Cifras significativas y errores de medición

Diferencias entre la exactitud y la precisión de una medida

El uso de calculadoras electrónicas y ordenadores nos hace perder el orden de magnitud de un problema. Como ya comenté en un artículo anterior, el uso masivo de herramientas informáticas atrofian la capacidad intuitiva y de cálculo de los futuros profesionales. Un buen ingeniero o científico debería tener un “número gordo” del resultado antes, incluso, de resolver un problema.

Cuando se miden ciertas cantidades, lo valores medidos se conocen solo dentro de los límites de la incertidumbre experimental. Usamos el número de cifras significativas como una medición que sirve para expresar algo de dicha incertidumbre. De hecho, todas las cifras significativas importan información veraz de la medición, excepto la última, que es incierta.

Para conocer el número correcto de cifras significativas, se siguen las siguientes normas:

  • Los ceros situados en medio de números diferentes de cero son significativos, por ejemplo, 709 cm tiene tres cifras significativas.
  • Los ceros a la izquierda del primer número no son significativos, por ejemplo, 0,000057 presenta dos cifras significativas.
  • Para los números mayores que uno, los ceros escritos a la derecha de la coma decimal también cuentan como cifras significativas, por ejemplo 6,0 tiene dos cifras significativas.
  • En los números enteros, los ceros situados después de un dígito distinto de cero, pueden ser o no cifras significativas, por ejemplo 8000, puede tener una cifra significativa (el número 8), pero también cuatro. Para evitar el problema se puede usar la notación científica, indicando el número 8000 como 8·103 teniendo solo una cifra significativa (el número 8) o 8,0·103, tenemos dos cifras significativas (8,0).

Existen reglas empíricas que permiten conocer el número de cifras significativas en el caso de operaciones básicas:

  • Cuando se multiplican o dividen varias cifras, el resultado tiene el mismo número de cifras significativas que el número de menor cifras significativas
  • Cuando dos números se sumen o resten, el número de lugares decimales en el resultado debe ser igual al número más pequeño de lugares decimales de cualquier término en la suma

El error de medición se define como la diferencia entre el valor medido y el “valor verdadero”. Los errores de medición afectan a cualquier instrumento de medición y pueden deberse a distintas causas. Las que se pueden de alguna manera prever, calcular, eliminar mediante calibraciones y compensaciones, se denominan deterministas o sistemáticos y se relacionan con la exactitud de las mediciones. Los que no se pueden prever, pues dependen de causas desconocidas, o estocásticas se denominan aleatorios y están relacionados con la precisión del instrumento.

Sin embargo, para establecer el error en una medida, se debe disponer, junto con la medida de la magnitud, su error y la unidad de medida del Sistema Internacional. En este caso, se deben seguir las siguientes normas:

  • El error se da con una sola cifra significativa. Se trata del primer dígito comenzando por la izquierda distinto de cero, redondeando por exceso en una unidad si la segunda cifra es 5 o mayor de 5. Sin embargo, como excepción se dan dos cifras significativas para el error si la primera cifra significativa es 1, o bien siendo la primera un 2, la segunda no llega a 5.
  • La última cifra significativa en el valor de una magnitud física y su error, expresados en las mismas unidades, deben de corresponder al mismo orden de magnitud (centenas, decenas, unidades, décimas, centésimas).

Con una sola medida, se indica el error instrumental, que es la mitad de la menor división de la escala del instrumento usado. Sin embargo, con n medidas directas consecutivas, se considera el error cuadrático de la media (una desviación estándar de la población de las medias). A todo caso, se utilizará el mayor de ambos errores.

En este vídeo explico los aspectos básicos de los errores de medición:

Por otra parte, hay que conocer que los errores se propagan cuando hacemos operaciones matemáticas. Simplificando, cuando tenemos sumas o restas, las cotas de error absoluto se suman; cuando hay productos o divisiones, las cotas de error relativo se suman.

Pero mejor será que os deje un vídeo explicativo del profesor de la UPV, Marcos Herminio Jiménez Valentín. Espero que os aclare este tema.

Este otro vídeo también es de interés para conocer con mayor profundidad la propagación de los errores.

Os dejo también unos pequeños apuntes del profesor Antonio Miguel Posadas Chinchilla, de la Universidad de Almería, que os podéis descargar de este enlace: https://w3.ual.es/~aposadas/TeoriaErrores.pdf

Descargar (PDF, 173KB)

 

 

 

 

Medición del trabajo a través del procedimiento de observaciones instantáneas

Las observaciones instantáneas constituye un procedimiento de medición del trabajo que, junto con el cronometraje, permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. El cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso. En cambio, las observaciones instantáneas cubre el resto de los escenarios posibles, como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Las observaciones instantáneas se basan en comprobar si, en un momento dado, un recurso se encuentra trabajando o parado. Se puede estimar el tiempo de trabajo y el de parada, así como su error estadístico basándose en la distribución binomial de probabilidad. Se puede ejecutar una pasada si observamos a un conjunto de recursos y anotamos para cada uno de ellos su situación de trabajo o parada. Para planificar correctamente las observaciones, se debería garantizar que todas las actividades sean observadas un número de veces proporcional a su duración.

Detengámonos un momento en el fundamento estadístico del método. Supongamos que p es la fracción del tiempo en el que un recurso presenta una característica. Por ejemplo, si p=15% puede significar que, del tiempo total de permanencia de una máquina en una obra, el 15% del tiempo se encuentra parada. Si extraemos n elementos de la población infinita de posibilidades en las que una máquina puede estar parada en una proporción p en una obra, la probabilidad de que x máquinas se encuentren paradas sería la siguiente:

Si en la distribución binomial se cumple que n·p>15, entonces la distribución binomial —que es discontinua— se puede aproximar a la distribución normal —que es continua—.

Ahora lo que nos interesa es conocer el tamaño de la muestra n para proporciones en una población infinita. Para calcular este tamaño de muestra, antes debemos especificar el nivel de confianza con el que se desea realizar la estimación y el margen de error máximo tolerable D. De esta forma, se espera trabajar con una muestra que sea representativa y que las estimaciones sean consistentes. La expresión que utilizaremos será la siguiente:

Aquí os dejo una tabla que relaciona el nivel de confianza con los las variables utilizada en la fórmula anterior:

Nivel de confianza α Z α/2 (Z α/2)2
99% 0,01 2,576 6,636
95% 0,05 1,960 3,842
90% 0,10 1,645 2,706
80% 0,20 1,280 1,638
50% 0,50 0,674 0,454

 

También os dejo un vídeo explicativo y un problema resuelto.

Descargar (PDF, 100KB)

Referencia:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Constructividad, constructibilidad, constructabilidad, ¿todo lo mismo?

Figura 1. Capacidad de influir en el coste durante el proceso proyecto-construcción (Serpell, 2002)

Todo el mundo está de acuerdo en que la industria de la construcción es un motor del desarrollo económico de una sociedad, pues permite crear infraestructuras que soportan las actividades económicas y viviendas. Pero para ello se requieren recursos intensivos, tanto públicos como privados que, en muchas ocasiones, no se utilizan de forma efectiva. Se trata de un sector con amplio margen de mejora en cuanto a productividad se refiere y que, de momento, y con carácter general, no aprovecha todas las oportunidades que brinda el desarrollo tecnológico.

Todos los agentes que participan en la industria de la construcción, desde proyectistas, constructores, suministradores de materiales y equipos, etc., se ven abocados a utilizar de forma efectiva y eficiente todos los recursos a su alcance para mejorar de este modo la productividad y los resultados empresariales. Ello supone, no solo emplear bien los recursos disponibles, sino alcanzar con ellos los objetivos empresariales, que pasan por la satisfacción de las necesidades de los clientes en cuanto a calidad, costes y plazos.

En la Figura 1 se puede observar cómo, en el proceso proyecto-construcción, las primeras fases son las que presentan mayor capacidad de influencia en el coste final de un proyecto (Serpell, 2002). Sobre este asunto ya hablamos en un artículo anterior: La “Ley de los Cincos” de Sitter. Las estadísticas europeas señalan (ver Calavera, 1995) que el proyecto es el responsable del 35-45% de los problemas en construcción. A este respecto, Sitter (véase Rostman, 1992) ha introducido la llamada “Ley de los Cincos”, postulando que un dólar gastado en fase de diseño y construcción elimina costes de 5 dólares en mantenimiento preventivo, 25 dólares en labores de reparación y 125 en rehabilitación.

Por tanto, mejorar el diseño de un proyecto constructivo es clave, no solo para conseguir satisfacer los requerimientos del cliente, sino para mejorar los resultados de todos los agentes involucrados en el proceso proyecto-construcción. Sobre este aspecto, la bibliografía de origen anglosajón habla de Constructability o Buildability, que se ha traducido al español como “constructabilidad” o “constructibilidad”, incluso “constructividad”. Sin embargo, son palabras que no las recoge la Real Academia Española de la Lengua. Simplificando, podríamos hablar de que una obra puede construirse de forma más o menos fácil y efectiva. Ello va a depender de muchos factores, pero uno de los más importantes va a ser el propio proyecto constructivo. Por cierto, no vamos a utilizar aquí el concepto de “coeficiente de constructibilidad”, que en el ámbito del urbanismo, se refiere a un número que fija el máximo de superficie posible a construir en un ámbito determinado.

En la Figura 2 he elaborado un mapa conceptual para aclarar las ideas. Como puede verse, tanto la constructividad como la constructibilidad tienen como objetivo último satisfacer las necesidades del cliente en cuanto a calidad, costes, plazos, estética, etc., además de cumplir con otro tipo de objetivos relativos al contexto (requerimientos ambientales, sociales, legales, etc.), de forma que los agentes involucrados en la construcción sean capaces de mejorar sus resultados empresariales. Sin embargo, el enfoque de ambos conceptos es diferente. Veamos con algo de detalle las diferencias.

 

Figura 2. Mapa conceptual sobre constructividad y constructibilidad. Elaboración propia.

La constructividad define el grado con el cual un proyecto facilita el uso eficiente de los recursos para facilitar su construcción, satisfaciendo tanto los requerimientos del cliente como otros asociados al proyecto. Como se puede ver, se trata de un concepto directamente ligado a la fase del proyecto, y, por tanto, depende fuertemente del equipo encargado del diseño.

Por otra parte, la constructibilidad es un concepto relacionado con la gestión que involucra a todas las etapas del proyecto y que, en consecuencia, depende tanto de los proyectistas, de los gestores del proyecto y de los constructores. Aunque se trata de un concepto también relacionado con las etapas del diseño del proyecto, la diferencia estriba en la incorporación de personal en esta etapa preliminar de personal con experiencia y conocimiento en construcción con el fin de mejorar la aptitud constructiva de una obra.

Quizá un ejemplo sea clarificador. Supongamos un equipo de arquitectura que está proyectando un edificio complejo, como por ejemplo un hospital. Este equipo, con mayor o menor experiencia en obra, tratará de diseñar un edificio que se pueda construir. El proyecto se licitará y una empresa constructora se encargará de su ejecución. Resulta evidente que, en función de los problemas de obra, el proyecto podrá modificarse para adaptarse a problemas que no quedaron resueltos en el proyecto o a cambios no previstos durante la ejecución. Se trata de un ejemplo donde los proyectistas han incorporado, en la medida de lo posible, aspectos relacionados con la constructividad.

Por otra parte, podría darse el caso de un concurso de proyecto y construcción, donde el adjudicatario participara, a su riesgo, del proceso proyecto-construcción. En este caso, es muy posible que al equipo redactor del proyecto se incorporaran personas con amplia experiencia en la ejecución de este tipo de proyectos. Por ejemplo, jefes de obra o producción de la empresa que hubiesen realizado proyectos similares, podrían aportar conocimientos para mejorar el proyecto, de forma que este fuera fácilmente construible con los medios disponibles por la propia empresa. En este caso, estamos refiriéndonos a una gestión del proyecto donde se incorporan aspectos relacionados con la constructibilidad.

Para terminar, tenemos ejemplos claros de la diferencia entre estos dos conceptos en el caso de los proyectos que nuestros estudiantes elaboran durante sus estudios, por ejemplo, en el Grado de Ingeniería Civil o en el Máster en Ingeniería de Caminos, Canales y Puertos (donde imparto docencia). Un alumno brillante puede desarrollar un proyecto formalmente correcto, pero es muy habitual encontrar detalles mal resueltos porque son difíciles de construir. No se debe a que ha aplicado mal sus conocimientos, más bien se trata de falta de experiencia en obra que impide volcar en el proyecto soluciones que faciliten la construcción de la obra. Este problema, desgraciadamente, se repite en numerosas empresas de proyectos, donde la falta de experiencia de los proyectistas en la ejecución de la obra supone posteriormente problemas que ya se comentaron anteriormente cuando hablábamos de la regla de Sitter. La consecuencia de todo ello es clara: la importancia de que los proyectistas presenten experiencia dilatada en la ejecución de obra. La segunda derivada también es clara: los profesores en escuelas técnicas que forman a futuros ingenieros o arquitectos, deberían tener cierta experiencia en obra real. Igual es hora de balancear la importancia de la investigación y la experiencia en el mundo real a la hora de evaluar el perfil de los profesores que se dedican a formar a los futuros técnicos. Pero ese es otro tema.

Os dejo algún vídeo al respecto para ampliar conceptos.

Referencias:

CALAVERA, J. (1995). Proyectar y controlar proyectos. Revista de Obras Públicas num. 3.346. Madrid, septiembre.

PELLICER, E., CATALÁ, J., SANZ, A.(2002). La administración pública y el proceso proyecto-construcción. Actas del VI Congreso Internacional de Ingeniería de Proyectos, Departamento de Proyectos de Ingeniería de la Universidad Politécnica de Cataluña y AEIPRO, Barcelona, página 35.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, 292 pp.

ROSTMAN, S. (1992). Tecnología moderna de durabilidad. Cuadernos Intemac, 5.

YEPES, V. (1998). La calidad económica. Qualitas Hodie, 44: 90-92.

YEPES, V. (2003). Sistemas de gestión de la calidad y del medio ambiente en las instalaciones náuticas de recreo.Curso Práctico de Dirección de Instalaciones Náuticas de Recreo. Ed. Universidad de Alicante. Murcia, pp. 219-244.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp.

YEPES, V.; PELLICER, E. (2003). ISO 10006 “Guidelines to quality in project management” application to construction. VII International Congress on Project Engineering. 10 pp. ISBN: 84-9769-037-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las cinco S y los siete desperdicios

Las cinco S constituye una práctica de Calidad ideada en Japón referida al “Mantenimiento Integral” de la empresa, no sólo de maquinaria, equipo e infraestructura sino del mantenimiento del entrono de trabajo por parte de todos.  Se inició en Toyota en los años 1960 con el objetivo de lograr lugares de trabajo mejor organizados, más ordenados y más limpios de forma permanente para generar una mayor productividad y un mejor entorno laboral.

El método de las 5S utiliza una lista de cinco palabras japonesas que empiezan por S. La lista describe la forma de organizar un espacio de trabajo de un modo eficiente y eficaz mediante la identificación y almacenamiento de los componentes utilizados, la conservación adecuada de la zona de trabajo y los elementos almacenados, y el mantenimiento del nuevo estado.

El proceso de toma de decisiones por lo general proviene de un diálogo sobre la estandarización que se basa  en un claro entendimiento entre los empleados sobre cómo se debe trabajar. También se pretende involucrar en el proceso a cada uno de los empleados.

El beneficio más evidente del método es la mejora de la productividad dado que todos los componentes están perfectamente localizados. Los operarios ya no tienen que perder tiempo buscando herramientas, piezas, documentos, etc.; esta es la forma más frustrante de pérdida de tiempo en cualquier empresa. Los elementos más necesarios se almacenan en el lugar más accesible; la adopción correcta de la normalización implica que se devuelven a la ubicación correcta después de su uso.

Imagen1

 

La implementación de cada una de las 5S se lleva a cabo siguiendo cuatro pasos:

  • Preparación: formación respecto a la metodología y planificación de actividades.
  • Acción: búsqueda e identificación, según la etapa, de elementos innecesarios, desordenados, suciedad, etc.
  • Análisis de la mejora realizada.
  • Documentación de conclusiones en los estándares correspondientes.

El resultado se mide tanto en productividad como en satisfacción del personal respecto a los esfuerzos que han realizado para mejorar las condiciones de trabajo. La aplicación de esta técnica tiene un impacto a largo plazo.

Os dejo unos vídeos que explican estas técnicas relacionadas con la gestión de la calidad. Espero que os gusten.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

 

Análisis de fallos: mecanismos, herramientas de análisis y ejemplos prácticos

b8iC6289smvQspSXybAFmTl72eJkfbmt4t8yenImKBVvK0kTmF0xjctABnaLJIm9¿Se pueden evitar las catástrofes en ingeniería? El error es humano. Es un dicho que no debe conformar al ingeniero que, a toda costa debe evitar estos fallos y, en caso de no hacerlo, aprender de los errores. Los fallos de estructuras civiles y componentes industriales pueden tener graves consecuencias económicas, medioambientales y, sobre todo, humanas. El Análisis de Fallos es, por lo tanto, una disciplina de la ingeniería de indudable trascendencia, pues solo desde el conocimiento de las causas de los fallos estructurales podrán evitarse fallos futuros.

Los principales modos de fallo que tienen su origen en el comportamiento mecánico del material (fractura, fatiga, fluencia, etc), las principales herramientas de las que dispone el ingeniero para el análisis (caracterización de materiales, microscopía, análisis tensional, integridad estructural, etc) y se mostrarán una serie de casos prácticos resueltos con una metodología común que permitirán obtener una visión general de la disciplina.

Os recomiendo un buen libro sobre el tema: “La ingeniería es humana”, de Henry Petrosky.

A continuación os paso un vídeo realizado por el Gabinete de Tele-educación de la Universidad Politécnica de Madrid donde el profesor Sergio Cicero, de la Universidad de Cantabria, expone una conferencia sobre análisis de fallos. Espero que os guste.

 

 

¿Qué es la calibración de un equipo de medida?

¿Estamos seguros de que cuando medimos lo hacemos correctamente? ¿No habéis tenido la sensación de que los resultados de un ensayo parece que son imposibles o son poco esperables? Es posible que os encontréis ante un equipo de medición mal calibrado. En este post continuamos con otros anteriores referidos a los errores de medición y a las unidades de medida y su materialización. Vamos a repasar, de forma muy sintética, algunos de los conceptos más importantes relacionados con la calibración de los equipos.

Se denomina calibración al conjunto de operaciones que establecen, en unas condiciones especificadas, la relación existente entre los valores indicados por un instrumento o sistema de medida o los valores representados por una medida materializada, y los correspondientes valores conocidos de una magnitud medida. Esta actividad, llevada a cabo por medios y procedimientos técnicos, permite determinar, por comparación con un patrón o con un material de referencia o por métodos absolutos, los valores de los errores de un medio o un instrumento de medida. El proceso de calibración comprende la medición del patrón o instrumento cuyo valor queremos determinar por comparación con un patrón de referencia, comprobar si el valor obtenido está dentro de los límites establecidos para la función a realizar, y en caso de estar fuera de los límites, efectuar el correspondiente ajuste o calibración del patrón o equipo de medición.

El certificado de calibración de un patrón deberá recoger el valor o los valores asignados como resultado de la calibración, así como la incertidumbre. A su vez, el certificado debe indicar la incertidumbre de los patrones o instrumentos empleados en la calibración, el número de reiteraciones efectuadas y los valores obtenidos, o un índice de su dispersión. El certificado de calibración de un instrumento deberá indicar los puntos del campo de medida calibrados, la incertidumbre del patrón o instrumento empleado en cada punto de calibración, la corrección de calibración obtenida en cada uno de ellos, el número de reiteraciones efectuadas en cada punto de calibración y su dispersión, y la incertidumbre asociada a la corrección de cada punto de calibración, para un factor de incertidumbre que también se indicará. Los patrones e instrumentos se calibran cuando salen de la línea de fabricación, pero es necesario un programa de calibración que de forma periódica asegure el mantenimiento de la exactitud. Los intervalos de calibración son función de la utilización de los equipos.

 

Los instrumentos de medida se clasifican en instrumentos de referencia y en instrumentos de trabajo, sirviendo los primeros para calibrar los últimos. Cada instrumento calibrado obtiene un certificado de calibración que garantiza la exactitud y trazabilidad, no debiendo incluir recomendación alguna sobre el intervalo de recalibración. El desgaste y envejecimiento de los equipos de medición son los que marcan los intervalos de calibración.  Cada instrumento de medición deberá tener visible una etiqueta de calibración, que indican si el mismo puede utilizarse, tiene limitaciones en su uso o si están fuera de servicio.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El accidente durante la construcción del tercer depósito del Canal de Isabel II

24_089_560x0
Tercer depósito del Canal de Isabel II en Madrid: vista del muro divisorio y de la cubierta del cuarto compartimento, antes del derrumbe. Fuente: http://www.cehopu.cedex.es/hormigon/fichas/img_ficha.php?id_img=3

El hormigón armado tuvo unos inicios complicados en España debido al terrible accidente ocurrido durante la construcción del tercer depósito del Canal de Isabel II  para el abastecimiento de Madrid. Se produjeron 29 víctimas mortales y 60 heridos y que, además de suponer la mayor catástrofe ocurrida en España en las construcciones realizadas con el nuevo material, estuvo a punto de hacer desaparecer a la empresa de José Eugenio Ribera. La adopción de una solución de hormigón armado para las cubiertas por parte del Consejo Superior de Obras Públicas demostraba la aceptación del material por la Administración. Iba a ser, con más de 80.000 m², la principal construcción española de hormigón armado hasta la fecha y la mayor del mundo en su género.

El enorme depósito, con unas dimensiones en planta de 360 x 216 m2, que permite almacenar 461.000 m3 de capacidad lo proyectó el propio Ribera mediante un audaz diseño de pilares muy esbeltos sobre los que apoyaban, a través de una viga un forjado abovedado, todo ello de hormigón armado. El arriesgado planteamiento estructural de Ribera, aunque ya había sido probado en obras similares, como el depósito de aguas de Gijón, levantó suspicacias desde el primer momento. El depósito estaba sometido fundamentalmente a la importante carga permanente del relleno de tierras bajo el que debía quedar enterrado, por lo que las acciones de dos arcos adyacentes se compensaban horizontalmente, haciendo trabajar a los pilares eminentemente a compresión, de ahí la pequeña sección transversal diseñada por Ribera.

Esquema de funcionamiento estructural del depósito del Canal de Isabel II
Esquema de funcionamiento estructural del depósito del Canal de Isabel II

Sin embargo, durante la ejecución del relleno de las tierras se produjo un importante error que modificó las condiciones previstas de trabajo de la estructura, pues en lugar de proceder por capas de pequeño espesor extendidas en toda la superficie de la cubierta, se empezó a rellenar desde un extremo, lo que originó unos esfuerzos no previstos en los pilares.

Condiciones de carga no previstas en los pilares
Condiciones de carga no previstas en los pilares

Finalmente, en 1907 Ribera fue exonerado en el proceso judicial en que se vio envuelto a causa del accidente. En su defensa participaron muy activamente, entre otros, José Echegaray que, además de Ingeniero de Caminos, era muy conocido por su actividad política en la década de los 70 del XIX, y por su premio Nobel de literatura del año 1904.

Podéis consultar en versión online el libro El hundimiento del tercer depósito del Canal de Isabel II en 1905 en la biblioteca digital de la Fundación J. Turriano:  http://juaneloturriano.oaistore.es/opac/ficha.php?informatico=00000243MO&idpag=1556896482&codopac=OPJUA

Causas de variabilidad de un proceso

Image9245El enemigo de todo proceso es la variación, siendo la variabilidad inevitable. Cuando se fabrica un producto o se presta un servicio, es materialmente imposible que dos resultados sean exactamente iguales. Ello se debe a múltiples motivos, más o menos evitables. Por un lado existen múltiples causas comunes, aleatorias y no controlables que hacen que el resultado cambie siguiendo habitualmente una distribución de probabilidad normal. Se dice que dicho proceso se encuentra bajo control estadístico, siendo éste el enfoque que sobre el concepto de calidad propugna Deming y que vimos en un artículo anterior. Por otra parte, existen unas pocas causas asignables, que ocurren de forma fortuita y que podemos detectarlas y corregirlas. Ocurren de forma errática y, afortunadamente se solucionan fácilmente. Las causas comunes son difíciles de erradicar porque precisan de un cambio del proceso, de la máquina o del sistema que produce los resultados, siendo ese cambio una responsabilidad de la gerencia. Kaouru Ishikawa decía que el 85% de los problemas en un proceso son responsabilidad de la gerencia, siendo mal recibido dicho comentario por parte de la alta dirección de las empresas.

Para aclarar y entender estos conceptos, os dejo un Polimedia explicativo, de poco más de siete minutos, que espero os guste.

El desastre del embalse del Vajont (Italia)

El valle de Vajont tras el derrumbe del monte Toc que causó el desastre. Wikipedia

La presa de Vajont fue construida el año 1961 en los Pre-Alpes italianos a unos 100 kms al norte de Venecia, Italia. Era una de las presas más altas del mundo, con 262 m de altura, 27 m de grosor en la base y 3,4 m en la cima. Desde el principio, los técnicos ya detectaron problemas por corrimientos de tierras, por lo que recomendaban no llenar el embalse por encima de cierto nivel de agua. A las 22.39 h del día 9 de octubre de 1963, la combinación del tercer rellenado del depósito produjo un gigantesco deslizamiento de unos 260 millones de m3 de tierra y roca, que cayeron en el embalse, prácticamente lleno, a unos 110 km/h. El agua desplazada resultante produjo que 50 millones de m3 de agua sobrepasasen la presa en una ola de 90 m de altura. A pesar de eso, la estructura de la presa no recibió daños importantes. La tragedia podría haber sido aún mayor si la presa se hubiera derrumbado, vertiendo otros 50 millones de m3 que a pesar de todo permanecieron embalsados. El formidable tsunami consecuencia del deslizamiento destruyó totalmente el pueblo de Longarone y las pequeñas villas de Pirago, Rivalta, Villanova y Faè. Varios pueblos del territorio de Erto y Casso y el pueblo de Codissago, cerca de Castellavazzo, sufrieron daños de importancia. Unas 2.000 personas fallecieron. Los destrozos fueron producidos exclusivamente por el desplazamiento de aire al explotar la ola en los pueblos colindantes.

Animación del deslizamiento. Fuente: http://ireneu.blogspot.com.es

¿Cómo pudo suceder un desastre de tales proporciones? ¿Se pudo evitar? Es mucha la información en distintas webs sobre la tragedia de Vajont. Nos pone en guardia sobre los límites de la técnica y del sentido común. Desgraciadamente, se ha convertido en un ejemplo en el que el hombre decidió retar a la naturaleza y esta le avisó de lo que podía suceder, pero cuando los responsables decidieron mirar hacia otro lado, el desastre llegó con sus mayores consecuencias. Este es un buen ejemplo de estudio de caso, tanto desde el punto de vista técnico como ético.

En el siguiente enlace podéis descargaros un artículo del año 1964 de José Mª Valdés sobre algunas meditaciones de esta catástrofe. Se trata de una conferencia pronunciada el 24 de abril de ese año en el Centro de Estudios Hidrográficos de la Dirección General de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2991_01.pdf

En un documental emitido por el canal Historia, una de las víctimas relata que un ingeniero dijo a su abuela: “Recuerde que la presa no se caerá porque está muy bien hecha, pero la montaña cederá, y acabarán atrapados como ratas”. A continuación os dejo varios de estos vídeos al respecto para la reflexión.

¿Por qué no nos salen las cosas siempre “exactamente” igual?

Siempre que intentamos hacer algo nunca nos sale “exactamente” igual. Por ejemplo, si corremos 100 m lisos y tuviésemos un cronómetro que nos midiera hasta 100 decimales, sería muy improbable que hiciésemos dos series en igual tiempo. Este concepto universal de la variabilidad es muy importante en los procesos productivos y en la calidad. Demos un pequeño repaso al concepto.

El enemigo de todo proceso es la variación, siendo la variabilidad inevitable. Cuando se fabrica un producto o se presta un servicio, es materialmente imposible que dos resultados sean exactamente iguales. Ello se debe a múltiples motivos, más o menos evitables. Por un lado existen múltiples causas comunes, aleatorias y no controlables que hacen que el resultado cambie siguiendo habitualmente una distribución de probabilidad normal. Se dice que dicho proceso se encuentra bajo control estadístico, siendo éste el enfoque que sobre el concepto de calidad propugna Deming y que vimos en un artículo anterior. Por otra parte, existen unas pocas causas asignables, que ocurren de forma fortuita y que podemos detectarlas y corregirlas. Ocurren de forma errática y, afortunadamente se solucionan fácilmente. Las causas comunes son difíciles de erradicar porque precisan de un cambio del proceso, de la máquina o del sistema que produce los resultados, siendo ese cambio una responsabilidad de la gerencia. Kaouru Ishikawa decía que el 85% de los problemas en un proceso son responsabilidad de la gerencia, siendo mal recibido dicho comentario por parte de la alta dirección de las empresas.

Para aclarar y entender estos conceptos, os dejo un Polimedia explicativo, de poco más de siete minutos, que espero os guste.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.