Prototipo de examen para la asignatura de Procedimientos de Construcción

Mis estudiantes agradecen que les proporcione exámenes muy parecidos a los que van a tener que hacer. Estoy en este momento dando las primeras clases de la asignatura de Procedimientos de Construcción a los estudiantes del doble grado de Matemáticas-Ingeniería Civil de la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia.

El nivel de dificultad del examen real será muy similar. Además, este tipo de ejercicios permite a los estudiantes enfrentarse a los problemas, consultar al profesor su resolución y aprender del proceso de evaluación.

De momento solo he tenido la oportunidad de dar tres unidades correspondientes a sondeos y perforaciones, técnicas de mejora del terreno y control del nivel freático. El tipo de examen es del estilo al que dejo a continuación.

Descargar (PDF, 146KB)


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la máxima profundidad de excavación frente al taponazo

Figura 1. Rotura de fondo o taponazo.

En una entrada anterior, donde se describían los problemas del agua en las excavaciones, ya se habló del levantamiento de fondo o taponazo: El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 1). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.

En esta ocasión os paso un problema resuelto donde se calcula la máxima profundidad de excavación frente al taponazo. Este es uno de los casos estudiados en el “Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación”. Espero que os sea de interés.

Descargar (PDF, 184KB)

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problema del drenaje en el vaciado de un solar. Corrección de Jacob a la fórmula de Dupuit-Thiem

Resulta habitual en edificación tener que realizar la excavación de un solar cuando tenemos un nivel freático somero. En este caso es común el uso de pozos drenantes para ejecutar la excavación en seco. En la asignatura de Procedimientos de Construcción hay un tema dedicado al control del nivel freático.

En el problema que os paso a continuación, utilizo un solo pozo para mantener el nivel piezométrico controlado. Para eso he empleado la conocida fórmula de Dupuit-Thiem. Sin embargo, dicha expresión se ha deducido para acuíferos confinados, donde es más sencillo simplificar las condiciones de contorno. En el caso de acuíferos libres, especialmente cuando su espesor no es muy grande, se puede usar dicha ecuación aplicando la corrección de Jacob.

He querido irme al caso en que desconozco la permeabilidad del terreno. Para eso debo medir los descensos en, al menos, un par de puntos, para obtener la Transmisividad, que es uno de los parámetros empleados en la fórmula de Dupuit-Thiem. Espero que este problema os sea de interés.

Descargar (PDF, 367KB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención del agua mediante inyección de lechadas inestables

Figura 1. Inyección de lechada. Fuente: https://www.suelosingenieria.com/index.php/actividades/construccion/mejoramientos-de-suelos/inyecciones-lechada

La inyección de morteros o suspensiones inestables es el caso habitual de las lechadas de cemento (Figura 1). Se trata de una suspensión de cemento en agua cuya homogeneidad está condicionada a la agitación de la mezcla. Una vez cesa la agitación, se inicia la sedimentación del cemento. Esa sedimentación provoca el taponamiento de los poros y la inyección se obstaculiza. El cemento es un excelente material de inyección, pues no solo rellena los huecos, sino que, al fraguar, endurece el terreno o los macizos rocosos.

La aplicación habitual de la inyección de lechadas inestables es aumentar la resistencia de un macizo rocoso, aunque también se consigue impermeabilizar, especialmente si se emplean lechadas tratadas químicamente (estables). Lo habitual es que la inyección con lechadas de cemento sea por impregnación (2 a 5 MPa) o por fractura (9 a 10 MPa). También se podría realizar una inyección de compactación, pero requiere que el fluido sea muy denso, de forma que los bulbos de mortero fraguado desplacen y compacten la masa de suelo en sus alrededores.

La impermeabilización facilita tanto la ejecución de trabajos posteriores, como es el caso de la excavación de pozos o galerías bajo nivel freático que luego se revestirán, como para completar trabajos definitivos, como es la ejecución de pantallas estancas bajo presas, cuando se adivinan filtraciones de agua importantes (Figura 2). La inyección a alta presión no sería necesaria para garantizar la impermeabilización, sin embargo, es frecuente pues permite utilizar explosivos en la excavación posterior sin perjudicar la calidad del tratamiento.

Figura 2. Tratamiento de inyecciones en presa de hormigón. Adaptado de Houlsby (1990)

La consolidación mediante inyecciones de cemento en un macizo rocoso facilita la ejecución de trabajos posteriores, como es el caso de la perforación de galerías en terrenos difíciles y mejora la capacidad resistente de la cimentación de una obra, por ejemplo, bajo la pila de un puente, en los estribos de una presa bóveda, etc.

Figura 3. Formación de una bóveda a la entrada de un intersticio en un suelo granular

El prototipo de suspensión inestable es un mortero de un tipo análogo al de uso corriente, pero suficientemente diluido para que pueda ser inyectable. Es decir, un mortero muy fluido (lechada), inestable por el tamaño de los granos de cemento y por el proceso de fabricación. El grado de dilución en este tipo de suspensiones es variable, con relaciones máximas de 10 litros de agua/1 kg de cemento, y lo mismo que en los morteros estables pueden añadirse proporciones de arena. Las relaciones agua/cemento varían desde 0,5:1 hasta 10:1, aunque es habitual una proporción de 0,8:1 a 5:1 (Bell, 1993).

La penetrabilidad de las lechadas de cemento depende del tamaño de los granos de cemento, de la posibilidad de formación de un cúmulo de granos en bóveda al atravesar un intersticio (Figura 3) y de la velocidad del fluido con la que comienza la sedimentación del cemento. Es por ello una solución muy adecuada para materiales granulares gruesos como zahorras, gravas y arenas gruesas, o bien para la inyección de grietas en macizos rocosos. En cambio, resulta un procedimiento poco eficaz en arenas, excepto si lo que se pretende es la consolidación o compactación conseguida cuando se inyecta en cortos intervalos (Tomlinson, 1982). Se trata de una solución sencilla y de relativamente poco coste, pero que se encuentran limitadas por la permeabilidad del medio. El uso de cemento portland corriente y agua ya no es adecuado en suelos con una permeabilidad menor a 10-3 m/s.

Figura 4. Selección de inyección para consolidación y estabilización de suelos. Fuente: https://col.sika.com/dms/getdocument.get/8de57674-59ac-3af1-ada7-a6bddb323deb/CONSOLIDACION,%20ESTABILIZACION%20E%20IMP%20DE%20SUELOS%20Y%20ROCAS.pdf

Se pueden distinguir, entre las lechadas de cemento, las siguientes:

  • Suspensiones de cemento puro: con una relación cemento/agua que oscila entre 0,1 y 0,5 en peso.
  • Suspensiones de cemento rebajado: donde se reemplaza parte del cemento por un polvo inerte como una arena fina o cenizas volantes. Con el porcentaje de arena, la resistencia decrece rápidamente, pero no es problema si se pretende impermeabilidad. No obstante, las suspensiones de arena desgastan rápidamente las bombas de inyección.

El equipo empleado para la elaboración de las mezclas de cemento consta de un turbo mezclador de altas revoluciones (más de 1250 rpm); un mezclador de bajas revoluciones (de 60 a 80 rpm) que mantiene en agitación la mezcla durante la inyección; bombas de tornillo sinfín o de doble pistón con capacidad de inyección variable de 0 a 60 l/min y presión ajustable de 0 a 3 o 4 MPa; obturadores mecánicos, neumáticos o hidráulicos y manómetros registradores (Figura 5).

Figura 5. Esquema del equipo de inyección (Cambefort, 1968)

El tiempo de inyección está relacionado con la evolución de la viscosidad del material inyectado, con la presión de inyección admisible y con el radio efectivo (Bielza, 1999). En las suspensiones de cemento, el tiempo de inyección se limita a 2-4 horas. Cuando comienza la hidratación total, se inicia el fraguado del cemento. La lechada es bombeable desde la fase de agitación hasta que son inyectadas, también después del inicio de la hidratación. Sin embargo, tras ese comienzo la resistencia final del material se reduce. Por tanto, no se aconseja la inyección de suspensiones bajo condiciones de hidratación. Las resistencias normales a compresión simple oscilan entre 5 y 50 MPa a 28 días. El tiempo de fraguado aumenta con la relación agua/cemento. Así, las lechadas de cemento fraguan en unas 4-5 horas, pero si están muy diluidas, este periodo se puede alargar a las 10-15 horas. Incluso algunas lechadas con relaciones agua/cemento mayores a 10 nunca llegan a fraguar.

Como las lechadas de cemento son inestables, su velocidad de flujo baja rápidamente conforme crece la distancia desde la perforación hasta la zona de inyección, sedimentando las partículas en una proporción decreciente con la relación agua/cemento de la mezcla. Es decir, cuanta mayor dosificación tenga el mortero, más elevada será la velocidad crítica de sedimentación. Es por ello que se aconseja que la lechada inicial tenga poca dosificación, por ejemplo, una relación a/c de 10:1 a 15:1 para evitar los taponamientos prematuros. La dosificación ideal sería la más pequeña que permita alcanzar la contrapresión de rechazo establecida de antemano. En la práctica, la dosificación inicial se determina a partir del resultado del ensayo de agua (ensayo Lugeon).

Para aumentar la penetrabilidad se aconseja el empleo de cemento de alta finura de molido o micro cementos. Se evitan las bóvedas de granos al atravesar intersticios utilizando mezclas muy fluidas, denominadas mezclas medias. Sin embargo, el tratamiento de impregnación en masa no resulta aconsejable con este tipo de suspensiones inestables. Para que una inyección inestable sea factible, o no sea muy complicada, el tamaño mínimo de las partículas del terreno debería situarse entre 5 y 10 mm. Además, en terrenos con un 10% de finos ya no es factible inyectar cemento. En arenas y gravas se hincan tubos de punta perdida, un tubo de inyección cada 4 m2 aproximadamente, inyectándose por zonas de unos 50 cm de altura. Si las inyecciones son con lechadas de cemento de molido normal y tamaños muy diferentes (0 a 160 μ) no se pueden utilizar en fisuras de abertura inferior a 0,1 mm ni en suelos arenosos de tamaño inferior a 0,8 mm, pues se produce un filtrado de las partículas y la lechada no penetra en el terreno (Schulze y Simmer, 1978). Es decir, las arcillas no pueden ser inyectadas. Por el contrario, si son los huecos demasiado grandes, se deposita inmediatamente la lechada, dando a la inyección un radio de acción muy pequeño.

En cambio, la aplicabilidad de las lechadas de cemento se encuentra plenamente justificada en el caso de macizos rocosos fisurados (presencia de diaclasas, planos de debilidad, estratificación). La presión del fluido desciende con la distancia, y también la velocidad, con lo cual comienza la sedimentación. Son habituales taladros de 60 a 90 mm separados de 2 a 5 m, según la roca. La lechada de cemento se inyecta por capas de 3 a 5 m de espesor, según el porcentaje de finos a cerrar.

En rocas o materiales gruesos se puede realizar una excavación bajo nivel freático colocando una cortina de mortero inyectado. Tomlinson (1982) recomienda dos filas de perforaciones para una inyección primaria con sus centros separados de 3 a 6 m en ambas direcciones, con unos segundos taladros, incluso terceros, entre ellos (Figura 6). Una regla empírica habitual para inyectar pasta en las grietas de los estratos rocosos es el uso de 0,07 kg/cm2 por cada 30 cm de profundidad de la perforación. Se proporciona mayor presión en las inyecciones secundarias y terciarias en función de la eficacia de la inyección primaria.

Figura 6. Disposición de las perforaciones para formar una cortina impermeable con inyección de lechada de cemento alrededor de una excavación. Adaptado de Tomlinson (1982)

La presión de inyección de las lechadas inestables constituye uno de los parámetros de diseño más importantes, pues favorece la apertura de las fisuras en el caso de una roca fisurada. Esta presión puede alcanzar de 8 a 9 MPa. La presión facilita la expulsión del exceso de agua y permite corregir errores en la dosificación. Agranda tanto la longitud de penetración como las fisuras existentes, creando nuevas fisuras. Independientemente de la presión utilizada, la calidad del cemento depositado en las fisuras aumenta con la presión de inyección.

Por otra parte, la lechada discurre de forma casi paralela a los planos de estratificación o diaclasas del macizo rocoso. Las fisuras perpendiculares a la inclinación general del macizo son artificiales y ocurren en capas menos resistentes bajo la acción de presiones superiores a 10 MPa.

La mayor parte de los tratamientos de inyección en roca están relacionados con la construcción y mantenimiento de presas y túneles, y también en algunas aplicaciones en minería. Se trata de obras subterráneas donde las inyecciones tratan de reducir y controlar la filtración del agua. Suele ser habitual las lechadas de cemento, aunque en algunos casos se han realizado inyecciones químicas e inyecciones con resina.

Hay que apuntar, por último, que en la actualidad se utilizan las mezclas estables en la mayoría de los tratamientos de inyección y consolidación por sus mejores características reológicas. Sin embargo, si el terreno no presenta muchas dificultades, las inyecciones con lechadas inestables son un método económico y eficaz.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • HOULSBY, A.C. (1990). Construction and Design of Cement Grouting. John Wiley & Sons, Inc, New York.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención del agua mediante inyección de lechadas estables

Figura 1. Inyección de impregnación. https://www.bacsol.co.uk/solution/permeation-grouting/

Los morteros estables son suspensiones en agua que no producen sedimentación durante un periodo dilatado de tiempo cuando se inyectan en el terreno (mínima exudación) y que tampoco producen el efecto bóveda al llegar a los intersticios. Esta propiedad permite que no se vayan cerrando las fisuras y se pueda aumentar a la vez la presión. Por eso se puede inyectar a baja presión, reduciendo el caudal lo necesario. Las lechadas estables son económicas en el caso de gravas y arenas finas, pues si los granos son demasiado finos (inferiores a 1 o 2 mm), el cemento no podrá penetrar en los huecos. También resultan convenientes para el taponamiento de grandes fisuras en macizos rocosos.

La estabilidad de una mezcla de inyección, que se refiere a la propiedad de mantener los granos de cemento en suspensión, es relativa, pues la estabilidad es suficiente si mantiene estas características durante la inyección. Normalmente se determina en el laboratorio la estabilidad mediante una prueba de sedimentación o de decantación. El artículo 676 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras considera que una suspensión es estable si cuando se coloca un litro en un cilindro graduado, al cabo de cuatro horas, el volumen superior de agua clara que sobre nada es inferior al 4% del volumen total.

Una mezcla con una fuerte dosificación de cemento consigue una sedimentación nula, pero es un fluido muy viscoso y no se puede inyectar (Cambefort, 1968), por lo que es necesario un estudio de laboratorio que permita conocer las proporciones adecuadas de cemento con otros componentes como la bentonita, que presenta propiedades coloidales, y aditivos, con propiedades estabilizadoras en función del peso del cemento.

Una mezcla estable se puede conseguir con una lechada de cemento activada. Se consigue de esta forma una dispersión óptima del cemento, bien por vía química con la utilización de aditivos, o bien por vía física con calentamiento y sobreagitación. Sin embargo, también se puede conseguir una suspensión estable con una mezcla de arcilla, fundamentalmente bentonita y silicato con cemento. Estas últimas lechadas, además de no sedimentar, presentan un fraguado muy lento, superior a las 24 horas.

Las suspensiones estables son, por lo general, una combinación de arcilla, cemento y arena que proporciona impermeabilidad una vez han endurecido. Tanto si la suspensión es estable o inestable, estas lechadas presentan una baja resistencia al corte por sí solas, por lo que al combinarla con las partículas del suelo se incrementa la resistencia al corte de la masa. Ello se debe a que una vez el fluido comienza a solidificarse, se generan fuerzas capilares en los granos, densificando el terreno y disminuyendo el volumen de huecos.

Es importante inyectar a baja presión en zonas a 5-10 m para evitar resurgencias y levantamientos. No obstante, como esta baja presión y la débil sedimentación no abren las fisuras, por ejemplo, en un macizo rocoso, resulta de interés inyectar un mortero inestable a alta presión después del fraguado del mortero estable. También es muy común, tras inyectar una lechada estable en gravas o arenas, inyectar una lechada inestable para rellenar los pequeños huecos que quedan de la casi despreciable sedimentación de la primera suspensión, así como un lavado a presión del macizo rocoso.

Las mezclas funcionan prácticamente a viscosidad constante, como verdaderos fluidos que se podrían bombear indefinidamente, por lo que se debe controlar la admisión de material, más que la presión. Ello se debe a que este tipo de inyecciones presentan un fraguado muy lento, no hay sedimentación de mortero ni taponamiento de huecos, por lo que el volumen de mortero estable inyectado no está limitado por los aumentos de presión tal y como ocurre con los morteros inestables. Por tanto, el sistema requiere cerrar el recinto a inyectar mediante taladros previos de contorno, avanzando el tajo de forma centrípeta.

Dentro de los morteros estables, se pueden distinguir los siguientes tipos, García Valcarce et al. (2003) distingue los siguientes tipos: bentonita-cemento, cemento-silicato, cemento-bentonita-silicato, cemento activado, suspensiones de arcilla, arcilla-cemento y arcilla-cemento-arena.

Si atendemos a los grupos más destacados de suspensiones estables, distinguimos los siguientes (Bielza, 1999):

  • Mezclas de cemento-bentonita: La bentonita constituye el principal aditivo para mejorar la estabilidad y penetración de la lechada de cemento. La bentonita es capaz de reducir la sedimentación de las partículas de mayor tamaño que componen la mezcla, y además reduce su coste aumentando el volumen de la lechada. Las lechadas de cemento y bentonita son útiles en la inyección de depósitos de gravas y arenas gruesas. Para estabilizar totalmente un cemento de inyección se precisa entre un 2 y un 5% de bentonita sódica; no debe superarse estas proporciones para no obtener productos esponjosos con baja resistencia a compresión y fraguado lento. La relación cemento/agua, en peso, varía de 1 a 2 para un 2% de bentonita, en cuyo caso la sedimentación es nula si c/a ≤ 1,4. Este rango varía de 1 a 1,7 para un 4% de bentonita, en cuyo caso la decantación es nula. La bentonita actúa como lubricante debido a su finura, lo que permite bombear suspensiones con una baja relación a/c, quedando rellenos los huecos o poros en una sola operación. Hay que tener presente que la adición de bentonita baja la resistencia e incrementa la plasticidad de la mezcla. Por otra parte, a veces se puede separar la bentonita del cemento, lo que puede ocasionar algunas fracturas rellenas solo de bentonita. Si es terreno es muy permeable, se puede añadir a la lechada silicato de sodio en 1 a 2% en relación al peso del cemento para acelerar el fraguado. Sin embargo, la dosificación debe determinarse en laboratorio.
  • Mezclas de cemento-silicato: Si se añade silicato de sodio a un mortero de cemento, se aumenta la rigidez, siendo esta mejora tanto más importante cuanto más fuerte es la dosificación del cemento. Además, si este tipo de mezcla permanece en reposo, la rigidez crece con el tiempo. Esto es muy evidente al cabo de una hora, donde existe una aceleración del fraguado del cemento debida al silicato. Estos morteros no son homogéneos, pues el silicato forma grumos. Para evitar estos grupos, sería necesario un periodo muy largo de agitación, por lo que son morteros que se utilizan poco.
  • Mezcla de cemento-bentonita-silicato: La adición de bentonita a una lecha de cemento retarda el fraguado y disminuye la resistencia mecánica, pero proporciona, como se ha visto anteriormente, un mortero homogéneo. El silicato acelera el fraguado pero produce un mortero grumoso. Por tanto, resulta interesante combinar ambos productos. La combinación da un mortero homogéneo que tiene una rigidez inicial más importante que solo con la bentonita, teniendo un comportamiento claramente tixotrópico.
  • Mortero de cemento activado: Una dosificación fuerte de cemento hace más débil la decantación, llegando incluso a una decantación nula. El problema es que este mortero no podría inyectarse. Sin embargo, con ciertos tratamientos, se obtiene la defloculación de los coloides de la suspensión y se obtienen morteros activados. Esta activación permite inyectar morteros de elevada dosis en cemento, que tengan una ligera o nula sedimentación. Además, esta activación hace el mortero menos deslavable y prácticamente no miscible en el agua.
  • Suspensiones de arcilla-cemento o inyecciones en suspensión: Es una mezcla compuesta de cemento portland, con una relación a/c entre 10 y 2,5 y lodo de arcilla. La arcilla aumenta el contenido de finos y mejora la penetrabilidad de la suspensión en el terreno, economizando cemento y mejorando la estabilidad y viscosidad de la suspensión como consecuencia de la capacidad de la arcilla para formar geles. La arcilla disminuye la sedimentación y la pérdida de agua de la suspensión. La estabilidad mejora con la calidad de la arcilla y con su proporción en la mezcla. El límite líquido y el índice de plasticidad de la arcilla deben ser inferiores a la de la bentonita (es decir, la arcilla no debe ser montmorillonita). Esta arcilla no afecta tanto a la viscosidad como la bentonita, por lo que se puede añadir a la mezcla en una mayor proporción. Además de la arcilla, se puede agregar arena, serrín, polivinilo, celofán o poliéster para mejorar sus propiedades. Las lechadas de arcilla-cemento son las más adecuadas para la impermeabilización, además de utilizarse en rocas fisuradas, incluso siendo muy porosas o presentando grandes cavidades. También se usan en suelos de una permeabilidad superior a 10-3 m/s, como es el caso de terrenos aluviales gruesos, siendo adecuados como pretratamiento. En estos casos la merma de fluidez que aporta las gruesas partículas de cemento no es tan trascendente, pues se utilizan en terrenos suficientemente permeables.
  • Mezclas de cemento especial (microcemento): Se utiliza el polvo de cemento microfino con una finura alrededor de 1,7 veces menor que la del cemento portland ordinario. Ello provoca una mayor superficie específica que mejora las propiedades físicas y reológicas, como la viscosidad y su evolución con el tiempo, el rendimiento, la resistencia a corte y la capacidad de penetración al emplear el microcemento con un agente dispersante. Es necesario en este tipo de mezclas un agente dispersante para que las partículas y los flóculos se mantengan entre 1 y 20 μm. Son mezclas muy útiles en la inyección de todo tipo de cimentaciones, especialmente en túneles y presas, pero son de muy elevado coste, comparable con el de las mezclas químicas. Las lechadas de microcemento pueden penetrar en arenas medias, pudiendo resistir umbrales de gradiente hidráulico superiores a 260. A diferencia de las mezclas químicas, con una capacidad de penetración similar, proporciona al medio una mayor resistencia adherente.
  • Suspensiones de arcilla: La penetrabilidad de las suspensiones de arcilla es función de su proceso de defloculación, que está regida por los coloides. Las consecuencias de la floculación es que las suspensiones presentan un tamaño demasiado grande, aumenta la viscosidad y por tanto disminuye la penetrabilidad. La arcilla que se inyecta debe presentar un límite líquido superior a 60. En caso contrario, se deben añadir coloides.
  • Suspensiones de arcilla-cemento-arena: La adición de arena a un mortero de cemento estable da un mortero inyectable. A más dosificación de arena, más fácil es que permanezcan en suspensión los granos más gruesos.

En la actualidad, las inyecciones de cemento con bentonita en cimiento de presas se está reemplazando por un sistema, ideado por Lombardi y Deere en 1993, denominado método GIN (Ground Intensity Number). Las características básicas de este sistema es que las lechadas de inyección no pueden llevar bentonita que evita la decantación, sino superfluidificantes que bajen la viscosidad, bajen la cohesión y asimilen la lecha a un fluido de Bingham. De esta forma se tiene una única mezcla de lechada para todo el proceso de inyección. Por otra parte, para reducir el riesgo de hidrofracturación, además de limitar la presión y el volumen inyectado, el intervalo de inyección se restringe por la hipérbola P·V=cte. La idea es que la finalización de la inyección basada en alcanzar una presión de cierre o un volumen de cierre estaba muy del lado de la seguridad. Este método se puede aplicar tanto a la inyección por tramos descendente, como ascendente, así como mediante el uso del tubo-manguito. El método GIN no solo es una forma de definir y seleccionar el valor de la intensidad de las inyecciones, sino que se considera como una práctica referida a la inyección de masas rocosas fisuradas para mejorar su resistencia y reducir su deformabilidad y permeabilidad.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos para la contención del agua

Figura 1. Ejecución de muro pantalla. https://spezialtiefbau.implenia.com/

En muchas obras realizadas bajo el terreno puede ser necesario el empleo de procedimientos constructivos para impedir que el agua llegue al tajo (exclusion methods).

Estos procedimientos se pueden utilizar por sí solos o bien combinados con técnicas de agotamiento o rebajamiento del nivel freático.

Se trata de métodos basados en barreras o pantallas (ground water cutoff structures) tales como ataguías, tablestacas, muros pantalla (Figura 1), pantallas de pilotes secantes, pantallas de lodo, jet-grouting, barreras de inyección, pantallas pláticas, pantallas de suelo estabilizado in situ, o congelación del terreno.

Lo habitual es que estas barreras lleguen, en la medida de lo posible, tal y como se observa en la Figura 2, a las capas de muy baja permeabilidad (arcillas o rocas no fracturadas).

Figura 2. Pantalla impermeable en presa de materiales sueltos.

Estos métodos se pueden agrupar en tres categorías (Cashman y Preene, 2012):

  • Barreras o muros de muy baja permeabilidad que se hincan o construyen en el terreno, tales como tablestacas o muros pantalla.
  • Procedimientos que reducen la permeabilidad del terreno in situ (como la inyección y la congelación artificial del suelo)
  • Procedimientos que utilizan la presión de un fluido en cámaras confinadas para contrarrestar las presiones intersticiales (como las cámaras de presión de tierras en tuneladoras)

Las barreras hincadas, como las tablestacas, desplazan el terreno y, por tanto, afectan menos al terreno adyacente. En cambio, las barreras excavadas, como los muros pantalla, implican un vaciado que se debe sustituir por la propia barrera. Las barreras formadas por inyección bloquean el flujo del agua subterránea. Por otra parte, la congelación del suelo forma una barrera con el agua intersticial helada. De todas formas, la selección del método más adecuado dependerá de las condiciones de la obra, sin descartar la combinación de varios procedimientos. Además, algunas estructuras de contención pueden formar parte de la estructura definitiva, como es el caso de los sótanos de edificación.

La forma más habitual de utilizar estos procedimientos de contención del agua es la construcción de un muro impermeable alrededor del perímetro de excavación que penetre hasta la capa de baja permeabilidad, tal y como se observa en la Figura 3.

Figura 3. Contención de agua con muros pantalla que llegan a capa de baja permeabilidad. Adaptado de Cashman y Preene (2012)

Los costes y la aplicabilidad de una pantalla impermeable depende en gran medida de la profundidad y de la naturaleza de los estratos subyacentes. Si no existe una capa de baja permeabilidad o bien se encuentra a gran profundidad, las filtraciones pueden desestabilizar el fondo de la excavación. En estos casos se deben combinar las barreras con el bombeo (Figura 4a) o bien construir un tapón o barrera horizontal (jet-grouting, por ejemplo) para evitar las filtraciones (Figura 4b).

Figura 4. Combinación de pantallas con (a) bombeo convencional o (b) con barreras horizontales. Adaptado de Cashman y Preene (2012)

Uno de los aspectos más interesantes de las barreras de contención es que modifican en menor medida el nivel freático alrededor de la excavación frente a los bombeos convencionales. Ello implica menores incidencias en estructuras próximas, fundamentalmente por subsidencias.

No obstante, uno de los problemas a evitar son las fugas a través de las barreras. Estas filtraciones pueden interferir en los trabajos del tajo y, por tanto, son necesarios sumideros y drenajes; pero otra posibilidad más grave son los sifonamientos localizados (Figura 5) o asentamientos por encima de los previstos.

Figura 5. Sifonamiento localizado por defectos puntuales en un muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004).

Las aplicaciones que hemos visto anteriormente (Figuras 1 a 5) son las más habituales, con barreras o muros verticales alrededor de una excavación. Sin embargo, algunos procedimientos como las inyecciones o la congelación del suelo, pueden utilizarse en geometrías no verticales (Figuras 6a y 6b), e incluso para sellar la base de las excavaciones (Figura 4b).

Figura 6. Barreras inclinadas y barreras horizontales en túnel. Adaptado de Cashman y Preene (2012)

A continuación os dejo un folleto de la empresa Implentia sobre barreras de contención que puede complementar la información sobre las barreras de contención al agua.

Descargar (PDF, 4.34MB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater control: design and practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio

Figura 1. https://www.groundwatereng.com/dewatering-techniques/relief-wells

Los pozos de alivio, también conocidos como pozos de descarga de presión o pozos de purga, (pressure relief wells) se utilizan para reducir la presión intersticial en acuíferos confinados o en condiciones de suelo estratificado. Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado, lo cual puede provocar que el fondo de la excavación se vuelva inestable. Se trata del fenómeno conocido como “levantamiento de fondo” o “taponazo”, donde el peso del terreno no es capaz de equilibrar al empuje del agua.

Estos pozos se perforan normalmente antes de que la excavación hay alcanzado nivel piezométrico del acuífero. A medida que la excavación continúa, los pozos comenzarán a desbordarse, aliviando las presiones intersticiales asegurando su estabilidad. El agua que fluye de los pozos de descarga se bombea desde un sumidero. Se puede utilizar una capa granular de drenaje y una red de desagües para dirigir el agua a los sumideros y evitar que se estanque en la excavación y ablande el fondo. Es habitual que los pozos de descarga se perforen en cuadrícula dentro del recinto excavado, con una separación que dependerá del caudal previsto, pero que normalmente no es mayor a 5-10 m.

Figura 2. Pozo de alivio

Los pozos de alivio también se clasifican como “pozos pasivos“, pues no necesitan un bombeo directo, más allá de las bombas de achique en los sumideros. Suelen presentar diámetros relativamente grandes (100 a 450 mm), que suelen rellenarse con material granular e incluso con tubo perforado. El material granular, normalmente una grava gruesa uniforme redondeada de tamaño nominal entre 10-20 mm, se introduce mediante una tubería tremie o incluso desde el propio nivel del suelo si esta grava tiene una clasificación muy uniforme, para evitar la segregación por tamaños. Son, por tanto, pozos simples de coste relativamente bajo de perforación, instalación y mantenimiento.

Los pozos de alivio son muy adecuados en recintos tablestacados o limitados por muros pantalla. Otras veces son drenajes permanentes en estructuras situadas sobre acuíferos confinados, como pudiera ser una estación subterránea de metro. En el caso de instalaciones permanentes, los pozos de descarga se instalan con rejillas y tuberías para permitir su limpieza.

Por último, cabe destacar que los pozos de alivio no pueden utilizarse donde la altura artesiana del agua en las capas permeables inferiores sea tal que el flujo en el interior de los pozos erosione el suelo inmediatamente debajo de ellos y a su alrededor.

Figura 3. Sistema de pozos de alivio (Cashman y Preene, 2012)

Os dejo un vídeo explicativo que os he grabado explicando este tipo de pozos.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2004). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El problema del agua en las excavaciones

Figura 1. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

El flujo superficial y subterráneo del agua, así como los cambios en el nivel freático de un terreno, por causas naturales o artificiales, provocan consecuencias tanto en el terreno propio como en los colindantes. En el caso de una excavación que intercepte la capa freática va a suponer problemas tanto para la propia excavación, y posterior ejecución de las obras en el recinto, como en los terrenos y estructuras colindantes.

Los problemas del agua como factor desestabilizante se pueden resolver si se mantiene el agua lejos de las zonas donde puede causar daño o bien se controla el agua que entra mediante drenajes. Si no se controla la infiltración, entonces el agua puede hacer migrar las partículas finas del suelo hacia una salida, ocasionando sifonamientos o roturas por erosión, o bien se incrementa la saturación, la corriente interna, o se dan excesivas subpresiones o fuerzas de infiltración.

Un caso muy habitual de lo anterior ocurre cuando se realizan perforaciones bajo nivel freático para ejecutar anclajes (por ejemplo en muros pantalla) o bien en inyecciones (impermeabilización de presas y túneles, inyecciones de compensación, etc.). En estos casos, la salida de agua por la perforación puede provocar arrastre de finos o salidas abruptas de agua, fenómeno conocido como “taponazo”.

En el caso de realizar excavaciones, los principales problemas geotécnicos asociados al agua que pueden aparecer son la subsidencia, la erosión superficial, la erosión interna o tubificación, la inestabilidad de taludes, la inestabilidad del fondo o sifonamiento y el levantamiento del fondo. Sin embargo, un buen conocimiento del suelo, de las condiciones del agua del terreno y de las leyes del flujo hidráulico permite adoptar sistemas de control del agua que garanticen una construcción económica y segura. A continuación se describen brevemente estos problemas.

  • Subsidencia: En el caso de un descenso del nivel freático, el postulado de Terzaghi nos indica que el aumento de las tensiones efectivas provocará asientos. Esta disminución puede ser debida a un bombeo, previo o no, a una excavación (Figura 2). Análogamente, un aumento en el freático puede provocar asientos en un suelo arcilloso si éste disminuye su consistencia, o bien en arenas al reducir su capacidad portante. El aumento, por ejemplo, puede deberse a una fuga de la red de agua potable, a un aumento repentino de aguas superficiales por lluvias o, como se ve en la Figura 3, a la ejecución de un muro pantalla. En este caso, las grietas pueden aparecer tanto por el debilitamiento del terreno durante la excavación como cuando el muro pantalla hace de barrera al agua. Asientos del orden de 1 mm/año no exigen tratamiento de urgencia, pero si son del orden de 1 mm/mes, implican un riesgo notable. Asientos de 1 mm/año pueden provocar daños ligeros en la tabiquería, que son notables, dependiendo si el proceso se estabiliza o no, cuando son de 1 mm/mes y que llegan a graves si el asiento es de 2 mm/mes.
Figura 2. Grietas en edificios colindantes por subsidencia provocada por bombeo. Elaboración propia basado en Pérez Valcárcel (2004)
Figura 3. Grietas en edificios colindantes por modificación del nivel piezométrico debido a ejecución de muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Deslizamiento de taludes: El flujo de agua en el talud de una excavación provocan su inestabilidad, especialmente por el aumento de cargas que supone (el terreno con mayor saturación pesa más) y por la disminución de la resistencia a corte (fácilmente se reduce el ángulo de rozamiento interno del terreno a la mitad). En efecto, el criterio de rotura de Mohr-Coulomb, indica que la resistencia al corte del terreno τen un determinado plano depende del sumatorio de la cohesión efectiva c‘  y del producto de la tensión efectiva normal σ’ (diferencia entre presión total e intersticial) por la tangente del ángulo de rozamiento interno efectivo Φ‘ . Dicho de otra forma, conseguir una excavación más estable en presencia de agua supone taludes más tendidos.

Este fenómeno se combina con la erosión, especialmente cuando la excavación corta dos estratos, siendo el inferior impermeable en comparación con el superior, lo que provoca un flujo de agua entre capas que puede provocar fenómenos de erosión tanto superficial como interna (Figura 4). Se podría solucionar el problema con taludes de excavación más tendidos o bien con una barrera (tablestacado, muro pantalla, entre otros).

 

Figura 4. Peligro de deslizamiento y erosión regresiva en estrato impermeable
  • Erosión superficial: Cuando el agua aflora en los taludes de una excavación provoca cárcavas por arrastre del terreno que comprometen su estabilidad y por otra parte debilita las bermas construidas en taludes altos (Figura 5). La solución consiste en proteger la coronación y las bermas de los taludes con cunetas impermeables o drenes que reciban el agua y la conduzcan a puntos de recogida y bombeo, especialmente cuando el talud va a ser permanente. Este fenómeno erosivo también ocurre cuando la superficie freática no baja lo suficiente e intersecta la cara del talud.
Figura 5.  Erosión superficial del talud, con cunetas sin revestir o protegidas y revestidas
  • Erosión interna o tubificación (piping): El agua arrastra una partícula entre los huecos de un suelo dependiendo de la relación entre los tamaños de las partículas y los huecos y del gradiente hidráulico (Figura 6). El flujo arrastra las partículas por las líneas de corriente por el interior de la masa del terreno formándose un hueco tubular. Como el terreno es heterogéneo, si en un punto el flujo alcanza mayor velocidad, se produce un primer arrastre de partículas. Ello provoca un aumento del gradiente hidráulico y una progresión en la erosión al formarse un tubo donde el régimen es turbulento. Este fenómeno es propicio en suelos dispersables. Para evitarlo se emplean filtros graduados o bien geotextiles para evitar arrastres y medidas que reduzcan el gradiente hidráulico. Este efecto puede darse en el caso de presas de materiales sueltos, pero también podría aparecer, por ejemplo, en el flujo de agua provocado por un pozo de drenaje en una edificación contigua o en una ejecución inadecuada de los anclajes de un muro pantalla.
Figura 6. Tubificación en el interior de una presa de materiales sueltos
  • Inestabilidad del fondo o sifonamiento: Cuando existe un flujo ascendente, un terreno granular no consolidado puede perder completamente su resistencia a corte y comportarse como un fluido (arenas movedizas, partículas sueltas, como en ebullición), por lo que al fenómeno también se le conoce como fluidificación. Ello ocurre cuando un incremento de la presión intersticial anula la presión efectiva, o dicho de otra forma, cuando las fuerzas producidas por la filtración superan el peso sumergido del suelo. Este fenómeno podría aparecer en pantallas con un empotramiento reducido (Figura 7). A veces podrían provocarse sifonamientos localizados, como en el caso de un defecto puntual en un muro pantalla, pues se acorta el recorrido del flujo y aumenta el gradiente (Figura 8).
Figura 7. Sifonamiento en la base de un recinto protegido con muros pantalla
Figura 8. Sifonamiento localizado por defecto puntual en muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Levantamiento de fondo o taponazo (uplift): El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 9). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.
Figura 9. Rotura de fondo o tapozano

Además de los riesgos anteriores, no se debería olvidar que existen otros posibles riesgos difíciles de prever que pueden aparecer durante la ejecución de una excavación. Dentro de este capítulo se podrían citar incidencias derivadas de surgencias de una excavación ya drenada, filtraciones laterales en muros pantalla o tablestacas. En estos casos debe analizarse de inmediato las posibles consecuencias del fallo y aplicar, en su caso, las medidas correctoras oportunas. Aquí cobra especial importancia la experiencia adquirida en casos anteriores con el fin de garantizar la estabilidad de la propia obra y de las propiedades colindantes. Por último, y no menos importante, conviene recordar que el agua es el enemigo de los rendimientos de todos los tajos en una obra.

Os dejo algunos vídeos explicativos sobre aspectos que hemos comentado en el artículo. Espero que os sean de interés.

Otro vídeo de interés es éste que os dejo. En él vemos qué pasa cuando se ejecutan anclajes bajo el nivel freático.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.