¿Cuántas respuestas son necesarias en una encuesta? Pues depende.

A veces me toca dirigir algún trabajo de investigación de mis estudiantes que trata de conocer la opinión sobre algún aspecto concreto. Normalmente se trata de temas relacionados con el sector de la construcción, aunque también suelo investigar si ha tenido éxito algún tipo de innovación educativa en mis clases. Para ello suelo aconsejar el uso de cuestionarios basados en escalas Likert, pues de esta forma facilito el análisis estadístico multivariante de los resultados.

El problema siempre es el mismo: ¿Profesor, tengo suficientes encuestas o tengo que enviar más encuestas? Y la respuesta siempre es la misma: depende del objeto de la encuesta. Vamos a analizar esto por partes.

Si se trata de describir los resultados obtenidos de un grupo de estudio, la muestra representa a la totalidad de la población, y por tanto no es necesario alcanzar un número de respuestas mínimo. Por ejemplo, si en una asociación de empresarios de la construcción el número de socios es de 30 y todos responden el cuestionario, es evidente que los resultados del estudio representan de forma exacta lo que opinan los 30 socios.

Sin embargo, lo habitual es encontrarse con un número de respuestas que forman una muestra de una población. Aquí se trata de saber si podemos extrapolar los resultados a la población que representa la muestra. Para ello nos debemos hacer dos preguntas: ¿Es la muestra representativa? ¿Cuál es el margen de error que cometemos?

Las técnicas de muestreo permiten extraer muestras representativas. Estos muestreos pueden ser probabilísticos o no probabilísticos. Entre los primeros podemos resaltar el muestreo aleatorio sistemático, el estratificado o el muestreo por conglomerados.  Entre los no probabilísticos, el muestreo por cuotas, por bola de nieve o el muestreo subjetivo por decisión razonada. Remito a los interesados a bibliografía específica, pues se escapa al objetivo de este artículo.

Aquí vamos a comentar brevemente lo relativo al error muestral. El error muestral se corresponde con el margen de error que estamos dispuestos a aceptar. Por ejemplo, si decimos que el 15% de la población está de acuerdo con algo y el error muestral es del 4%, realmente dicha opinión se encuentra entre el 11% y el 19% para un nivel de confianza determinado. Por eso, lo primero, será definir el nivel de confianza o riesgo de primera especie “z”, que sería el riesgo que aceptamos de equivocarnos al presentar nuestros resultados. El nivel de confianza habitual es 1 – α = 95% o α = 5%. Se utiliza como “z”, que es un valor de la distribución normal asociado a una determinada probabilidad de ocurrencia. Así, z=1,96 si 1 – α = 95%, z=2,00 si 1 – α = 95,5% y z=2,57 si 1 – α = 99%.

Otro factor a tener en cuenta es la variabilidad de las respuestas estimada en la población. Si sabemos que todos los sujetos piensan lo mismo, nos bastará preguntar a uno solo o a muy pocos. Pero si sabemos que habrá una gran diversidad de respuestas, hará falta una mayor número de sujetos en la muestra. Como lo normal es desconocer la variabilidad de las respuestas en la población, elegimos la mayor varianza posible p=q=50% (sería que el 50% respondiera que “sí” y el otro 50% lo contrario).

Las fórmulas que nos dan el error muestral, por tanto, dependen de los factores anteriores y también de conocer si la población es finita o infinita (más de 30.000 individuos ya se considera como infinita). En la figura se indican ambas fórmulas.

Fórmulas del error muestral, en función de si la población es finita o infinita

Si jugamos un poco con estas fórmulas, veremos que para un nivel de confianza del 95%, serían necesarias 96 respuestas en una población infinita y 95 respuestas en una población de un tamaño de 10.000 (casi coinciden) para un error muestral del 10%. Pero si queremos bajar el error al 5%, se eleva el número de respuestas a 384 en el caso de la población infinita y a 370 en el caso de una población finita de 10.000. Como vemos, se dispara el número de respuestas necesarias para reducir el error.

Por tanto, mi respuesta a mis estudiantes suele ser siempre la misma: vamos a intentar llegar a 100 respuestas para empezar a tener un error razonable.

En apretada síntesis, os quiero dar las siguientes consideraciones sobre el muestreo:

  • No solo es necesario que el tamaño de la muestra sea suficiente, sino también que la muestra sea representativa de la población que tratamos de describir
  • Una muestra de gran tamaño no garantiza que el margen de error sea pequeño, pues puede estar sesgada hacia segmentos de la población representados en exceso o poco representados
  • Si la población a estudiar es demasiado grande es recomendable segmentarla en estratos y valorar en cuáles de ellos pueden obtenerse muestras representativas, facilitando así una interpretación de los resultados más precisa
  • En general, el margen de error en cada estrato suele ser superior al margen de error de toda la muestra en conjunto. Es recomendable ser consciente de esta diferencia de precisión en la interpretación de resultados

Pues ahora una reflexión final: ¿Qué error tienen las encuestas que contestan los alumnos en relación con la calidad del profesor? ¿Es razonable tomar decisiones respecto a la continuidad o no de un profesor teniendo en cuenta estas encuestas? Tenéis las claves releyendo el artículo.

Aquí tenéis un vídeo sobre las técnicas de muestreo.

Os dejo a continuación un pequeño vídeo sobre el error de muestreo.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cuando una “campaña experimental” se convierte en un desperdicio de tiempo y dinero

https://www.laensa.com/probetas-hormigon/

Reconozco abiertamente que me recorre cierto escalofrío cuando escucho por algún sitio que se está desarrollando una “campaña experimental“, a menudo en laboratorios donde, por desgracia, cada ensayo cuesta muchísimo tiempo y dinero. Me viene a la mente una campaña militar a gran escala donde, para conseguir un objetivo, se sacrifica lo que sea necesario. Cuando igual una pequeña fuerza de operaciones especiales sería suficiente.

Lo digo porque no es la primera vez que me encuentro con algún estudiante de máster o doctorado que quiere iniciar ensayos para cubrir, literalmente, las variaciones posibles en ciertos rangos, de un número de factores que influyen en un problema determinado. Y tampoco me es ajeno el típico estudiante que acude a mi despacho a pedirme consejo porque no sabe qué hacer con las montañas de datos generados, no siendo capaz de interpretar con herramientas estadísticas rigurosas.

Pero este problema no solo ocurre en determinados ámbitos científicos, sino que es habitual en empresas, procesos industriales y laboratorios de todo tipo. Cuento esto porque encuentro de vez en cuando a un doctorando que ha dedicado, por ejemplo, más de cinco años en recoger datos que luego, a la postre, se acumulan en hojas de cálculo y son difíciles de interpretar porque no se sabía exactamente cuál era la pregunta de investigación que se quería resolver.

También es muy típico encontrar en las empresas a técnicos expertos en un proceso determinado “con mucha experiencia”, que realmente lo que ha hecho es aprender con los años, y sobre todo, de sufrir en sus carnes muchos errores. Este tipo de experiencia, basada en el error, no es la más barata, ni mucho menos.

Afortunadamente, cada vez son menos los que se enfrascan directamente a ensayar todas las combinaciones posibles en los valores de ciertas variables. Para eso disponemos de una rama del conocimiento denominada diseño de experimentos que permite no solo ahorrar recursos (tiempo, espacio de laboratorio, dinero, etc.), sino también es capaz de sacar muchísima más información de los datos cuando se dedica algo de tiempo a hacer un buen diseño experimental. No digo con esto que existan campañas experimentales bien diseñadas, sino que aún perviven prácticas que, por puro desconocimiento, son utilizadas aún en demasiadas ocasiones.

Veamos un ejemplo sencillo que nos permite aclarar las ideas. Imaginemos un proceso que solo depende de 4 factores. Si de cada factor queremos analizar 5 niveles, una “campaña experimental” exhaustiva nos obligaría a tomar 5^4 = 625 observaciones. Este número tan elevado puede ser inviable. ¿Cómo podemos reducir el número de observaciones? Se podría reducir el número de factores o el número de niveles a estudiar .

Un buen diseño de experimentos puede reducir muchísimo el número de observaciones necesarias ofreciendo, a su vez, información muy valiosa. Por ejemplo, un diseño factorial a dos niveles, ya sea completo o fraccionado, sería suficiente en la mayoría de los casos para estudiar los efectos, las interacciones entre los factores, etc. Invito al lector a revisar en este mismo blog algunos artículos que he escrito al respecto:

¿Qué es el diseño de experimentos?

Definiciones básicas del diseño de experimentos

Incluso, en el caso de que no exista una interacción entre los factores, por ejemplo un diseño en cuadrado grecolatino, para cuatro factores y cuatro niveles, podríamos obtener información valiosa con 16 observaciones en vez de las 256 que serían las necesarias para cubrir todas las combinaciones posibles. En este blog podéis encontrar muchos ejemplos resueltos buscando “diseño de experimentos” en la columna de la izquierda, donde aparece el buscador.

Resumiendo, estoy a favor de las “campañas experimentales”, pero siempre que se basen en un diseño de experimentos previo. Pero mi consejo es que antes de hacer nada, tengamos muy clara la pregunta de investigación que queremos resolver. De hecho, la ciencia experimental trata de llegar a conclusiones generales con datos procedentes de casos particulares, y para eso necesitamos la estadística.

Parafraseando la frase que, según la tradición, estaba grabada a la entrada de la Academia de Platón, yo pondría el siguiente letrero a la puerta de cualquier laboratorio: “NO ENTRE NADIE QUE NO SEPA ESTADÍSTICA”.

Os dejo una conferencia del profesor Xabier Barber de la Universidad Miguel Hernández que os aclarará muchas cosas. Espero que os guste.

Referencias:

  • Box, G.E.; Hunter, J.S.; Hunter, W.G. (2008). Estadística para investigadores. Diseño, innovación y descubrimiento. Segunda Edición, Ed. Reverté, Barcelona.
  • Gutiérrez, H.; de la Vara, R. (2003). Análisis y diseño de experimentos. McGraw-Hill, México.
  • Vicente, M.L.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de experimentos. Soluciones con SAS y SPSS. Pearson Educación, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Potencia de un test estadístico: Cómo evitar que nos la cuelen

https://neuromarketing.la/2018/12/riesgo-percibido-en-las-compras-online/

En un artículo anterior, “Jerga, falacias y encuestas electorales: Las hipótesis en la investigación científica“, expliqué lo que es una hipótesis de investigación y los errores estadísticos asociados. En aquel artículo se habló del nivel de significación α como la probabilidad de rechazar una hipótesis nula cuando es cierta. Por cierto, como curiosidad hay que decir que se llama “hipótesis nula” porque es la afirmación de una “ausencia de efecto” o de “no diferencia”.

Para simplificar, supongamos un test de embarazo. En este caso, la hipótesis nula es no estar embarazada. Si el test da positivo, no estando embarazada, a este error se le denomina Tipo I o falso positivo. Este error también ocurriría cuando se realiza una operación quirúrgica a un individuo sano, se condena a un inocente o se suspende a un alumno que ha estudiado mucho. También se suele llamar a esta error el RIESGO DEL FABRICANTE, pues es la probabilidad de que el comprador le rechace un lote de producto correcto.

Normalmente se acepta un umbral de α=0,05 , por debajo del cual se puede decir que existe una diferencia entre los resultados del estudio y la hipótesis nula, cuando realmente no hay ninguna diferencia. No obstante, dependiendo del tipo de test y su finalidad, los umbrales pueden ser diferentes a 0,05. Para simplificar la decisión, se utiliza el concepto de significación muestra de la hipótesis nula o “p-valor“, que es la probabilidad de que un resultado sea correcto bajo una hipótesis nula. Así, si el p-valor obtenido es inferior al nivel de significación exigido, se rechazará la hipótesis nula.

Sin embargo, en este artículo me interesa centrarme en un aspecto a veces olvidado, o al menos al que se le da menor importancia que al nivel de significación. Este aspecto es la potencia de un test estadístico, muy relacionado con los falsos negativos. Supongamos, por ejemplo, que a una mujer embarazada el test le dice que no lo está, que se declara inocente a un asesino, que no se opera a un enfermo con metástasis o que se aprueba a alumnos que no han estudiado. Está claro que aquí el test no ha tenido la potencia suficiente como para detectar que ha habido un efecto. Dicho de otra forma, la potencia estadística de un test debe distinguir la señal del ruido. El gran problema que planteamos es que deberíamos distinguir si realmente ha habido un efecto determinado o bien el test no ha sido capaz de detectarlo.

Para ello debemos definir el error Tipo II, β o falso negativo. Se trata del error cometido al aceptar la hipótesis nula cuando ésta no es cierta. Pues bien, la potencia de la prueba se define como 1-β. También se le llama RIESGO DEL COMPRADOR, pues indica la probabilidad de aceptar un lote defectuoso de un fabricante. ¿Qué porcentaje delincuentes voy a declarar culpables en un juicio? ¿Qué probabilidad es aceptable para decir que un fármaco realmente es útil para una enfermedad? Vemos que esos porcentajes, es decir, la potencia del test, puede ser variable. Aunque es habitual exigir entre un 80 y 90%.

El error Tipo I y Tipo II se encuentran relacionados. Si hay diferencias significativas, estos errores son bajos. https://es.wikipedia.org/wiki/Errores_de_tipo_I_y_de_tipo_II

Como podemos ver, no tiene la misma importancia un falso positivo que un falso negativo. Imaginemos una prueba que detecta contaminación letal en un alimento. No es lo mismo decir que el alimento está contaminado, cuando no lo está, que afirmar que no hay contaminación, cuando sí que la hay. El resultado final es que el falso negativo puede provocar muertes, mientra que el falso positivo no.

Pues bien, en una prueba estadística, el nivel de significación, la potencia y el tamaño muestral, se encuentran relacionados. La única forma de bajar los falsos positivos y falsos negativos es aumentar el tamaño muestral. No obstante, como la potencia de la prueba trata de distinguir el efecto del ruido, también se podría incrementar dicha potencia utilizando muestras lo más homogéneas posibles (disminuyendo su variabilidad), utilizando instrumentos de medida muy fiables o utilizando contrastes concretos, entre otros.

Eso explica que, en el caso de los exámenes a nuestros estudiantes, una forma de reducir los suspensos a los alumnos que han estudiado y de suspender al máximo de número de estudiantes que no han estudiado, consiste en aumentar el número de preguntas. Además, deberíamos diseñar el examen de forma que las preguntas permitan distinguir claramente si se conoce o no un concepto.

Os paso algunos vídeos que explican estos conceptos de potencia de una prueba. Espero que os sean útiles.

A continuación os resuelvo un pequeño problema con MINITAB al respecto. Se quiere saber qué tamaño de muestra deberemos elegir para detectar diferencias respecto a la media mayor de 2 MPa un 80% de las veces, suponiendo un nivel de confianza del 95%. Suponemos conocida la desviación típica, que es de 3 MPa.

Descargar (PDF, 139KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las dificultades asociadas a las vigas Vierendeel y su rotura frágil

Jules Arthur Vierendeel (1852-1940). https://es.wikipedia.org/wiki/Jules_Arthur_Vierendeel

Los entramados en bastidor, también llamados Vierendeel, surgieron de la patente de 1897 de una viga reticulada que lleva el nombre de su creador, el ingeniero belga Jules Arthur Vierendeel (1852-1940). La viga Vierendeel tiene una forma de celosía ortogonal que presenta la ventaja de prescindir de las tradicionales diagonales. Esta característica obliga a rigidizar fuertemente los nudos, estando sometidas sus barras a esfuerzos flectores y cortantes, además de los esfuerzos axiles. La tipología de la estructura presenta ventajas como la de permitir el paso a su través, ya sea de personas o de conducciones, facilitando también la colocación de carpinterías en edificación.

En el caso de los puentes, los de este tipo se hicieron muy populares en el primer tercio del siglo XX, existiendo un buen número de ejemplos en Bélgica y en el antiguo Congo Belga. El primer puente de estas características se construyó en Avelgem, Bélgica, en 1902. En España, por ejemplo, tenemos un ejemplo en Riera de Caldas, terminado en 1933.

 

Vigas Vierendeel en el teatro Alla Scala de Milán. https://www.e-zigurat.com/blog/es/ejemplos-estructurales-aplicacion-vigas-vierendeel/
Puente Hafe vu Léck. https://es.wikipedia.org/wiki/Puente_Vierendeel

Sin embargo, esta tipología no está exenta de dificultades relacionada con la tenacidad del acero y la mecánica de fractura. Un ejemplo es el colapso del puente Vierendeel de Hasselt, sobre el canal Alberto, en Bélgica, en 1938. Este desastre ocurrió con una temperatura de -20ºC. Se trataba de un puente metálico soldado donde, al desaparecer las diagonales de la celosía, se debía reforzar los cordones y montantes. Pero lo más importante, la ejecución de los nudos soldados requiere de una delicadeza y cuidado máximos. En efecto, estos nudos soldados fueron el origen de sonados desastres como el descrito debido a que con las bajas temperaturas del invierno y con cierta sobrecarga, se produce con cierta facilidad la rotura frágil del acero si no se concibe y ejecuta los innumerables detalles asociados a la soldadura.

Otra dificultad añadida es su deformabilidad frente a otras tipologías de celosías trianguladas. Por ejemplo, para una pasarela de 60 m, la flecha de una viga Vierendeel es unas 10 veces mayor que el resto. Aproximadamente del orden de Luz/100, mientras que en las celosías son menores que Luz/1000.

Sin embargo, hoy día existe cierta tendencia en arquitectura en utilizar este tipo de estructura sin informar claramente sobre las dificultades de esta tipología, muy tentadora, como nos comenta Javier Rui-Wamba en su libro “Teoría unificada de estructuras y cimientos. Una mirada transversal“.

Os dejo a continuación un vídeo sobre la construcción con vigas Vierendeel en el Centro Cultural Nestor Kirchner, en Buenos Aires (Argentina).

En este otro vídeo, donde unos estudiantes rompen un modelo reducido de viga Vierendeel, vemos la gran deformabilidad de esta estructura.

Un ejemplo arquitectónico singular fue la construcción de las Torres Gemelas, donde se recurrió a la viga Vierendeel y a un sistema invertido de estructura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Henry Petroski. https://es.wikipedia.org/wiki/Henry_Petroski

Henry Petroski, ingeniero civil estadounidense y profesor en la Universidad de Duke en Durham (Carolina del Norte) escribió un libro que recomiendo a mis estudiantes y a cualquier profesional de la ingeniería que se llama “La ingeniería es humana. La importancia del fallo en el éxito del diseño“. Este libro está editado en castellano por la editorial CINTER, traducido por María Eugenia Matamala Pérez y prologado por Robert Brufau.

Todos los capítulos son verdaderamente interesantes, pero me gustaría destacar el que se llama “De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes”. De este tema ya he hablado en mi blog en alguna ocasión: https://victoryepes.blogs.upv.es/2013/09/10/los-ingenieros-los-ordenadores-y-mil-un-indios/ y también cuando hablaba de las cifras significativas y los errores de precisión. Os remito a su lectura.

La conclusión es muy clara, un ingeniero debería saber de antemano el orden de magnitud del cálculo antes de calcularlo realmente. Dejar todo al libre albedrío del ordenador sin criterio para saber si el resultado final es aceptable o no, es un riesgo inaceptable. Eso explica el éxito de libros sobre “Números gordos” o bien cómo la investigación puede llevarnos a descubrir fórmulas de predimensionamiento útiles en la práctica (ver el artículo que escribí sobre cómo predimensionar un muro sin calculadora).

Pero no voy a ser “spoiler” de libro de Petroski. Simplemente os adjunto lo que la American Society of Civil Engineers (ASCE) indicó cuando anunció el Premio Mead (es un premio anual para estudiantes de ingeniería civil que otorga el ASCE  un trabajo sobre la ética profesional):

“Los ingenieros civiles han recurrido al ordenador en busca de mayor rapidez y productividad. Sin embargo, ¿se corre el riegos de comprometer la seguridad y el bienestar del usuario? Muchos han predicho que los fallos futuros de ingeniería se atribuirán al uso o el mal uso de los ordenadores. ¿Se está convirtiendo en habitual aceptar un proyecto cuando no se tiene experiencia simplemente porque se dispone de un paquete de software? ¿Cómo pueden garantizar los ingenieros civiles la precisión del programa del ordenador y que el ingeniero civil está cualificado para usarlo de manera apropiada?”

Os dejo estas preguntas para pensar. Es evidente que un ordenador no deja de ser más que una regla de cálculo electrónico o los cuadernos de cálculo de toda la vida. Muchas ventajas, pero mucha precaución en su empleo.

Referencia:

PETROSKY, H. (2007). La ingeniería es humana. La importancia del fallo en el éxito del diseño. Ed. CINTER, 320 pp.

 

Estimación puntual y por intervalos para una muestra de una población normal

El problema de la  estimación puntual y por intervalos para una muestra de una población normal es una actividad muy frecuente en el ámbito de la ingeniería y de la investigación. Supongamos que tenéis una muestra de 5 elementos extraída de una población normal (por ejemplo, de la resistencia a compresión simple de una probeta de hormigón a 28 días procedente de una misma amasada). El objetivo es establecer inferencias estadísticas usando un nivel de significación α=0.05. Deberíais ser capaces de realizar las siguientes actividades:

  1. Calcular el intervalo de confianza para la media, suponiendo que la desviación típica de la población es conocida y vale lo mismo que la desviación típica de la muestra. (Se empleará la distribución normal).
  2. Calcular el intervalo de confianza para la media, suponiendo que la desviación típica de la población es desconocida. (Se empleará la distribución t de Student).
  3. Calcular el intervalo de confianza para la desviación típica de la muestra. (Se empleará la distribución chi-cuadrado).

A continuación os dejo un pequeño tutorial para proceder al cálculo de dichos intervalos utilizando el paquete estadístico Minitab.

Os paso unos vídeos explicativos para que entendáis los conceptos. Espero que os gusten:

 

Cifras significativas y errores de medición

Diferencias entre la exactitud y la precisión de una medida

El uso de calculadoras electrónicas y ordenadores nos hace perder el orden de magnitud de un problema. Como ya comenté en un artículo anterior, el uso masivo de herramientas informáticas atrofian la capacidad intuitiva y de cálculo de los futuros profesionales. Un buen ingeniero o científico debería tener un “número gordo” del resultado antes, incluso, de resolver un problema.

Cuando se miden ciertas cantidades, lo valores medidos se conocen solo dentro de los límites de la incertidumbre experimental. Usamos el número de cifras significativas como una medición que sirve para expresar algo de dicha incertidumbre. De hecho, todas las cifras significativas importan información veraz de la medición, excepto la última, que es incierta.

Para conocer el número correcto de cifras significativas, se siguen las siguientes normas:

  • Los ceros situados en medio de números diferentes de cero son significativos, por ejemplo, 709 cm tiene tres cifras significativas.
  • Los ceros a la izquierda del primer número no son significativos, por ejemplo, 0,000057 presenta dos cifras significativas.
  • Para los números mayores que uno, los ceros escritos a la derecha de la coma decimal también cuentan como cifras significativas, por ejemplo 6,0 tiene dos cifras significativas.
  • En los números enteros, los ceros situados después de un dígito distinto de cero, pueden ser o no cifras significativas, por ejemplo 8000, puede tener una cifra significativa (el número 8), pero también cuatro. Para evitar el problema se puede usar la notación científica, indicando el número 8000 como 8·103 teniendo solo una cifra significativa (el número 8) o 8,0·103, tenemos dos cifras significativas (8,0).

Existen reglas empíricas que permiten conocer el número de cifras significativas en el caso de operaciones básicas:

  • Cuando se multiplican o dividen varias cifras, el resultado tiene el mismo número de cifras significativas que el número de menor cifras significativas
  • Cuando dos números se sumen o resten, el número de lugares decimales en el resultado debe ser igual al número más pequeño de lugares decimales de cualquier término en la suma

El error de medición se define como la diferencia entre el valor medido y el “valor verdadero”. Los errores de medición afectan a cualquier instrumento de medición y pueden deberse a distintas causas. Las que se pueden de alguna manera prever, calcular, eliminar mediante calibraciones y compensaciones, se denominan deterministas o sistemáticos y se relacionan con la exactitud de las mediciones. Los que no se pueden prever, pues dependen de causas desconocidas, o estocásticas se denominan aleatorios y están relacionados con la precisión del instrumento.

Sin embargo, para establecer el error en una medida, se debe disponer, junto con la medida de la magnitud, su error y la unidad de medida del Sistema Internacional. En este caso, se deben seguir las siguientes normas:

  • El error se da con una sola cifra significativa. Se trata del primer dígito comenzando por la izquierda distinto de cero, redondeando por exceso en una unidad si la segunda cifra es 5 o mayor de 5. Sin embargo, como excepción se dan dos cifras significativas para el error si la primera cifra significativa es 1, o bien siendo la primera un 2, la segunda no llega a 5.
  • La última cifra significativa en el valor de una magnitud física y su error, expresados en las mismas unidades, deben de corresponder al mismo orden de magnitud (centenas, decenas, unidades, décimas, centésimas).

Con una sola medida, se indica el error instrumental, que es la mitad de la menor división de la escala del instrumento usado. Sin embargo, con n medidas directas consecutivas, se considera el error cuadrático de la media (una desviación estándar de la población de las medias). A todo caso, se utilizará el mayor de ambos errores.

En este vídeo explico los aspectos básicos de los errores de medición:

Por otra parte, hay que conocer que los errores se propagan cuando hacemos operaciones matemáticas. Simplificando, cuando tenemos sumas o restas, las cotas de error absoluto se suman; cuando hay productos o divisiones, las cotas de error relativo se suman.

Pero mejor será que os deje un vídeo explicativo del profesor de la UPV, Marcos Herminio Jiménez Valentín. Espero que os aclare este tema.

Este otro vídeo también es de interés para conocer con mayor profundidad la propagación de los errores.

Os dejo también unos pequeños apuntes del profesor Antonio Miguel Posadas Chinchilla, de la Universidad de Almería, que os podéis descargar de este enlace: https://w3.ual.es/~aposadas/TeoriaErrores.pdf

Descargar (PDF, 173KB)

 

 

 

 

Medición del trabajo a través del procedimiento de observaciones instantáneas

Las observaciones instantáneas constituye un procedimiento de medición del trabajo que, junto con el cronometraje, permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. El cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso. En cambio, las observaciones instantáneas cubre el resto de los escenarios posibles, como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Las observaciones instantáneas se basan en comprobar si, en un momento dado, un recurso se encuentra trabajando o parado. Se puede estimar el tiempo de trabajo y el de parada, así como su error estadístico basándose en la distribución binomial de probabilidad. Se puede realizar una pasada si observamos a un conjunto de recursos y anotamos para cada uno de ellos su situación de trabajo o parada. Para planificar correctamente las observaciones, se debería garantizar que todas las actividades sean observadas un número de veces proporcional a su duración.

Detengámonos un momento en el fundamento estadístico del método. Supongamos que p es la fracción del tiempo en el que un recurso presenta una característica. Por ejemplo, si p=15% puede significar que, del tiempo total de permanencia de una máquina en una obra, el 15% del tiempo se encuentra parada. Si extraemos n elementos de la población infinita de posibilidades en las que una máquina puede estar parada en una proporción p en una obra, la probabilidad de que x máquinas se encuentren paradas se encuentre parada sería la siguiente:

Si en la distribución binomial se cumple que n·p>15, entonces la distribución binomial -que es discontinua- se puede aproximar a la distribución normal -que es continua-.

Ahora lo que nos interesa es conocer el tamaño de la muestra n para proporciones en una población infinita. Para calcular este tamaño de muestra, antes debemos especificar el nivel de confianza con el que se desea realizar la estimación y el margen de error máximo tolerable D. De esta forma, se espera trabajar con una muestra que sea representativa y que las estimaciones sean consistentes. La expresión que utilizaremos será la siguiente:

Aquí os dejo una tabla que relaciona el nivel de confianza con los las variables utilizada en la fórmula anterior:

Nivel de confianza α Z α/2 (Z α/2)2
99% 0,01 2,576 6,636
95% 0,05 1,960 3,842
90% 0,10 1,645 2,706
80% 0,20 1,280 1,638
50% 0,50 0,674 0,454

 

También os dejo un vídeo explicativo y un problema resuelto.

Descargar (PDF, 100KB)

Referencia:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Constructividad, constructibilidad, constructabilidad, ¿todo lo mismo?

Figura 1. Capacidad de influir en el coste durante el proceso proyecto-construcción (Serpell, 2002)

Todo el mundo está de acuerdo en que la industria de la construcción es un motor del desarrollo económico de una sociedad, pues permite crear infraestructuras que soportan las actividades económicas y viviendas. Pero para ello se requieren recursos intensivos, tanto públicos como privados que, en muchas ocasiones, no se utilizan de forma efectiva. Se trata de un sector con amplio margen de mejora en cuanto a productividad se refiere y que, de momento, y con carácter general, no aprovecha todas las oportunidades que brinda el desarrollo tecnológico.

Todos los agentes que participan en la industria de la construcción, desde proyectistas, constructores, suministradores de materiales y equipos, etc., se ven abocados a utilizar de forma efectiva y eficiente todos los recursos a su alcance para mejorar de este modo la productividad y los resultados empresariales. Ello supone, no solo utilizar bien los recursos disponibles, sino alcanzar con ellos los objetivos empresariales, que pasan por la satisfacción de las necesidades de los clientes en cuanto a calidad, costes y plazos.

En la Figura 1 se puede observar cómo, en el proceso proyecto-construcción, las primeras fases son las que presentan mayor capacidad de influencia en el coste final de un proyecto (Serpell, 2002). Sobre este asunto ya hablamos en un artículo anterior: La “Ley de los Cincos” de Sitter. Las estadísticas europeas señalan (ver Calavera, 1995) que el proyecto es el responsable del 35-45% de los problemas en construcción. A este respecto Sitter (véase Rostman, 1992) ha introducido al llamada “Ley de los Cincos”, postulando que un dólar gastado en fase de diseño y construcción elimina costes de 5 dólares en mantenimiento preventivo, 25 dólares en labores de reparación y 125 en rehabilitación.

Por tanto, mejorar el diseño de un proyecto constructivo es clave, no solo para conseguir satisfacer los requerimientos del cliente, sino para mejorar los resultados de todos los agentes involucrados en el proceso proyecto-construcción. Sobre este aspecto la bibliografía de origen anglosajón habla de Constructability o Buildability, que se ha traducido al español como “constructabilidad” o “constructibilidad”, incluso “constructividad”. Sin embargo, son palabras que no las recoge la Real Academia Española de la Lengua. Simplificando, podríamos hablar de que una obra puede construirse de forma más o menos fácil y efectiva. Ello va a depender de muchos factores, pero uno de los más importantes va a ser el propio proyecto constructivo. Por cierto, no vamos a utilizar aquí el concepto de “coeficiente de constructibilidad“, que en el ámbito del urbanismo, se refiere a un número que fija el máximo de superficie posible a construir en un ámbito determinado.

En la Figura 2 he elaborado un mapa conceptual para aclarar las ideas. Como puede verse, tanto la constructividad como la constructibilidad tienen como objetivo último satisfacer las necesidades del cliente en cuanto a calidad, costes, plazos, estética, etc., además de cumplir con otro tipo de objetivos relativos al contexto (requerimientos ambientales, sociales, legales, etc.), de forma que los agentes involucrados en la construcción sean capaces de mejorar sus resultados empresariales. Sin embargo, el enfoque de ambos conceptos es diferente. Veamos con algo de detalle las diferencias.

 

Figura 2. Mapa conceptual sobre constructividad y constructibilidad. Elaboración propia.

La constructividad define el grado con el cual un proyecto facilita el uso eficiente de los recursos para facilitar su construcción, satisfaciendo tanto los requerimientos del cliente como otros asociados al proyecto. Como se puede ver, se trata de un concepto directamente ligado a la fase del proyecto, y por tanto, depende fuertemente del equipo encargado del diseño.

Por otra parte, la constructibilidad es un concepto relacionado con la gestión que involucra a todas las etapas del proyecto y que, por tanto, depende tanto de los proyectistas, de los gestores del proyecto y de los constructores. Aunque se trata de un concepto también relacionado con las etapas del diseño del proyecto, la diferencia estriba en la incorporación de personal en esta etapa preliminar de personal con experiencia y conocimiento en construcción con el fin de mejorar la aptitud constructiva de una obra.

Quizá un ejemplo sea clarificador. Supongamos un equipo de arquitectura que está proyectando un edificio complejo, como por ejemplo un hospital. Este equipo, con mayor o menor experiencia en obra, tratará de diseñar un edificio que se pueda construir. El proyecto se licitará y una empresa constructora se encargará de su ejecución. Resulta evidente que, en función de los problemas de obra, el proyecto podrá modificarse para adaptarse a problemas que no quedaron resueltos en el proyecto o a cambios no previstos durante la ejecución. Se trata de un ejemplo donde los proyectistas han incorporado, en la medida de lo posible, aspectos relacionados con la constructividad.

Por otra parte, podría darse el caso de un concurso de proyecto y construcción, donde el adjudicatario participara, a su riesgo, del proceso proyecto-construcción. En este caso, es muy posible que al equipo redactor del proyecto se incorporaran personas con amplia experiencia en la ejecución de este tipo de proyectos. Por ejemplo, jefes de obra o producción de la empresa que hubiesen realizado proyectos similares, podrían aportar conocimientos para mejorar el proyecto, de forma que éste fuera fácilmente construible con los medios disponibles por la propia empresa. En este caso, estamos refiriéndonos a una gestión del proyecto donde se incorporan aspectos relacionados con la constructibilidad.

Para terminar, tenemos ejemplos claros de la diferencia entre estos dos conceptos en el caso de los proyectos que nuestros estudiantes elaboran durante sus estudios, por ejemplo, en el Grado de Ingeniería Civil o en el Máster en Ingeniería de Caminos, Canales y Puertos (donde imparto docencia). Un alumno brillante puede desarrollar un proyecto formalmente correcto, pero es muy habitual encontrar detalles mal resueltos porque son difíciles de construir. No se debe a que ha aplicado mal sus conocimientos, más bien se trata de falta de experiencia en obra que impide volcar en el proyecto soluciones que faciliten la construcción de la obra. Este problema, desgraciadamente, se repite en numerosas empresas de proyectos, donde la falta de experiencia de los proyectistas en la ejecución de la obra supone posteriormente problemas que ya se comentaron anteriormente cuando hablábamos de la regla de Sitter. La consecuencia de todo ello es clara: la importancia de que los proyectistas presenten experiencia dilatada en la ejecución de obra. La segunda derivada también es clara: los profesores en escuelas técnicas que forman a futuros ingenieros o arquitectos, deberían tener cierta experiencia en obra real. Igual es hora de balancear la importancia de la investigación y la experiencia en el mundo real a la hora de evaluar el perfil de los profesores que se dedican a formar a los futuros técnicos. Pero ese es otro tema.

Os dejo algún vídeo al respecto para ampliar conceptos.

Referencias:

CALAVERA, J. (1995). Proyectar y controlar proyectos. Revista de Obras Públicas num. 3.346. Madrid, septiembre.

PELLICER, E., CATALÁ, J., SANZ, A.(2002). La administración pública y el proceso proyecto-construcción. Actas del VI Congreso Internacional de Ingeniería de Proyectos, Departamento de Proyectos de Ingeniería de la Universidad Politécnica de Cataluña y AEIPRO, Barcelona, página 35.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, 292 pp.

ROSTMAN, S. (1992). Tecnología moderna de durabilidad. Cuadernos Intemac, 5.

YEPES, V. (1998). La calidad económica. Qualitas Hodie, 44: 90-92.

YEPES, V. (2003). Sistemas de gestión de la calidad y del medio ambiente en las instalaciones náuticas de recreo.Curso Práctico de Dirección de Instalaciones Náuticas de Recreo. Ed. Universidad de Alicante. Murcia, pp. 219-244.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp.

YEPES, V.; PELLICER, E. (2003). ISO 10006 “Guidelines to quality in project management” application to construction. VII International Congress on Project Engineering. 10 pp. ISBN: 84-9769-037-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las cinco S y los siete desperdicios

Las cinco S constituye una práctica de Calidad ideada en Japón referida al “Mantenimiento Integral” de la empresa, no sólo de maquinaria, equipo e infraestructura sino del mantenimiento del entrono de trabajo por parte de todos.  Se inició en Toyota en los años 1960 con el objetivo de lograr lugares de trabajo mejor organizados, más ordenados y más limpios de forma permanente para generar una mayor productividad y un mejor entorno laboral.

El método de las 5S utiliza una lista de cinco palabras japonesas que empiezan por S. La lista describe la forma de organizar un espacio de trabajo de un modo eficiente y eficaz mediante la identificación y almacenamiento de los componentes utilizados, la conservación adecuada de la zona de trabajo y los elementos almacenados, y el mantenimiento del nuevo estado.

El proceso de toma de decisiones por lo general proviene de un diálogo sobre la estandarización que se basa  en un claro entendimiento entre los empleados sobre cómo se debe trabajar. También se pretende involucrar en el proceso a cada uno de los empleados.

El beneficio más evidente del método es la mejora de la productividad dado que todos los componentes están perfectamente localizados. Los operarios ya no tienen que perder tiempo buscando herramientas, piezas, documentos, etc.; esta es la forma más frustrante de pérdida de tiempo en cualquier empresa. Los elementos más necesarios se almacenan en el lugar más accesible; la adopción correcta de la normalización implica que se devuelven a la ubicación correcta después de su uso.

Imagen1

 

La implementación de cada una de las 5S se lleva a cabo siguiendo cuatro pasos:

  • Preparación: formación respecto a la metodología y planificación de actividades.
  • Acción: búsqueda e identificación, según la etapa, de elementos innecesarios, desordenados, suciedad, etc.
  • Análisis de la mejora realizada.
  • Documentación de conclusiones en los estándares correspondientes.

El resultado se mide tanto en productividad como en satisfacción del personal respecto a los esfuerzos que han realizado para mejorar las condiciones de trabajo. La aplicación de esta técnica tiene un impacto a largo plazo.

Os dejo unos vídeos que explican estas técnicas relacionadas con la gestión de la calidad. Espero que os gusten.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.