Encofrados trepantes para presas

Figura 1. Ejecución de muros de presa con inclinación variable. https://www.ulmaconstruction.com/es/encofrados/encofrados-trepantes/sbd-170-consola-de-trepado-para-presas

En el ámbito de construcciones como presas, galerías, esclusas, diques o edificaciones que enfrentan considerables cargas procedentes del hormigonado, se emplean encofrados trepantes específicos configurados a medida para adaptarse a cambios de inclinación vertical hacia adelante y hacia atrás según el proyecto. Este encofrado es un sistema trepante de una sola cara, en el cual las fuerzas generadas durante el hormigonado se descargan sin la necesidad de anclajes tradicionales. En su lugar, se utilizan consolas equipadas con correas y tornapuntas de alta capacidad, transmitiendo las fuerzas hacia el anclaje mediante la consola. Se pueden ejecutar muros con grandes desplomes, con las plataformas de trabajo siempre horizontales.

Estos encofrados son robustos y rentables, eliminando la necesidad de costosos trabajos de terminación al prescindir de anclajes de encofrado que requieran sellado individual. Además, el sistema se desplaza sobre el carro sin necesidad de grúa, facilitando el ferrallado, el montaje de consolas y encofrados, así como el desencofrado de vanos mediante el basculamiento del encofrado.

En el mercado existen soluciones estándar para alturas de bloques de hasta 5 m. Estas soluciones incorporan plataformas de trabajo amplias, con anchuras de hasta 2,80, m y garantizan subidas y bajadas seguras entre las plataformas gracias a un sistema de acceso integrado.

Figura 2. Consola de trepado para presas. https://www.ulmaconstruction.com/es/encofrados/encofrados-trepantes/sbd-170-consola-de-trepado-para-presas

Las principales ventajas de los sistemas trepantes para presas incluyen la obtención de una solución robusta y rentable para cargas pesadas. Las distancias entre consolas permiten trabajar con módulos de encofrado de gran tamaño, optimizando la capacidad de carga y logrando soluciones económicas.

Además, se emplean anclajes diseñados específicamente para este tipo de consolas. Los conos de trepado descargan esfuerzos de tracción y transversales en el hormigón, con conos de protección anticorrosiva que se recuperan y reutilizan, dejando únicamente la barra y la contraplaca de forma permanente en el hormigón.

La flexibilidad en la planificación es otra ventaja, pues este sistema permite hormigonar superficies inclinadas hacia adelante o atrás, incluso en construcciones circulares. La capacidad de montar lateralmente consolas adicionales facilita el encofrado de superficies inclinadas, permitiendo la inclinación que indique el fabricante en su manual de producto y posibilitando la instalación de accesos prácticamente horizontales.

Os dejo un vídeo de ULMA sobre la utilización de estos encofrados en presas.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. Valencia, 50 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Cálculo de la temperatura de fabricación del hormigón

Presa Ibiur, Baliarrain, España. http://www.ulmaconstruction.es

El hormigón colocado aumenta su temperatura como consecuencia del calor de hidratación del cemento. Como ese calor se disipa con el hormigón ya endurecido, se pueden producir tensiones que pueden provocar fisuras. Este fenómeno es de gran importancia cuando se vierten grandes cantidades de hormigón, como puede ser el caso de la construcción de presas. Para evitar el riesgo de fisuración, además de disponer juntas transversales y longitudinales, también se suelen tomar las siguientes medidas: disposiciones de proyecto para evitar la iniciación de grietas, precauciones para conseguir que la temperatura del hormigón colocado sea la menor posible y procedimientos para acelerar la evacuación del calor de hidratación. En esta entrada nos centraremos en conseguir que la temperatura del hormigón colocado sea la adecuada.

El incremento de temperatura existente entre la fabricación y la puesta en obra se puede calcular aproximadamente con la siguiente expresión:

Por tanto, para conseguir la temperatura de fabricación adecuada, se debe modificar la temperatura de cada uno de los componentes necesarios para la fabricación del hormigón. Si bien el agua de amasado se puede enfriar, lo más efectivo es enfriar los áridos, puesto que cambiar la temperatura del cemento puede ser problemático. Además, los silos de almacenamiento deben estar aislados para controlar mejor la temperatura de fabricación.

Las leyes de equilibrio térmico permiten obtener la temperatura final de la mezcla, tanto cuando el agua de amasado se utiliza con hielo o sin hielo. Además, se recomienda ensayar diversas soluciones para ver qué combinación es la más sencilla de aplicar a cada caso concreto. La expresión es la siguiente:

En esta expresión observamos que el agua total de amasado incluye el agua libre de los áridos. Sin embargo, el agua total es la suma del agua de amasado más el hielo que se incorpore a la mezcla.

Referencias:

COMITÉ NACIONAL ESPAÑOL DE GRANDES PRESAS (1999). Construcción de presas y control de calidad. Guías Técnicas de Seguridad de Presas. Colegio de Ingenieros de Caminos, Canales y Puertos, 333 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

La aplicación de la toma de decisiones multicriterio a la gestión de presas

Presa de Aldeadávila. Wikipedia

La gestión del mantenimiento de las presas existentes constituye un proceso complejo que requiere la aplicación de la toma de decisiones atendiendo a  múltiples criterios para evitar las severas consecuencias sociales, económicas y medioambientales que pueden acarrear. A continuación os dejo un artículo científico que nos acaban de publicar al respecto. Realiza una revisión profunda del estado del arte en la materia. Espero que os sea de interés.

El artículo completo lo podéis encontrar aquí:  http://www.sciencedirect.com/science/article/pii/S0959652617301051

 

Abstract:

Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a major presence under the single approach, specially the Analytic Hierarchy Process, and its combination with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid approach; while a high variety of complementary techniques was identified. A growing hybridization and fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision making process and the inclusion of trade-offs and interactions between components within the evaluation model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision Making in dam management, further research is required to differentiate between rational and intuitive decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet explored under this approach, as an interesting path worth investigating.

Keywords:

  • Ageing dams;
  • Dam management;
  • Decision making;
  • Multiple criteria analysis;
  • Risk

Referencia:

ZAMARRÓN-MIEZA, I.; YEPES, V.; MORENO-JIMÉNEZ, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230. http://www.sciencedirect.com/science/article/pii/S0959652617301051

Descargar (PDF, 851KB)

El desastre del embalse del Vajont (Italia)

El valle de Vajont tras el derrumbe del monte Toc que causó el desastre. Wikipedia

La presa de Vajont fue construida el año 1961 en los Pre-Alpes italianos a unos 100 kms al norte de Venecia, Italia. Era una de las presas más altas del mundo, con 262 m de altura, 27 m de grosor en la base y 3,4 m en la cima. Desde el principio, los técnicos ya detectaron problemas por corrimientos de tierras, por lo que recomendaban no llenar el embalse por encima de cierto nivel de agua. A las 22.39 h del día 9 de octubre de 1963, la combinación del tercer rellenado del depósito produjo un gigantesco deslizamiento de unos 260 millones de m3 de tierra y roca, que cayeron en el embalse, prácticamente lleno, a unos 110 km/h. El agua desplazada resultante produjo que 50 millones de m3 de agua sobrepasasen la presa en una ola de 90 m de altura. A pesar de eso, la estructura de la presa no recibió daños importantes. La tragedia podría haber sido aún mayor si la presa se hubiera derrumbado, vertiendo otros 50 millones de m3 que a pesar de todo permanecieron embalsados. El formidable tsunami consecuencia del deslizamiento destruyó totalmente el pueblo de Longarone y las pequeñas villas de Pirago, Rivalta, Villanova y Faè. Varios pueblos del territorio de Erto y Casso y el pueblo de Codissago, cerca de Castellavazzo, sufrieron daños de importancia. Unas 2.000 personas fallecieron. Los destrozos fueron producidos exclusivamente por el desplazamiento de aire al explotar la ola en los pueblos colindantes.

Animación del deslizamiento. Fuente: http://ireneu.blogspot.com.es

¿Cómo pudo suceder un desastre de tales proporciones? ¿Se pudo evitar? Es mucha la información en distintas webs sobre la tragedia de Vajont. Nos pone en guardia sobre los límites de la técnica y del sentido común. Desgraciadamente, se ha convertido en un ejemplo en el que el hombre decidió retar a la naturaleza y esta le avisó de lo que podía suceder, pero cuando los responsables decidieron mirar hacia otro lado, el desastre llegó con sus mayores consecuencias. Este es un buen ejemplo de estudio de caso, tanto desde el punto de vista técnico como ético.

En el siguiente enlace podéis descargaros un artículo del año 1964 de José Mª Valdés sobre algunas meditaciones de esta catástrofe. Se trata de una conferencia pronunciada el 24 de abril de ese año en el Centro de Estudios Hidrográficos de la Dirección General de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2991_01.pdf

En un documental emitido por el canal Historia, una de las víctimas relata que un ingeniero dijo a su abuela: “Recuerde que la presa no se caerá porque está muy bien hecha, pero la montaña cederá, y acabarán atrapados como ratas”. A continuación os dejo varios de estos vídeos al respecto para la reflexión.

La presa Hoover

Presa Hoover. blogdelagua.com

¿Quién se atreve a construir infraestructuras en época de crisis? La Gran Depresión americana no supuso impedimento para realizar una de las obras de infraestructuras más importantes del mundo en aquel momento: la Presa Hoover.

La Presa Hoover es una presa de hormigón de arco-gravedad, ubicada en el curso del río Colorado, en la frontera entre los estados de Arizona y Nevada (EE. UU.). Está situada a 48 km al sureste de Las Vegas. La presa tiene una altura de 221,4 m y una longitud de 379,2 m. Se tuvieron que emplear 3,33 millones de metros cúbicos de hormigón, conformando un grosor en la base de 200 m y de solo 15 m en coronación. El nombre de la presa se debe a uno de sus impulsores, Herbert Hoover, que llegó a ser Presidente de Estados Unidos. La construcción comenzó en 1931 y fue completada en 1936, dos años antes de lo previsto. El lago creado aguas arriba recibe el nombre de Lago Mead, en honor de Elwood Mead, ingeniero que previó la necesidad de la presa.

El día 11 de marzo de 1931 se firmó el contrato de arrendamiento a seis empresas constructoras para la creación de la Hoover Dam. Durante los siguientes cinco años, un total de 21.000 hombres trabajaron sin cesar para producir la que sería la presa más grande de su tiempo, así como una de las mayores estructuras hechas por el hombre en el mundo. Antes de dar comienzo a los trabajos sobre el terreno había que resolver no únicamente la cuestión del transporte de materiales, sino también la organización de las plantillas de obreros, que se encontrarían en una zona situada en pleno desierto, aún más inhóspita por el hecho de que la construcción de la presa debía iniciarse a 224 m bajo el borde del cañón.

Se construyeron dos ataguías para aislar y proteger la obra de las inundaciones. Tras completar los túneles del lado de Arizona y de desviar el río, lo trabajos adquirieron un ritmo más rápido. La excavación de la presa se realizó sobre roca sólida, retirándose un total de unos 1.150.000 m³ de material. Para desviar el flujo del río alrededor de la obra de construcción, se construyeron cuatro túneles de derivación por las paredes del cañón de 17 m de diámetro, dos sobre el lado de Nevada y dos sobre el lado de Arizona. Su longitud total de los túneles fue de casi 4880 m.

En la construcción de la presa se tuvo que afrontar un problema muy importante, que era disipar el calor producido por el curado del hormigón. Los ingenieros calcularon que si la presa fuera construida en un solo bloque, el hormigón habría necesitado 125 años para enfriarse a temperatura ambiente. Las tensiones resultantes habrían agrietado la presa y esta se habría destruido. Por ello su construcción se hizo en ménsulas trapezoidales y se tuvo que acelerar la refrigeración del hormigón con tubos de acero de una pulgada por donde circulaba el agua del río. Según se enfriaban los bloques, las tuberías de refrigeración se cortaban y se rellenaba de lechada. En total hicieron falta casi 1.000 km de tuberías para enfriar toda la estructura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es una central hidroeléctrica?

Corte transversal de una represa hidroeléctrica

En una central hidroeléctrica se utiliza energía hidráulica para la generación de energía eléctrica. Estas centrales aprovechan la energía potencial gravitatoria que posee la masa de agua de un cauce natural en virtud de un desnivel, también conocido como salto geodésico. El agua en su caída entre dos niveles del cauce se hace pasar por una turbina hidráulica, la cual transmite la energía a un generador donde se transforma en energía eléctrica.

Podemos clasificar las centrales hidroeléctricas en tres tipos: de embalse, fluyentes o de pasada, y de bombeo:

  • En las centrales de embalse, el esquema funcional incluye una presa, que intercepta la corriente de agua y permite que se acumule el agua alcanzando la misma una determinada cota o altura. El agua fluye del embalse, por acción de la gravedad, viaja a través de una tubería de descarga hasta las máquinas de la central, donde mediante turbinas hidráulicas se produce la electricidad en alternadores.
  • Las centrales fluyentes o de pasada. Estas funcionan igual que las centrales hidroeléctricas de embalse, pero no tienen capacidad de almacenamiento del agua.
  • Las centrales reversibles o de bombeo, constan de dos embalses situados a distintas cotas y sus máquinas tienen la peculiaridad de poder funcionar indistintamente como turbinas y como bombas.  En los momentos en que el sistema eléctrico demanda más electricidad, el agua del embalse superior se turbina al embalse inferior generando electricidad. Cuando la demanda de energía eléctrica es baja, el agua es bombeada al embalse superior.

Pero quizás sea mejor ver unos vídeos explicativos sobre el tema. Espero que os gusten.

http://externo.canalendesa.tv/index_acc.php?idioma=esp&MetaDataID=16506

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de la presa de Aldeadávila (Salamanca)

Hoy, 17 de octubre de 2014, se cumplen 50 años de la inauguración oficial de la presa de Aldeadávila. Un hito de la ingeniería civil española. No podíamos dejar pasar la ocasión para recordar esta obra en nuestro blog.

El embalse, la central y la presa de Aldeadávila (también conocida como salto de Aldeadávila) son una obra de ingeniería hidroeléctrica construida en el curso medio del río Duero, a 7 km de la localidad de Aldeadávila de la Ribera (Salamanca). La presa es un arco de gravedad de hormigón de 139,50 m de altura. Constituye la central hidroeléctrica más importante de España en cuanto a potencia instalada y de producción. El conjunto de los trabajos realizados para llevar a cabo esta infraestructura tuvieron lugar entre 1956 y 1963. Dispone de un aliviadero de superficie con ocho compuertas de segmento de 14,00 m por 8,30 m. Además, posee un túnel aliviadero con dos compuertas tipo segmento de 12,50 m x 9,70 m.

Construida entre los años 1958 y 1965 -justo tras el periodo de autarquía y al comienzo de la apertura española al exterior-, se trata de una de las presas más emblemáticas de la Ingeniería de Presas tanto a nivel español como a nivel mundial. Es conocido el rodaje de las tomas iniciales y finales de la película Doctor Zhivago, en julio de 1965 en la presa.

 

Os dejo el siguiente enlace para que tengáis más detalles de la obra: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2988_21.pdf. Además, aunque los vídeos son antiguos, os los paso para ver los procesos constructivos de la época. Espero que os gusten.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La presa de Jawa, posíblemente la más antigua documentada

Sistema hidráulico de Jawa (Jordania). https://historiacivil.wordpress.com/2012/09/28/presa-de-jawa/

¿Una presa en la Edad del Bronce? Como vamos a comprobar a continuación en este breve artículo, resulta sorprendente ver cómo en aquella época se empezaron a manejar, de forma totalmente intuitiva, conceptos básicos en ingeniería de presas como el de núcleo, impermeabilización, etc.  Lo cierto es que, hace 5000 años, apareció una ciudad en medio del desierto que pudo tener perfectamente 2000 habitantes y cuya supervivencia se debió a una gestión inteligente del agua. Y cuya desaparición ocurrió cuando este sistema de suministro sucumbió.

Siempre resulta arriesgado afirmar cuál ha sido la primera vez que alguien ha hecho algo. Lo mismo ocurre con las construcciones, y en particular, las presas. En este caso, vamos a dedicar unas líneas a las presas más antiguas conocidas, localizadas en Jawa, a unos 100 km al nordeste de la capital jordana de Ammán. Se trata de un sistema de suministro de agua que se construyó alrededor del 3000 a.C. que tuvo un breve pero intenso esplendor en aquella época. Realmente se trataba de cinco embalses, con una capacidad conjunta próxima a 46.000 m3, capaces de generar un espacio habitable en medio del desierto. La idea era captar las escorrentías de lluvias en los cortos inviernos y de las pequeñas cuencas hidrográficas a través de Wadi Rajil, que alcanza a recoger 2.000.000 m3 en la actualidad y es probable suponer que en el pasado manejaban los mismos volúmenes, de los cuales solo el 3% s distribuía para la ciudad de Jawa.

Pero quizá lo que más nos interesa, por ser una construcción innovadora en su momento, es la presa mayor, de gravedad. Las presas y canales, aunque rudimentarias para los estándares modernos, estaban más allá de la capacidad de los agricultores y fueron construidas por sociedades organizadas en comunidad. Otras obras de gran escala, incluyeron sistemas de diques para minimizar los daños de las inundaciones. Su construcción se basa en una estructura de dos muros de mampostería seca con un núcleo de tierra. Tenía una altura de 4,50 m, una longitud de 80 m en coronación y un grosor en el núcleo de la presa de 2 m. En el frente del talón, aguas arriba de la presa, se dispuso una capa impermeable. La estabilidad de la estructura se consiguió con un terraplén aguas abajo. La elevación de la presa un metro más fue siguiendo los mismos principios, aunque el ancho del núcleo de tierra se incrementó a unos 7 m. Se dispuso un relleno de roca detrás del muro de aguas arriba para facilitar el drenaje durante el vaciado del embalse. De esta manera la pared fue protegida contra los riesgos de presiones traseras del agua.

Sección transversal de la presa Jawa. https://historiacivil.wordpress.com/2012/09/28/presa-de-jawa/

 

Por razones aún desconocidas, la ciudad sucumbió tan rápido como creció, quizá víctima de su propio éxito, por una presión demográfica excesiva sobre los sistemas de abastecimiento de agua.