Preguntas frecuentes sobre el agua en medio poroso y sus problemas en excavaciones.

1. ¿Qué es un acuífero y cómo se clasifica?

Un acuífero es una formación geológica subterránea que contiene y transmite agua. Se clasifican principalmente en:

  • Acuífero libre: El agua está en contacto con la atmósfera a través de los poros o las fisuras de la zona no saturada. El límite superior es el nivel freático, donde la presión del agua es atmosférica.
  • Acuífero confinado: El acuífero está cubierto por una capa impermeable (acuicludo o acuitardo) y el agua se encuentra a una presión superior a la atmosférica. Si se perfora un pozo en un acuífero confinado y el agua sube por encima de la superficie del terreno, se dice que existen existen «condiciones artesianas».
Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Además, existen otras formaciones relevantes:

  • Acuicludo: Una formación geológica que, aunque contiene agua, no la transmite de manera efectiva, por lo que no es apta para su explotación (por ejemplo, terrenos arcillosos).
  • Acuitardo: Transmite el agua muy lentamente, por lo que no es apto para su captación, pero puede permitir la recarga vertical de otros acuíferos en condiciones especiales (por ejemplo, arcillas limosas o arenosas).

2. ¿Qué es la carga hidráulica total y por qué es importante la Ley de Darcy en el estudio del flujo de agua en medios porosos?

La carga hidráulica total (H), también conocida como potencial, representa la energía por unidad de peso de un fluido en movimiento, expresada como una altura. Incluye la altura geométrica (z), la altura de presión (u/γw) y la altura de velocidad (v²/2g). En el contexto del flujo en medios porosos, la velocidad suele ser despreciable, por lo que la carga total se simplifica a la altura piezométrica.

La Ley de Darcy es fundamental porque describe la velocidad del flujo de agua en un medio poroso. Establece que la velocidad (v) es directamente proporcional al gradiente hidráulico (i) y al coeficiente de permeabilidad (k), es decir, v = k · i. El coeficiente de permeabilidad mide la facilidad con la que el agua circula a través del suelo y depende tanto de las características del acuífero (porosidad, tamaño de los poros interconectados) como del fluido (viscosidad, peso específico). Esta ley es crucial para comprender cómo se mueve el agua a través del suelo y para calcular caudales en diversas aplicaciones geotécnicas.

Figura 2. Esquema de la ley de Darcy

3. ¿Qué son las tensiones efectivas y por qué son tan importantes en geotecnia según el postulado de Terzaghi?

Las tensiones efectivas (σ‘) son un concepto fundamental en geotecnia, postulado por Karl von Terzaghi en 1923. Se definen como el exceso de tensión sobre la presión intersticial (o presión neutra) del agua (u) presente en el suelo. Es decir, son las tensiones que actúan exclusivamente sobre la fase sólida del suelo, transmitiéndose grano a grano.

Su importancia radica en el postulado de Terzaghi, que establece lo siguiente: «Cualquier efecto medible debido a un cambio de tensiones, como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, se debe exclusivamente a cambios en las tensiones efectivas». Esto significa que la deformación y la resistencia del suelo dependen directamente de las tensiones efectivas y no de las tensiones totales. Por ejemplo, si el volumen o la distorsión de un suelo saturado no cambian, es porque sus tensiones efectivas no han cambiado. Si se permite el drenaje del agua (es decir, si se disipa la presión intersticial), las tensiones efectivas aumentan, lo que provoca la deformación del suelo y la modificación de su resistencia al corte, un fenómeno conocido como consolidación.

4. ¿Cuáles son los principales problemas geotécnicos relacionados con el agua en las excavaciones?

El agua subterránea y superficial puede causar diversos problemas geotécnicos significativos en las excavaciones:

  • Subsidencia: Un descenso del nivel freático (por bombeo o excavación) aumenta las tensiones efectivas, provocando asentamientos en el terreno circundante. Un aumento del freático también puede causar asentamientos en suelos arcillosos o reducir la capacidad portante en arenas.
  • Deslizamiento de taludes: El flujo de agua en los taludes de una excavación incrementa su peso y reduce su resistencia al corte, llevando a la inestabilidad. Esto se agrava si la excavación corta dos estratos, donde el flujo entre capas puede causar erosión.
  • Erosión superficial: El afloramiento de agua en los taludes provoca cárcavas y arrastre de terreno, lo que compromete la estabilidad y debilita las bermas.
  • Erosión interna o tubificación (piping): El agua arrastra partículas finas a través de los huecos del suelo, formando túneles internos. Esto es propenso en suelos dispersables y puede ocurrir en presas o por flujos anómalos en pozos de drenaje o anclajes defectuosos.
  • Inestabilidad del fondo o sifonamiento: Ocurre cuando un flujo ascendente de agua en un terreno granular no consolidado anula la presión efectiva, por lo que el suelo se comporta como un fluido (arenas movedizas). Esto sucede cuando las fuerzas de filtración superan el peso sumergido del suelo.
  • Levantamiento del fondo o taponazo (uplift): El fondo de la excavación se vuelve inestable cuando el empuje del agua subterránea —típico en un acuífero confinado bajo un estrato de baja permeabilidad— supera el peso del terreno que lo soporta.

5. ¿Qué es el sifonamiento o “efecto Renard” y cuándo ocurre?

El sifonamiento, también conocido como licuefacción o «efecto Renard», se produce cuando existe un flujo ascendente de agua en el terreno y la presión del agua es tan alta que anula las tensiones efectivas del suelo. En suelos granulares sin cohesión, como la arena, el terreno pierde completamente su resistencia al corte y comienza a comportarse como un fluido en ebullición, similar a las arenas movedizas.

Este fenómeno sucede cuando se alcanza un “gradiente crítico”, que es la relación entre el peso específico sumergido del suelo y el peso específico del agua. Si se sitúa un objeto con un peso específico superior al de la mezcla fluida de terreno y agua sobre un terreno con licuefacción, se hundirá. Supone un grave riesgo en las excavaciones, especialmente por debajo del nivel freático, ya que puede provocar el desprendimiento de cimentaciones y maquinaria.

6. ¿Cómo se relaciona el coeficiente de permeabilidad con la permeabilidad equivalente en estratos de suelo?

El coeficiente de permeabilidad (k) mide la facilidad con la que el agua fluye a través de un suelo concreto. Sin embargo, en la práctica, el suelo suele estar compuesto por múltiples estratos con diferentes permeabilidades y espesores. En estos casos, se calcula una permeabilidad equivalente, que puede ser horizontal o vertical:

  • Permeabilidad equivalente horizontal: Se aplica cuando el flujo de agua atraviesa horizontalmente un conjunto de estratos. El caudal total es la suma de los caudales en cada estrato.
  • Permeabilidad equivalente vertical: Se usa cuando el flujo de agua atraviesa verticalmente los estratos. En este caso, el caudal es constante a lo largo de los estratos, pero cada estrato tiene un gradiente hidráulico diferente.

Estos cálculos son esenciales para modelar con precisión el flujo de agua en suelos estratificados.

7. ¿Qué es una red de flujo y para qué se utiliza en geotecnia?

Una red de flujo es una representación gráfica del flujo de agua subterránea en un medio poroso. Está formada por dos familias de curvas ortogonales entre sí.

  • Líneas equipotenciales (Ψ): Son líneas que conectan puntos donde la altura piezométrica (carga hidráulica) es constante.
  • Líneas de corriente (Φ): Son las trayectorias que siguen las partículas de fluido a medida que se mueven a través del suelo.

La red de flujo se construye de manera que las fronteras impermeables actúan como líneas de corriente y las fronteras permeables (como una lámina de agua) son líneas equipotenciales. Al intersectarse, ambas familias de líneas deben formar «cuadrados curvilíneos».

Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)

Las principales aplicaciones de las redes de flujo en geotecnia son:

  • Calcular las presiones del agua subterránea: Permiten determinar las presiones en diferentes puntos o superficies.
  • Estimar los caudales del agua subterránea: Todos los canales de flujo (espacio entre dos líneas de corriente adyacentes) transportan el mismo caudal.
  • Calcular los gradientes hidráulicos: La pérdida de carga total se distribuye uniformemente entre las equipotenciales. Esto es crucial para evaluar la estabilidad de taludes y el riesgo de sifonamiento.

8. ¿Cómo se puede prevenir el sifonamiento en una excavación y qué factores influyen en las medidas de prevención?

Para prevenir el sifonamiento en una excavación, especialmente por debajo del nivel freático, una de las medidas principales es utilizar tablestacas o ataguías con una longitud de empotramiento suficiente. Esta longitud adicional por debajo del nivel de excavación aumenta el recorrido más corto que puede seguir el agua, lo que reduce el gradiente hidráulico y, en consecuencia, las fuerzas de filtración.

La profundidad de empotramiento necesaria depende de varios factores:

  • Profundidad de la excavación bajo el nivel freático: A mayor profundidad de excavación, mayor empotramiento se requiere.
  • Porosidad del suelo: Cuanto mayor es la porosidad del terreno (es decir, más vacíos hay en el suelo), mayor empotramiento es necesario para evitar el sifonamiento.
  • Peso específico de las partículas sólidas y del agua: Estos valores influyen en el peso específico sumergido del suelo y, por ende, en el gradiente crítico.
  • Coeficiente de seguridad (η): Se aplica un coeficiente de seguridad para garantizar que el empotramiento sea suficiente para resistir el sifonamiento. Por ejemplo, el Código Técnico de la Edificación (CTE) en España recomienda un coeficiente de seguridad de η = 2 para pantallas.
Figura 4. Sifonamiento en la base de una tablestaca o pantalla.

Es fundamental realizar cálculos geotécnicos y estructurales detallados para determinar el empotramiento necesario, que debe corresponder al mayor valor entre el requerido para evitar el sifonamiento y el necesario para soportar los esfuerzos de empuje. Además, la experiencia y el sentido común son fundamentales a la hora de implementar estas medidas.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la máxima profundidad de excavación frente al taponazo

Figura 1. Rotura de fondo o taponazo.

En una entrada anterior, donde se describían los problemas del agua en las excavaciones, ya se habló del levantamiento de fondo o taponazo: El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 1). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.

En esta ocasión os paso un problema resuelto donde se calcula la máxima profundidad de excavación frente al taponazo. Este es uno de los casos estudiados en el “Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación”. Espero que os sea de interés.

Descargar (PDF, 184KB)

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio

Figura 1. https://www.groundwatereng.com/dewatering-techniques/relief-wells

Los pozos de alivio, también conocidos como pozos de descarga de presión o pozos de purga, (pressure relief wells) se utilizan para reducir la presión intersticial en acuíferos confinados o en condiciones de suelo estratificado. Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado, lo cual puede provocar que el fondo de la excavación se vuelva inestable. Se trata del fenómeno conocido como “levantamiento de fondo” o “taponazo”, donde el peso del terreno no es capaz de equilibrar al empuje del agua.

Estos pozos se perforan normalmente antes de que la excavación hay alcanzado nivel piezométrico del acuífero. A medida que la excavación continúa, los pozos comenzarán a desbordarse, aliviando las presiones intersticiales asegurando su estabilidad. El agua que fluye de los pozos de descarga se bombea desde un sumidero. Se puede utilizar una capa granular de drenaje y una red de desagües para dirigir el agua a los sumideros y evitar que se estanque en la excavación y ablande el fondo. Es habitual que los pozos de descarga se perforen en cuadrícula dentro del recinto excavado, con una separación que dependerá del caudal previsto, pero que normalmente no es mayor a 5-10 m.

Figura 2. Pozo de alivio

Los pozos de alivio también se clasifican como “pozos pasivos“, pues no necesitan un bombeo directo, más allá de las bombas de achique en los sumideros. Suelen presentar diámetros relativamente grandes (100 a 450 mm), que suelen rellenarse con material granular e incluso con tubo perforado. El material granular, normalmente una grava gruesa uniforme redondeada de tamaño nominal entre 10-20 mm, se introduce mediante una tubería tremie o incluso desde el propio nivel del suelo si esta grava tiene una clasificación muy uniforme, para evitar la segregación por tamaños. Son, por tanto, pozos simples de coste relativamente bajo de perforación, instalación y mantenimiento.

Los pozos de alivio son muy adecuados en recintos tablestacados o limitados por muros pantalla. Otras veces son drenajes permanentes en estructuras situadas sobre acuíferos confinados, como pudiera ser una estación subterránea de metro. En el caso de instalaciones permanentes, los pozos de descarga se instalan con rejillas y tuberías para permitir su limpieza.

Por último, cabe destacar que los pozos de alivio no pueden utilizarse donde la altura artesiana del agua en las capas permeables inferiores sea tal que el flujo en el interior de los pozos erosione el suelo inmediatamente debajo de ellos y a su alrededor.

Figura 3. Sistema de pozos de alivio (Cashman y Preene, 2012)

Os dejo un vídeo explicativo que os he grabado explicando este tipo de pozos.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2004). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El problema del agua en las excavaciones

Figura 1. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

El flujo superficial y subterráneo del agua, así como los cambios en el nivel freático de un terreno, por causas naturales o artificiales, provocan consecuencias tanto en el terreno propio como en los colindantes. En el caso de una excavación que intercepte la capa freática va a suponer problemas tanto para la propia excavación, y posterior ejecución de las obras en el recinto, como en los terrenos y estructuras colindantes.

Los problemas del agua como factor desestabilizante se pueden resolver si se mantiene el agua lejos de las zonas donde puede causar daño o bien se controla el agua que entra mediante drenajes. Si no se controla la infiltración, entonces el agua puede hacer migrar las partículas finas del suelo hacia una salida, ocasionando sifonamientos o roturas por erosión, o bien se incrementa la saturación, la corriente interna, o se dan excesivas subpresiones o fuerzas de infiltración.

Un caso muy habitual de lo anterior ocurre cuando se realizan perforaciones bajo nivel freático para ejecutar anclajes (por ejemplo en muros pantalla) o bien en inyecciones (impermeabilización de presas y túneles, inyecciones de compensación, etc.). En estos casos, la salida de agua por la perforación puede provocar arrastre de finos o salidas abruptas de agua, fenómeno conocido como “taponazo”.

En el caso de realizar excavaciones, los principales problemas geotécnicos asociados al agua que pueden aparecer son la subsidencia, la erosión superficial, la erosión interna o tubificación, la inestabilidad de taludes, la inestabilidad del fondo o sifonamiento y el levantamiento del fondo. Sin embargo, un buen conocimiento del suelo, de las condiciones del agua del terreno y de las leyes del flujo hidráulico permite adoptar sistemas de control del agua que garanticen una construcción económica y segura. A continuación se describen brevemente estos problemas.

  • Subsidencia: En el caso de un descenso del nivel freático, el postulado de Terzaghi nos indica que el aumento de las tensiones efectivas provocará asientos. Esta disminución puede ser debida a un bombeo, previo o no, a una excavación (Figura 2). Análogamente, un aumento en el freático puede provocar asientos en un suelo arcilloso si éste disminuye su consistencia, o bien en arenas al reducir su capacidad portante. El aumento, por ejemplo, puede deberse a una fuga de la red de agua potable, a un aumento repentino de aguas superficiales por lluvias o, como se ve en la Figura 3, a la ejecución de un muro pantalla. En este caso, las grietas pueden aparecer tanto por el debilitamiento del terreno durante la excavación como cuando el muro pantalla hace de barrera al agua. Asientos del orden de 1 mm/año no exigen tratamiento de urgencia, pero si son del orden de 1 mm/mes, implican un riesgo notable. Asientos de 1 mm/año pueden provocar daños ligeros en la tabiquería, que son notables, dependiendo si el proceso se estabiliza o no, cuando son de 1 mm/mes y que llegan a graves si el asiento es de 2 mm/mes.
Figura 2. Grietas en edificios colindantes por subsidencia provocada por bombeo. Elaboración propia basado en Pérez Valcárcel (2004)
Figura 3. Grietas en edificios colindantes por modificación del nivel piezométrico debido a ejecución de muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Deslizamiento de taludes: El flujo de agua en el talud de una excavación provocan su inestabilidad, especialmente por el aumento de cargas que supone (el terreno con mayor saturación pesa más) y por la disminución de la resistencia a corte (fácilmente se reduce el ángulo de rozamiento interno del terreno a la mitad). En efecto, el criterio de rotura de Mohr-Coulomb, indica que la resistencia al corte del terreno τen un determinado plano depende del sumatorio de la cohesión efectiva c‘  y del producto de la tensión efectiva normal σ’ (diferencia entre presión total e intersticial) por la tangente del ángulo de rozamiento interno efectivo Φ‘ . Dicho de otra forma, conseguir una excavación más estable en presencia de agua supone taludes más tendidos.

Este fenómeno se combina con la erosión, especialmente cuando la excavación corta dos estratos, siendo el inferior impermeable en comparación con el superior, lo que provoca un flujo de agua entre capas que puede provocar fenómenos de erosión tanto superficial como interna (Figura 4). Se podría solucionar el problema con taludes de excavación más tendidos o bien con una barrera (tablestacado, muro pantalla, entre otros).

 

Figura 4. Peligro de deslizamiento y erosión regresiva en estrato impermeable
  • Erosión superficial: Cuando el agua aflora en los taludes de una excavación provoca cárcavas por arrastre del terreno que comprometen su estabilidad y por otra parte debilita las bermas construidas en taludes altos (Figura 5). La solución consiste en proteger la coronación y las bermas de los taludes con cunetas impermeables o drenes que reciban el agua y la conduzcan a puntos de recogida y bombeo, especialmente cuando el talud va a ser permanente. Este fenómeno erosivo también ocurre cuando la superficie freática no baja lo suficiente e intersecta la cara del talud.
Figura 5.  Erosión superficial del talud, con cunetas sin revestir o protegidas y revestidas
  • Erosión interna o tubificación (piping): El agua arrastra una partícula entre los huecos de un suelo dependiendo de la relación entre los tamaños de las partículas y los huecos y del gradiente hidráulico (Figura 6). El flujo arrastra las partículas por las líneas de corriente por el interior de la masa del terreno formándose un hueco tubular. Como el terreno es heterogéneo, si en un punto el flujo alcanza mayor velocidad, se produce un primer arrastre de partículas. Ello provoca un aumento del gradiente hidráulico y una progresión en la erosión al formarse un tubo donde el régimen es turbulento. Este fenómeno es propicio en suelos dispersables. Para evitarlo se emplean filtros graduados o bien geotextiles para evitar arrastres y medidas que reduzcan el gradiente hidráulico. Este efecto puede darse en el caso de presas de materiales sueltos, pero también podría aparecer, por ejemplo, en el flujo de agua provocado por un pozo de drenaje en una edificación contigua o en una ejecución inadecuada de los anclajes de un muro pantalla.
Figura 6. Tubificación en el interior de una presa de materiales sueltos
  • Inestabilidad del fondo o sifonamiento: Cuando existe un flujo ascendente, un terreno granular no consolidado puede perder completamente su resistencia a corte y comportarse como un fluido (arenas movedizas, partículas sueltas, como en ebullición), por lo que al fenómeno también se le conoce como fluidificación. Ello ocurre cuando un incremento de la presión intersticial anula la presión efectiva, o dicho de otra forma, cuando las fuerzas producidas por la filtración superan el peso sumergido del suelo. Este fenómeno podría aparecer en pantallas con un empotramiento reducido (Figura 7). A veces podrían provocarse sifonamientos localizados, como en el caso de un defecto puntual en un muro pantalla, pues se acorta el recorrido del flujo y aumenta el gradiente (Figura 8).
Figura 7. Sifonamiento en la base de un recinto protegido con muros pantalla
Figura 8. Sifonamiento localizado por defecto puntual en muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Levantamiento de fondo o taponazo (uplift): El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 9). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.
Figura 9. Rotura de fondo o tapozano

Además de los riesgos anteriores, no se debería olvidar que existen otros posibles riesgos difíciles de prever que pueden aparecer durante la ejecución de una excavación. Dentro de este capítulo se podrían citar incidencias derivadas de surgencias de una excavación ya drenada, filtraciones laterales en muros pantalla o tablestacas. En estos casos debe analizarse de inmediato las posibles consecuencias del fallo y aplicar, en su caso, las medidas correctoras oportunas. Aquí cobra especial importancia la experiencia adquirida en casos anteriores con el fin de garantizar la estabilidad de la propia obra y de las propiedades colindantes. Por último, y no menos importante, conviene recordar que el agua es el enemigo de los rendimientos de todos los tajos en una obra.

Os dejo algunos vídeos explicativos sobre aspectos que hemos comentado en el artículo. Espero que os sean de interés.

Otro vídeo de interés es éste que os dejo. En él vemos qué pasa cuando se ejecutan anclajes bajo el nivel freático.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.