrosiembra el paramento visto para formar un muro vegetalizado (Figura 2).

Figura 2. Longitud de anclaje del geotextil. Fuente: https://geosynthetics.files.wordpress.com

Las geomallas también se puede reforzar el suelo utilizando una malla metálica, capaz de dar cierta rigidez al terraplén. Su función es la misma que el geotextil y se usan cuando la tracción requerida es mayor a la del geotextil. De este modo, las capas no constituyen superficies de debilidad, aunque el efecto de anclaje es menor al de los geotextiles. El inconveniente es que hay que prever la corrosión del material que forma la malla, así como que no corta por capilaridad el paso del agua, que puede llegar al cimiento.

Los geocompuestos de refuerzo son una combinación de los geotextiles y las geomallas. Proporcionan la resistencia a tracción necesaria y evitan el paso del agua al cimiento.

Figura 3. Detalle de un muro de suelo reforzado con malla. Fuente: www.orbemedioambiente.es

Os dejo un pequeño vídeo donde podemos ver cómo se ejecuta esta unidad de obra.

Os dejo un vídeo de geotecnia.online sobre el uso de los geosintéticos.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas constructivas: Estructuras de contención y mejora de suelos

Hemos considerado interesante presentar un curso sobre “Técnicas Constructivas de la Ingeniería Civil para Profesionales de la Edificación: Estructuras de contención y procedimientos de construcción en mejora de suelos” porque pensamos que la transferencia de conocimiento y experiencia del campo de la ingeniería civil a otros profesionales centrados en la edificación puede mejorar sus competencias en la construcción de obras en general.

El link al curso de la Universidad Politécnica de Valencia es el siguiente enlace.

Os paso el contenido del curso, por si os pudiera servir de interés:

Descargar (PDF, 8KB)