Los motivos por los que se equivocan estudiantes y profesionales de ingeniería al abordar la resolución de problemas

Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.

En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.

La falta de comprensión del concepto que subyace a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se encuentra con un problema al que no se ha enfrentado antes, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.

Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, enfocarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgado o inventados puede conducir a conclusiones incorrectas.

El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inadecuado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, la dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede llevar a errores conceptuales y de selección de modelos de cálculo.

Los aspectos psicológicos también desempeñan un papel importante. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden contribuir a errores en la resolución de problemas.

Es crucial comprender que los problemas reales pueden ser complejos y no necesariamente tienen una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y la utilización incorrecta de datos, fórmulas o software pueden llevar a resultados incorrectos.

La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez. La falta de comunicación o colaboración en entornos de trabajo entre profesionales también puede contribuir a errores en la resolución de problemas. La confianza excesiva en la tecnología o herramientas automatizadas sin una comprensión sólida de los principios subyacentes puede ser problemática.

En resumen, resolver problemas en el ámbito universitario o profesional de ingeniería y ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.

Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado me extiendo y explico algo más lo que aquí recogo como una simple lista.

  1. La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
  2. La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta un tipo de problema por primera vez, ya sea durante un examen o en la práctica profesional.
  3. Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
  4. La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
  5. Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
  6. El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
  7. Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
  8. Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
  9. La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
  10. La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
  11. Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
  12. Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
  13. Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del “número gordo” y saber predimensionar.
  14. Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
  15. Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
  16. La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
  17. Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
  18. La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
  19. Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
  20. El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
  21. El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
  22. La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
  23. Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
  24. La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
  25. La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
  26. La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
  27. La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
  28. La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
  29. La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
  30. La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.

Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.

Artículos relacionados en el blog:

Los ingenieros, los ordenadores y mil un indios

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Cifras significativas y errores de medición

¿Cómo predimensionar un muro sin calculadora?

La inteligencia artificial en la ingeniería civil

Introducción a la toma de decisiones

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Referencias de libros de problemas:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp. ISBN: 978-84-17853-62-4

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Número de observaciones a realizar en un cronometraje

Figura 1. Cronometraje industrial

El cronometraje, junto con las observaciones instantáneas, constituye un procedimiento de medición del trabajo que permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. El cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso. En cambio, las observaciones instantáneas cubre el resto de los escenarios posibles, como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Una medición del tiempo requerido para una operación elemental en la que se divide un trabajo debe ofrecer brindar cierta seguridad que que se recogen todas las posibles causas que pueden influir en los tiempos, incluyendo los datos que se producen de forma esporádica. Para ello, las medidas se basan en una muestra representativa formada por un determinado número de ciclos sucesivos.

La Oficina Internacional de Trabajo recomienda cronometrar al menos 50 ciclos en operaciones breves y de 20 a 30 ciclos en operaciones más largas. Sin embargo, es posible que con un número de lecturas superiores a 10, el valor medio puede cambiar tan poco que no merece la pena aumentar el número de observaciones.

El número de ciclos a cronometrar depende, entre otros, de la duración de los elementos, de la precisión que se quiera para los tiempos representativos y de la estabilidad del operario o máquina cronometrado.

Duración de los elementos

Cuanto mayor sea la duración de los elementos, será menor la influencia de las causas de variación. Aunque los errores tengan el mismo valor absoluto, su valor relativo será menor. La Tabla 1 proporciona un ejemplo del número de lecturas según la duración de la operación (Alonso y Ruiz, 1982) .

Sin embargo, muchas empresas se basan en su propia experiencia o consideran la repetitividad de la operación. Se otorga más importancia y se busca mayor exactitud en los trabajos más frecuentes.

Precisión deseada

Figura 2. Precisión en las mediciones.

Suponiendo que la distribución de probabilidad de los tiempos es normal, entonces se puede determinar el número de observaciones a realizar, de forma que la mayoría de los valores individuales no se desvíen del valor medio más allá de unos límites aceptables de variabilidad. Por lo tanto, se puede determinar el número de observaciones teniendo en cuenta el margen de error y una probabilidad fija de no excederlo.

Si tenemos n medidas, la media muestral se expresa como:

La desviación típica muestral sería:

Y se define el error cuadrático de la media, o desviación típica de la media, como:

Teniendo en cuenta las propiedades de la distribución normal, el 95,45% de los valores probables de la media es que se encuentren en el intervalo de ±2Δx de la media.

De esta forma, si se hacen n lecturas, se puede calcular la media y su error cuadrático, lo cual nos indicará el error que tendrá la lectura. Por aproximaciones sucesivas, se podría aumentar el número de lecturas hasta que el error no supere un determinado límite.

Supongamos, por ejemplo, que el error no sobrepase el 5%, con el nivel de confianza del 95,45%, entonces, el número n’ de observaciones será:

Y por tanto,

Si el número inicial de observaciones, n, es insuficiente al aplicar la fórmula, entonces se debe aumentar las observaciones a n’ y volver a comprobar.

Estabilidad del operario

Como se ha visto anteriormente, el número de observaciones n necesarias será función de la desviación típica muestral. Si el tiempo medido varía poco, se requieren pocas observaciones. Por tanto, es conveniente cronometrar a operarios que realicen su trabajo de la forma más uniforme posible, en condiciones normalizadas. De esta forma, con un número relativamente bajo de medidas, se obtendrá el tiempo estándar como el promedio de las observaciones.

Sin embargo, no es posible desterrar la variabilidad, pues siempre existen ligeros errores en la lectura del cronómetro, pequeños cambios en el material o la posición de la herramienta, variaciones en las propiedades del material o pequeñas variaciones no intencionadas en el ritmo del operario o en el patrón de movimientos.

Os paso un vídeo explicativo al respecto.

Referencias:

ALONSO, J.; RUIZ, J.M. (1982). Ingeniería de producción. Ediciones Deusto, Bilbao.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas de prevención de fallos en el diseño de productos

Las empresas dedicadas al diseño de productos deberían focalizar sus esfuerzos en que dicho producto tenga una elevada fiabilidad, es decir, que su probabilidad de fallo se reduzca al mínimo posible. Para asegurarse de que el diseño satisface las necesidades del cliente a un coste proporcionado al valor añadido, es posible utilizar diversas técnicas como son, entre otras, el despliegue de la función de calidad (QFD, Quality Function Deployment), el análisis modal de fallos y efectos (AMFE) y el análisis del valor.

  • El despliegue de la función de calidad, QFD, permite traducir los requerimientos de calidad del cliente en características técnicas del producto. Se trata de una metodología simple y lógica que involucra un conjunto de matrices, las cuales permiten determinar las necesidades del cliente, analizar a la competencia y descubrir los nichos de mercado no explotados.
  • El análisis modal de fallos y efectos, AMFE, es una metodología analítica estructurada que permite tener en cuenta y se han resuelto los modos de fallo potencial de un producto o sistema y sus causas, para evitarlos.
  • El análisis del valor trata de reducir el coste de un producto sin eliminar las características demandadas por los clientes. También permite detectar los cambios que deberían realizarse para dar mayor al producto sin que el incremento de coste sea superior al aumento de precio.

A continuación os dejo algunos vídeos explicativos de estas técnicas de prevención de fallos en los productos.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué hacemos con los valores atípicos (outliers)?

Figura 1. Valor atípico en el diagrama de caja y bigotes

Un valor atípico (outlier, en inglés) es una observación que numéricamente es muy distinta al resto de elementos de una muestra. Estos datos nos pueden causar problemas en la interpretación de lo que ocurre en un proceso o en una población. Por ejemplo, en el cálculo de la resistencia media a compresión simple de unas probetas de hormigón, la mayoría se encuentran entre 25 y 30 MPa. ¿Qué ocurriría si, de repente, medimos una probeta con una resistencia de 60 MPa? La mediana de los datos puede ser 27 MPa, pero la resistencia media podría llegar a 45 MPa. En este caso, la mediana refleja mejor el valor central de la muestra que la media.

La pregunta que nos podemos plantear es inmediata. ¿Qué hacemos con esos valores atípicos? La opción de ignorarlos a veces no es la mejor de las soluciones posibles si pretendemos conocer qué ha pasado con estos valores. Lo bien cierto es que distorsionan los resultados del análisis, por lo que hay que identificarlos y tratarlos de forma adecuada. A veces se excluyen si son resultado de un error, pero otras veces son datos potencialmente interesantes en la detección de anomalías.

Los valores atípicos pueden deberse a errores en la recolección de datos válidos que muestran un comportamiento diferente, pero reflejan la aleatoriedad de la variable en estudio. Es decir, valores que pueden haber aparecido como parte del proceso, aunque parezcan extraños. Si los valores atípicos son parte del proceso, deben conservarse. En cambio, si ocurren por algún tipo de error (medida, codificación…), lo adecuado es su eliminación. En la Tabla 1 se recogen algunas de las causas comunes de los valores atípicos y sus acciones posibles.

Tabla 1. Causas comunes de los valores atípicos. Fuente: Soporte de Minitab(R) 18.

Causa Acciones posibles
Error de entrada de datos Corregir el error y volver a analizar los datos.
Problema del proceso Investigar el proceso para determinar la causa del valor atípico.
Factor faltante Determinar si no se consideró un factor que afecta el proceso.
Probabilidad aleatoria Investigar el proceso y el valor atípico para determinar si este se produjo en virtud de las probabilidades; realice el análisis con y sin el valor atípico para ver su impacto en los resultados.

Los valores atípicos a veces son subjetivos y existen numerosos métodos para clasificarlos. La detección de valores atípicos se puede realizar a nivel univariante usando gráficos sencillos como histogramas o diagramas de caja y bigotes. A nivel bivariante se pueden localizar mediante análisis de diagrama de dispersión o análisis de los residuos. En el ámbito multivariante se pueden descubrir los valores atípicos mediante un análisis de la matriz de residuos.

El método más habitual por su sencillez y resultados es el test de Tukey, que toma como referencia la diferencia entre el primer cuartil (Q1) y el tercer cuartil (Q3), o rango intercuartílico. En un diagrama de caja se considera un valor atípico el que se encuentra 1,5 veces esa distancia de uno de esos cuartiles (atípico leve) o a 3 veces esa distancia (atípico extremo). Se trata de un método paramétrico que supone que la población es normal (Figura 2). No obstante, también existen métodos no paramétricos cuando la muestra no supere la prueba de normalidad correspondiente.

Figura 2. Detección paramétrica de valores atípicos, basado en la curva de distribución normal. Wikipedia

Os dejo algún vídeo donde se explica cómo detectar los valores atípicos.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cuántas respuestas son necesarias en una encuesta? Pues depende.

A veces me toca dirigir algún trabajo de investigación de mis estudiantes que trata de conocer la opinión sobre algún aspecto concreto. Normalmente se trata de temas relacionados con el sector de la construcción, aunque también suelo investigar si ha tenido éxito algún tipo de innovación educativa en mis clases. Para ello suelo aconsejar el uso de cuestionarios basados en escalas Likert, pues de esta forma facilito el análisis estadístico multivariante de los resultados.

El problema siempre es el mismo: ¿Profesor, tengo suficientes encuestas o tengo que enviar más encuestas? Y la respuesta siempre es la misma: depende del objeto de la encuesta. Vamos a analizar esto por partes.

Si se trata de describir los resultados obtenidos de un grupo de estudio, la muestra representa a la totalidad de la población, y por tanto no es necesario alcanzar un número de respuestas mínimo. Por ejemplo, si en una asociación de empresarios de la construcción el número de socios es de 30 y todos responden el cuestionario, es evidente que los resultados del estudio representan de forma exacta lo que opinan los 30 socios.

Sin embargo, lo habitual es encontrarse con un número de respuestas que forman una muestra de una población. Aquí se trata de saber si podemos extrapolar los resultados a la población que representa la muestra. Para ello nos debemos hacer dos preguntas: ¿Es la muestra representativa? ¿Cuál es el margen de error que cometemos?

Las técnicas de muestreo permiten extraer muestras representativas. Estos muestreos pueden ser probabilísticos o no probabilísticos. Entre los primeros podemos resaltar el muestreo aleatorio sistemático, el estratificado o el muestreo por conglomerados.  Entre los no probabilísticos, el muestreo por cuotas, por bola de nieve o el muestreo subjetivo por decisión razonada. Remito a los interesados a bibliografía específica, pues se escapa al objetivo de este artículo.

Aquí vamos a comentar brevemente lo relativo al error muestral. El error muestral se corresponde con el margen de error que estamos dispuestos a aceptar. Por ejemplo, si decimos que el 15% de la población está de acuerdo con algo y el error muestral es del 4%, realmente dicha opinión se encuentra entre el 11% y el 19% para un nivel de confianza determinado. Por eso, lo primero, será definir el nivel de confianza o riesgo de primera especie “z”, que sería el riesgo que aceptamos de equivocarnos al presentar nuestros resultados. El nivel de confianza habitual es 1 – α = 95% o α = 5%. Se utiliza como “z”, que es un valor de la distribución normal asociado a una determinada probabilidad de ocurrencia. Así, z=1,96 si 1 – α = 95%, z=2,00 si 1 – α = 95,5% y z=2,57 si 1 – α = 99%.

Otro factor a tener en cuenta es la variabilidad de las respuestas estimada en la población. Si sabemos que todos los sujetos piensan lo mismo, nos bastará preguntar a uno solo o a muy pocos. Pero si sabemos que habrá una gran diversidad de respuestas, hará falta una mayor número de sujetos en la muestra. Como lo normal es desconocer la variabilidad de las respuestas en la población, elegimos la mayor varianza posible p=q=50% (sería que el 50% respondiera que “sí” y el otro 50% lo contrario).

Las fórmulas que nos dan el error muestral, por tanto, dependen de los factores anteriores y también de conocer si la población es finita o infinita (más de 30.000 individuos ya se considera como infinita). En la figura se indican ambas fórmulas.

Fórmulas del error muestral, en función de si la población es finita o infinita

Si jugamos un poco con estas fórmulas, veremos que para un nivel de confianza del 95%, serían necesarias 96 respuestas en una población infinita y 95 respuestas en una población de un tamaño de 10.000 (casi coinciden) para un error muestral del 10%. Pero si queremos bajar el error al 5%, se eleva el número de respuestas a 384 en el caso de la población infinita y a 370 en el caso de una población finita de 10.000. Como vemos, se dispara el número de respuestas necesarias para reducir el error.

Por tanto, mi respuesta a mis estudiantes suele ser siempre la misma: vamos a intentar llegar a 100 respuestas para empezar a tener un error razonable.

En apretada síntesis, os quiero dar las siguientes consideraciones sobre el muestreo:

  • No solo es necesario que el tamaño de la muestra sea suficiente, sino también que la muestra sea representativa de la población que tratamos de describir
  • Una muestra de gran tamaño no garantiza que el margen de error sea pequeño, pues puede estar sesgada hacia segmentos de la población representados en exceso o poco representados
  • Si la población a estudiar es demasiado grande es recomendable segmentarla en estratos y valorar en cuáles de ellos pueden obtenerse muestras representativas, facilitando así una interpretación de los resultados más precisa
  • En general, el margen de error en cada estrato suele ser superior al margen de error de toda la muestra en conjunto. Es recomendable ser consciente de esta diferencia de precisión en la interpretación de resultados

Pues ahora una reflexión final: ¿Qué error tienen las encuestas que contestan los alumnos en relación con la calidad del profesor? ¿Es razonable tomar decisiones respecto a la continuidad o no de un profesor teniendo en cuenta estas encuestas? Tenéis las claves releyendo el artículo.

Aquí tenéis un vídeo sobre las técnicas de muestreo.

Os dejo a continuación un pequeño vídeo sobre el error de muestreo.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cuando una “campaña experimental” se convierte en un desperdicio de tiempo y dinero

https://www.laensa.com/probetas-hormigon/

Reconozco abiertamente que me recorre cierto escalofrío cuando escucho por algún sitio que se está desarrollando una “campaña experimental“, a menudo en laboratorios donde, por desgracia, cada ensayo cuesta muchísimo tiempo y dinero. Me viene a la mente una campaña militar a gran escala donde, para conseguir un objetivo, se sacrifica lo que sea necesario. Cuando igual una pequeña fuerza de operaciones especiales sería suficiente.

Lo digo porque no es la primera vez que me encuentro con algún estudiante de máster o doctorado que quiere iniciar ensayos para cubrir, literalmente, las variaciones posibles en ciertos rangos, de un número de factores que influyen en un problema determinado. Y tampoco me es ajeno el típico estudiante que acude a mi despacho a pedirme consejo porque no sabe qué hacer con las montañas de datos generados, no siendo capaz de interpretar con herramientas estadísticas rigurosas.

Pero este problema no solo ocurre en determinados ámbitos científicos, sino que es habitual en empresas, procesos industriales y laboratorios de todo tipo. Cuento esto porque encuentro de vez en cuando a un doctorando que ha dedicado, por ejemplo, más de cinco años en recoger datos que luego, a la postre, se acumulan en hojas de cálculo y son difíciles de interpretar porque no se sabía exactamente cuál era la pregunta de investigación que se quería resolver.

También es muy típico encontrar en las empresas a técnicos expertos en un proceso determinado “con mucha experiencia”, que realmente lo que ha hecho es aprender con los años, y sobre todo, de sufrir en sus carnes muchos errores. Este tipo de experiencia, basada en el error, no es la más barata, ni mucho menos.

Afortunadamente, cada vez son menos los que se enfrascan directamente a ensayar todas las combinaciones posibles en los valores de ciertas variables. Para eso disponemos de una rama del conocimiento denominada diseño de experimentos que permite no solo ahorrar recursos (tiempo, espacio de laboratorio, dinero, etc.), sino también es capaz de sacar muchísima más información de los datos cuando se dedica algo de tiempo a hacer un buen diseño experimental. No digo con esto que existan campañas experimentales bien diseñadas, sino que aún perviven prácticas que, por puro desconocimiento, son utilizadas aún en demasiadas ocasiones.

Veamos un ejemplo sencillo que nos permite aclarar las ideas. Imaginemos un proceso que solo depende de 4 factores. Si de cada factor queremos analizar 5 niveles, una “campaña experimental” exhaustiva nos obligaría a tomar 5^4 = 625 observaciones. Este número tan elevado puede ser inviable. ¿Cómo podemos reducir el número de observaciones? Se podría reducir el número de factores o el número de niveles a estudiar .

Un buen diseño de experimentos puede reducir muchísimo el número de observaciones necesarias ofreciendo, a su vez, información muy valiosa. Por ejemplo, un diseño factorial a dos niveles, ya sea completo o fraccionado, sería suficiente en la mayoría de los casos para estudiar los efectos, las interacciones entre los factores, etc. Invito al lector a revisar en este mismo blog algunos artículos que he escrito al respecto:

¿Qué es el diseño de experimentos?

Definiciones básicas del diseño de experimentos

Incluso, en el caso de que no exista una interacción entre los factores, por ejemplo un diseño en cuadrado grecolatino, para cuatro factores y cuatro niveles, podríamos obtener información valiosa con 16 observaciones en vez de las 256 que serían las necesarias para cubrir todas las combinaciones posibles. En este blog podéis encontrar muchos ejemplos resueltos buscando “diseño de experimentos” en la columna de la izquierda, donde aparece el buscador.

Resumiendo, estoy a favor de las “campañas experimentales”, pero siempre que se basen en un diseño de experimentos previo. Pero mi consejo es que antes de hacer nada, tengamos muy clara la pregunta de investigación que queremos resolver. De hecho, la ciencia experimental trata de llegar a conclusiones generales con datos procedentes de casos particulares, y para eso necesitamos la estadística.

Parafraseando la frase que, según la tradición, estaba grabada a la entrada de la Academia de Platón, yo pondría el siguiente letrero a la puerta de cualquier laboratorio: “NO ENTRE NADIE QUE NO SEPA ESTADÍSTICA”.

Os dejo una conferencia del profesor Xabier Barber de la Universidad Miguel Hernández que os aclarará muchas cosas. Espero que os guste.

Referencias:

  • Box, G.E.; Hunter, J.S.; Hunter, W.G. (2008). Estadística para investigadores. Diseño, innovación y descubrimiento. Segunda Edición, Ed. Reverté, Barcelona.
  • Gutiérrez, H.; de la Vara, R. (2003). Análisis y diseño de experimentos. McGraw-Hill, México.
  • Vicente, M.L.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de experimentos. Soluciones con SAS y SPSS. Pearson Educación, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Potencia de un test estadístico: Cómo evitar que nos la cuelen

https://neuromarketing.la/2018/12/riesgo-percibido-en-las-compras-online/

En un artículo anterior, “Jerga, falacias y encuestas electorales: Las hipótesis en la investigación científica“, expliqué lo que es una hipótesis de investigación y los errores estadísticos asociados. En aquel artículo se habló del nivel de significación α como la probabilidad de rechazar una hipótesis nula cuando es cierta. Por cierto, como curiosidad hay que decir que se llama “hipótesis nula” porque es la afirmación de una “ausencia de efecto” o de “no diferencia”.

Para simplificar, supongamos un test de embarazo. En este caso, la hipótesis nula es no estar embarazada. Si el test da positivo, no estando embarazada, a este error se le denomina Tipo I o falso positivo. Este error también ocurriría cuando se realiza una operación quirúrgica a un individuo sano, se condena a un inocente o se suspende a un alumno que ha estudiado mucho. También se suele llamar a esta error el RIESGO DEL FABRICANTE, pues es la probabilidad de que el comprador le rechace un lote de producto correcto.

Normalmente se acepta un umbral de α=0,05 , por debajo del cual se puede decir que existe una diferencia entre los resultados del estudio y la hipótesis nula, cuando realmente no hay ninguna diferencia. No obstante, dependiendo del tipo de test y su finalidad, los umbrales pueden ser diferentes a 0,05. Para simplificar la decisión, se utiliza el concepto de significación muestra de la hipótesis nula o “p-valor“, que es la probabilidad de que un resultado sea correcto bajo una hipótesis nula. Así, si el p-valor obtenido es inferior al nivel de significación exigido, se rechazará la hipótesis nula.

Sin embargo, en este artículo me interesa centrarme en un aspecto a veces olvidado, o al menos al que se le da menor importancia que al nivel de significación. Este aspecto es la potencia de un test estadístico, muy relacionado con los falsos negativos. Supongamos, por ejemplo, que a una mujer embarazada el test le dice que no lo está, que se declara inocente a un asesino, que no se opera a un enfermo con metástasis o que se aprueba a alumnos que no han estudiado. Está claro que aquí el test no ha tenido la potencia suficiente como para detectar que ha habido un efecto. Dicho de otra forma, la potencia estadística de un test debe distinguir la señal del ruido. El gran problema que planteamos es que deberíamos distinguir si realmente ha habido un efecto determinado o bien el test no ha sido capaz de detectarlo.

Para ello debemos definir el error Tipo II, β o falso negativo. Se trata del error cometido al aceptar la hipótesis nula cuando ésta no es cierta. Pues bien, la potencia de la prueba se define como 1-β. También se le llama RIESGO DEL COMPRADOR, pues indica la probabilidad de aceptar un lote defectuoso de un fabricante. ¿Qué porcentaje delincuentes voy a declarar culpables en un juicio? ¿Qué probabilidad es aceptable para decir que un fármaco realmente es útil para una enfermedad? Vemos que esos porcentajes, es decir, la potencia del test, puede ser variable. Aunque es habitual exigir entre un 80 y 90%.

El error Tipo I y Tipo II se encuentran relacionados. Si hay diferencias significativas, estos errores son bajos. https://es.wikipedia.org/wiki/Errores_de_tipo_I_y_de_tipo_II

Como podemos ver, no tiene la misma importancia un falso positivo que un falso negativo. Imaginemos una prueba que detecta contaminación letal en un alimento. No es lo mismo decir que el alimento está contaminado, cuando no lo está, que afirmar que no hay contaminación, cuando sí que la hay. El resultado final es que el falso negativo puede provocar muertes, mientra que el falso positivo no.

Pues bien, en una prueba estadística, el nivel de significación, la potencia y el tamaño muestral, se encuentran relacionados. La única forma de bajar los falsos positivos y falsos negativos es aumentar el tamaño muestral. No obstante, como la potencia de la prueba trata de distinguir el efecto del ruido, también se podría incrementar dicha potencia utilizando muestras lo más homogéneas posibles (disminuyendo su variabilidad), utilizando instrumentos de medida muy fiables o utilizando contrastes concretos, entre otros.

Eso explica que, en el caso de los exámenes a nuestros estudiantes, una forma de reducir los suspensos a los alumnos que han estudiado y de suspender al máximo de número de estudiantes que no han estudiado, consiste en aumentar el número de preguntas. Además, deberíamos diseñar el examen de forma que las preguntas permitan distinguir claramente si se conoce o no un concepto.

Os paso algunos vídeos que explican estos conceptos de potencia de una prueba. Espero que os sean útiles.

A continuación os resuelvo un pequeño problema con MINITAB al respecto. Se quiere saber qué tamaño de muestra deberemos elegir para detectar diferencias respecto a la media mayor de 2 MPa un 80% de las veces, suponiendo un nivel de confianza del 95%. Suponemos conocida la desviación típica, que es de 3 MPa.

Descargar (PDF, 139KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las dificultades asociadas a las vigas Vierendeel y su rotura frágil

Jules Arthur Vierendeel (1852-1940). https://es.wikipedia.org/wiki/Jules_Arthur_Vierendeel

Los entramados en bastidor, también llamados Vierendeel, surgieron de la patente de 1897 de una viga reticulada que lleva el nombre de su creador, el ingeniero belga Jules Arthur Vierendeel (1852-1940). La viga Vierendeel tiene una forma de celosía ortogonal que presenta la ventaja de prescindir de las tradicionales diagonales. Esta característica obliga a rigidizar fuertemente los nudos, estando sometidas sus barras a esfuerzos flectores y cortantes, además de los esfuerzos axiles. La tipología de la estructura presenta ventajas como la de permitir el paso a su través, ya sea de personas o de conducciones, facilitando también la colocación de carpinterías en edificación.

En el caso de los puentes, los de este tipo se hicieron muy populares en el primer tercio del siglo XX, existiendo un buen número de ejemplos en Bélgica y en el antiguo Congo Belga. El primer puente de estas características se construyó en Avelgem, Bélgica, en 1902. En España, por ejemplo, tenemos un ejemplo en Riera de Caldas, terminado en 1933.

 

Vigas Vierendeel en el teatro Alla Scala de Milán. https://www.e-zigurat.com/blog/es/ejemplos-estructurales-aplicacion-vigas-vierendeel/
Puente Hafe vu Léck. https://es.wikipedia.org/wiki/Puente_Vierendeel

Sin embargo, esta tipología no está exenta de dificultades relacionada con la tenacidad del acero y la mecánica de fractura. Un ejemplo es el colapso del puente Vierendeel de Hasselt, sobre el canal Alberto, en Bélgica, en 1938. Este desastre ocurrió con una temperatura de -20ºC. Se trataba de un puente metálico soldado donde, al desaparecer las diagonales de la celosía, se debía reforzar los cordones y montantes. Pero lo más importante, la ejecución de los nudos soldados requiere de una delicadeza y cuidado máximos. En efecto, estos nudos soldados fueron el origen de sonados desastres como el descrito debido a que con las bajas temperaturas del invierno y con cierta sobrecarga, se produce con cierta facilidad la rotura frágil del acero si no se concibe y ejecuta los innumerables detalles asociados a la soldadura.

Otra dificultad añadida es su deformabilidad frente a otras tipologías de celosías trianguladas. Por ejemplo, para una pasarela de 60 m, la flecha de una viga Vierendeel es unas 10 veces mayor que el resto. Aproximadamente del orden de Luz/100, mientras que en las celosías son menores que Luz/1000.

Sin embargo, hoy día existe cierta tendencia en arquitectura en utilizar este tipo de estructura sin informar claramente sobre las dificultades de esta tipología, muy tentadora, como nos comenta Javier Rui-Wamba en su libro “Teoría unificada de estructuras y cimientos. Una mirada transversal“.

Os dejo a continuación un vídeo sobre la construcción con vigas Vierendeel en el Centro Cultural Nestor Kirchner, en Buenos Aires (Argentina).

En este otro vídeo, donde unos estudiantes rompen un modelo reducido de viga Vierendeel, vemos la gran deformabilidad de esta estructura.

Un ejemplo arquitectónico singular fue la construcción de las Torres Gemelas, donde se recurrió a la viga Vierendeel y a un sistema invertido de estructura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Henry Petroski. https://es.wikipedia.org/wiki/Henry_Petroski

Henry Petroski, ingeniero civil estadounidense y profesor en la Universidad de Duke en Durham (Carolina del Norte) escribió un libro que recomiendo a mis estudiantes y a cualquier profesional de la ingeniería que se llama “La ingeniería es humana. La importancia del fallo en el éxito del diseño“. Este libro está editado en castellano por la editorial CINTER, traducido por María Eugenia Matamala Pérez y prologado por Robert Brufau.

Todos los capítulos son verdaderamente interesantes, pero me gustaría destacar el que se llama “De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes”. De este tema ya he hablado en mi blog en alguna ocasión: https://victoryepes.blogs.upv.es/2013/09/10/los-ingenieros-los-ordenadores-y-mil-un-indios/ y también cuando hablaba de las cifras significativas y los errores de precisión. Os remito a su lectura.

La conclusión es muy clara, un ingeniero debería saber de antemano el orden de magnitud del cálculo antes de calcularlo realmente. Dejar todo al libre albedrío del ordenador sin criterio para saber si el resultado final es aceptable o no, es un riesgo inaceptable. Eso explica el éxito de libros sobre “Números gordos” o bien cómo la investigación puede llevarnos a descubrir fórmulas de predimensionamiento útiles en la práctica (ver el artículo que escribí sobre cómo predimensionar un muro sin calculadora).

Pero no voy a ser “spoiler” de libro de Petroski. Simplemente os adjunto lo que la American Society of Civil Engineers (ASCE) indicó cuando anunció el Premio Mead (es un premio anual para estudiantes de ingeniería civil que otorga el ASCE  un trabajo sobre la ética profesional):

“Los ingenieros civiles han recurrido al ordenador en busca de mayor rapidez y productividad. Sin embargo, ¿se corre el riegos de comprometer la seguridad y el bienestar del usuario? Muchos han predicho que los fallos futuros de ingeniería se atribuirán al uso o el mal uso de los ordenadores. ¿Se está convirtiendo en habitual aceptar un proyecto cuando no se tiene experiencia simplemente porque se dispone de un paquete de software? ¿Cómo pueden garantizar los ingenieros civiles la precisión del programa del ordenador y que el ingeniero civil está cualificado para usarlo de manera apropiada?”

Os dejo estas preguntas para pensar. Es evidente que un ordenador no deja de ser más que una regla de cálculo electrónico o los cuadernos de cálculo de toda la vida. Muchas ventajas, pero mucha precaución en su empleo.

Referencia:

PETROSKY, H. (2007). La ingeniería es humana. La importancia del fallo en el éxito del diseño. Ed. CINTER, 320 pp.

 

Estimación puntual y por intervalos para una muestra de una población normal

El problema de la  estimación puntual y por intervalos para una muestra de una población normal es una actividad muy frecuente en el ámbito de la ingeniería y de la investigación. Supongamos que tenéis una muestra de 5 elementos extraída de una población normal (por ejemplo, de la resistencia a compresión simple de una probeta de hormigón a 28 días procedente de una misma amasada). El objetivo es establecer inferencias estadísticas usando un nivel de significación α=0.05. Deberíais ser capaces de realizar las siguientes actividades:

  1. Calcular el intervalo de confianza para la media, suponiendo que la desviación típica de la población es conocida y vale lo mismo que la desviación típica de la muestra. (Se empleará la distribución normal).
  2. Calcular el intervalo de confianza para la media, suponiendo que la desviación típica de la población es desconocida. (Se empleará la distribución t de Student).
  3. Calcular el intervalo de confianza para la desviación típica de la muestra. (Se empleará la distribución chi-cuadrado).

A continuación os dejo un pequeño tutorial para proceder al cálculo de dichos intervalos utilizando el paquete estadístico Minitab.

Os paso unos vídeos explicativos para que entendáis los conceptos. Espero que os gusten: