Diseño de experimentos en cuadrado grecolatino. Ejemplo aplicado al hormigón

Figura 1. Cuadrado grecolatino de orden cuatro. Wikipedia

Un cuadrado greco-latinocuadrado de Euler o cuadrados latinos ortogonales de orden n se denomina, en matemáticas, a la disposición en una cuadrícula cuadrada n×n de los elementos de dos conjuntos S y T, ambos con n elementos, cada celda conteniendo un par ordenado (st), siendo s elemento de S y t de T, de forma que cada elemento de S y cada elemento de T aparezca exactamente una vez en cada fila y en cada columna y que no haya dos celdas conteniendo el mismo par ordenado. Si bien los cuadrados grecolatinos eran una curiosidad matemática, a mediados del siglo XX Fisher demostró su utilidad para el control de experimentos estadísticos.

El diseño de experimentos en cuadrado grecolatino constituye una extensión del cuadrado latino. En este caso se eliminan tres fuentes extrañas de variabilidad, es decir, se controlan tres factores de bloques y un factor de tratamiento. Se trata de un diseño basado en una matriz de “n” letras latinas y “n” letras griegas, de forma que cada letra latina aparece solo una vez al lado de cada letra griega. Lo interesante de este diseño es que se permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con “n” niveles en solo “n2” corridas. Se llama cuadrado grecolatino porque los cuatro factores involucrados se prueban en la misma cantidad de niveles, de aquí que se pueda escribir como un cuadro. En la Figura 1 se presenta el aspecto de los datos del diseño de orden cuatro. El inconveniente de este modelo es que su utilización es muy restrictiva. El análisis de la varianza permite comprobar las hipótesis de igualdad de letras latinas (tratamientos), de las filas, de las columnas y de las letras griegas.

Si a un cuadrado latino p x p se le superpone un segundo cuadrado latino n x n en el que los tratamientos se denotan con letras griegas, entonces los dos cuadrados tienen la propiedad de que cada letra griega aparece una y sólo una vez con cada letra latina. Este diseño permite controlar sistemáticamente tres fuentes de variabilidad extraña. Ello permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con p niveles en sólo n2 ensayos.

Por tanto, el diseño de experimentos en cuadrado grecolatino se caracteriza por lo siguiente:

  • Es un diseño con cuatro factores a n niveles
  • Se asume que no hay interacciones entre los factores
  • Requiere de n2 observaciones
  • Cada nivel de un factor aparece una vez con cada nivel de los otros factores
  • Se trata de la superposición de dos cuadrados latinos (ver Figura 2)
Figura 2. Superposición de dos cuadrados latinos

En un diseño en cuadrado greco-latino la variable respuesta yij(hp) viene descrita por la siguiente ecuación:

A continuación os presento un caso para aclarar la aplicabilidad de este diseño de experimentos. Se trata de averiguar si la resistencia característica del hormigón a flexocompresión (MPa) varía con cuatro dosificaciones diferentes. Para ello se han preparado amasadas en cuatro amasadoras diferentes, se han utilizado cuatro operarios de amasadora y los ensayos se han realizado en cuatro laboratorios diferentes. Los resultados se encuentran en la tabla que sigue. Se quiere analizar el diseño de experimentos en cuadrado grecolatino realizado.

En el caso que nos ocupa, la variable de respuesta de la resistencia característica del hormigón a flexocompresión (MPa). El factor que se quiere estudiar es la dosificación a cuatro niveles (A, B, C y D). El bloque I es el tipo de amasadora, con cuatro niveles (α, β, γ y δ). El bloque II es el operario de la amasadora, con cuatro niveles (1, 2, 3 y 4). El bloque III es el laboratorio, con cuatro niveles (las filas). Se supone que no hay interacción entre el factor y los bloques entre sí.

Lo que se quiere averiguar es si hay diferencias significativas entre las dosificaciones (el factor a estudiar). De paso, se desea saber si hay diferencias entre los laboratorios, los operarios y las amasadoras (los bloques).

Os paso un pequeño vídeo donde se explica, de forma muy resumida, este caso, tanto para SPSS como para MINITAB.

Os dejo otro vídeo donde también se explica este tipo de diseño de experimentos.

Referencias:

  • Gutiérrez, H.; de la Vara, R. (2004). Análisis y Diseño de Experimentos. McGraw Hill, México.
  • Vicente, MªL.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de Experimentos. Soluciones con SAS y SPSS. Pearson, Prentice Hall, Madrid.
  • Pérez, C. (2013). Diseño de Experimentos. Técnicas y Herramientas. Garceta Grupo Editorial, Madrid.

 

Correlación y modelo de regresión lineal. Problema resuelto en puentes losa

Figura 1. Modelo lineal simple de un tablero de puente losa postesado macizo (Yepes et al., 2009)

Uno de los temas básicos que se estudia en la asignatura de estadística de cualquier grado de ingeniería es la inferencia y los modelos de regresión lineal (Figura 1). A pesar de su sencillez, muchos estudiantes y profesionales aplican, sin más, este tipo de regresiones para interpolar valores en múltiples campos de la ingeniería, la economía, la salud, etc. El conocimiento de algunas nociones básicas nos permitiría evitar errores de bulto. Uno de ellos es intentar forzar las predicciones más allá de las observaciones realizadas. Otro error es confundir la correlación con la regresión. Buscar relaciones donde no las hay (relación espuria, Figura 2). Y por último, uno de los aspectos más descuidados es la no comprobación de las hipótesis básicas que se deben cumplir para que un modelo de regresión lineal sea válido.

Figura 2. Relaciones espuria entre el consumo de chocolate y el número de premios Nobel

Dicho de otra forma, valorar la calidad del ajuste mediante el coeficiente de determinación no equivale a valorar el cumplimiento de las hipótesis básicas del modelo. Si las hipótesis del modelo no se cumplen, se pueden estar cometiendo graves errores en las conclusiones de las inferencias. Así, las hipótesis básicas del modelo de regresión son las siguientes:

  • Linealidad: los parámetros y su interpretación no tienen sentido si los datos no proceden de un modelo lineal
  • Normalidad de los errores: se asume que la distribución de los errores es normal
  • Homocedasticidad: la varianza del error es constante
  • Independencia de los errores: las variables aleatorias que representan los errores son mutuamente independientes
  • Las variables explicativas son linealmente independientes

Para aclarar las ideas, he analizado un caso de regresión lineal simple con datos reales procedentes de 26 puentes losa postesados macizos (Yepes et al., 2009). Se trata de conocer la relación que existe entre la luz principal de este tipo de puentes y el canto del tablero. Utilizaremos los programas siguientes: MINITAB, SPSS, EXCEL y MATLAB. También os dejo un vídeo explicativo, muy básico, pero que espero sea de interés. Dejo los detalles matemáticos aparte. Los interesados pueden consultar cualquier manual básico de estadística al respecto.

Descargar (PDF, 817KB)

Referencias:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Instrucciones básicas de Matlab para tratamiento estadístico de datos

Dejo a continuación una serie de instrucciones básicas que podéis utilizar en Matlab para realizar cálculos estadísticos básicos. Este post está dedicado a mis estudiantes de Modelos Predictivos y de Optimización de Estructuras de Hormigón, pero puede ser de interés, por lo que lo dejo en abierto.

Importar datos de un fichero Excel

>> datos=xlsread(‘Ejercicio 4’)

Número de filas y columnas

>> size(datos)

Dimensión más grande de una matriz

>> length(datos)

Ordena los elementos de forma ascendente

>> sort(datos)

Ordena los elementos de forma descendente

>> sort(datos,’descend’)

Suma de los datos

>> sum(datos)

Producto de los datos

>> prod(datos)

Vector de sumas acumuladas

>> cumsum(datos)

Vector de productos acumulados

>> cumprod(datos)

Calcular la media aritmética

>> mean(datos)

Calcular la mediana

>> median(datos)

Calcular la moda de la muestra

>> mode(datos)

Calcular la media aritmética omitiendo el 5% de datos de cada lado

>> trimmean(datos,10)

Calcular la media geométrica de una muestra

>> geomean(datos)

Calcular la media armónica de una muestra

>> harmmean(datos)

Calcular el sesgo de la muestra

>> skewness(datos)

Calcular la curtosis de los datos

>> kurtosis(datos)

Varianza muestral

>> var(datos)

Desviación estándar muestral

>> std(datos)

 

Rango de los datos

>> range(datos)

El menor valor

>> min(datos)

El mayor valor

>> max(datos)

Desviación absoluta respecto a la media

>> mad(datos)

Momento central de orden 3 respecto a la media

>> moment(datos,3)

Rango intercuartílico

>> iqr(datos)

Primer cuartil (percentil 25)

>> prctile(datos, 25)

Percentil del 5%

>> prctile(datos,5)

Dibujar un diagrama de caja

>> boxplot(datos)

Dibujar el histograma de datos

>> hist(datos)

Dibujar la distribución de frecuencia acumulada

>> cdfplot(datos)

Visualización de funciones de probabilidad

>> disttool

Ajuste de modelos de distribución a conjunto de datos

>> dfittool

Matriz 3×3 de números aleatorios entre 0 y 1

>> rand(3)

Matriz 3×2 de números aleatorios entre 0 y 1

>> rand(3,2)

Matriz 3×3 de números aleatorios normales de media 0 y varianza 1

>> randn(3)

Matriz 3×2 de números aleatorios normales de media 0 y varianza 1

>> randn(3,2)

Secuencia de 5 valores aleatorios normales de desviación estándar de 2,5 y media 3

>> rand(1,5)*2.5+3

 

Estimación puntual y por intervalos para una muestra de una población normal

El problema de la  estimación puntual y por intervalos para una muestra de una población normal es una actividad muy frecuente en el ámbito de la ingeniería y de la investigación. Supongamos que tenéis una muestra de 5 elementos extraída de una población normal (por ejemplo, de la resistencia a compresión simple de una probeta de hormigón a 28 días procedente de una misma amasada). El objetivo es establecer inferencias estadísticas usando un nivel de significación α=0.05. Deberíais ser capaces de realizar las siguientes actividades:

  1. Calcular el intervalo de confianza para la media, suponiendo que la desviación típica de la población es conocida y vale lo mismo que la desviación típica de la muestra. (Se empleará la distribución normal).
  2. Calcular el intervalo de confianza para la media, suponiendo que la desviación típica de la población es desconocida. (Se empleará la distribución t de Student).
  3. Calcular el intervalo de confianza para la desviación típica de la muestra. (Se empleará la distribución chi-cuadrado).

A continuación os dejo un pequeño tutorial para proceder al cálculo de dichos intervalos utilizando el paquete estadístico Minitab.

Os paso unos vídeos explicativos para que entendáis los conceptos. Espero que os gusten:

 

La cerveza, la estadística y Gosset

William Sealy Gosset, 1876-1937.

Hoy día se conoce ampliamente la distribución t de Student, que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño. Esta distribución permite realizar la denominada prueba t de Student a dos muestras para probar si existe o no diferencia entre las medias, pudiendo ser dichas muestras desaparejadas o en parejas. Sin embargo, poca gente conoce a este Student. Este fue el seudónimo que utilizó William S. Gosset (1876-1937) para publicar sus descubrimientos. En efecto, para evitar exposiciones de información confidencial, Guinness -que era la empresa donde Gosset trabajaba- prohibió a sus empleados la publicación de artículos independientemente de la información que contuviesen. De ahí el uso de su pseudónimo Student en sus publicaciones, para evitar que su empleador lo detectara.

Distribución t de Student

Gosset empezó a trabajar en 1899 como técnico en la fábrica de cerveza Guinness, justo después de licenciarse en la Universidad de Oxford. Allí empezó a realizar experimentos y comprendió la necesidad de utilizar la estadística para comprender sus resultados. En los inicios del siglo XX, los métodos de inferencia se reducían a un versión de las pruebas z para las medias, pues incluso entonces los intervalos de confianza eran desconocidos. El interés de Gosset en el cultivo de la cebada le llevó a pensar que el diseño de experimentos debería dirigirse no sólo a mejorar la producción media, sino también a desarrollar variedades poco sensibles a las variaciones en el suelo y el clima. Como los experimentos que realizaba eran con pocas observaciones, se dio cuenta que las conclusiones que obtenía con este tipo de inferencia no eran precisas. Con la nueva distribución t se pudo diseñar una prueba que identificó la mejor variedad de cebada y Guinness, rápidamente, adquirió toda la semilla disponible. Para que luego se ponga en duda la importancia de la investigación en las empresas y su rentabilidad económica.

Os dejo a continuación un vídeo explicativo de esta importante función de distribución.

 

Simulaciones de Monte Carlo en el Control de Calidad del hormigón

El método de Monte Carlo es un procedimiento numérico que permite aproximar la resolución de expresiones matemáticas complejas con las que resulta o bien difícil, o bien imposible (especialmente en el ámbito de la estadística) encontrar resultados exactos.  Con este método se puede, con la ayuda de una hoja de cálculo, llevar a cabo un ajuste del criterio de aceptación suficientemente preciso y fundado en los intereses de las partes interesadas expresados por los riesgos aceptados de común acuerdo.

Os paso un vídeo destinado a que los alumnos adquieran una visión no determinista del control de calidad de materiales de construcción. El profesor Antonio Garrido, de la Universidad Politécnica de Cartagena, hace un recorrido por las diferentes funciones de distribución que se aplican hoy en día en la generación de las variables aleatorias, destacando su propuesta personal basada en la distribución gaussiana o normal. Además, propone el empleo de la hoja de cálculo de Excel para realizar la simulación de Monte Carlo, tanto por su sencillez de manejo como por su amplia disponibilidad. Espero que os guste.

Referencias:

Garrido, A.; Conesa, E.M. (2009). Simulación por el método de Monte Carlo para generar criterios de aceptación en el control de calidad de productos de construcción. Informes de la Construcción, 61(515): 77-85. (link)

Jerga, falacias y encuestas electorales: Las hipótesis en la investigación científica

Muchas veces la jerga que utilizan determinados colectivos o profesiones confunden al común de los mortales. La creación de un lenguaje jergal propio es habitual en todo grupo humano muy cerrado, con contacto estrecho y prolongado entre sus integrantes, y con una separación muy nítidamente marcada entre “dentro” y “fuera”. Un ejemplo es la jerga médica, donde la precisión necesaria para describir una enfermedad requiere de una traducción simultánea al enfermo. Otras veces existen consultores que, escudándose se neologismos, tecnicismos o anglicismos, venden mejor sus ideas o productos. No menos confuso es el lenguaje estadístico, sobre todo cuando se trata de encuestas electorales. Este lenguaje confuso, y en numerosas ocasiones deliberadamente difícil de entender, oculta ideas o conceptos sencillos. Este es el caso de las hipótesis en la investigación científica y las pruebas de hipótesis empleadas en la estadística.

Todos esperamos de un jurado que declare culpable o inocente a un acusado. Sin embargo, esto no es tan sencillo. El acusado es inocente hasta que no se demuestre lo contrario, pero el dictamen final sólo puede decir que no existen pruebas suficientes para declarar que el acusado sea culpable, lo cual no es equivalente a la inocencia. Además, es fácil intuir que el jurado no es infalible. Puede equivocarse culpando a un inocente y también absolviendo a un culpable. Lo mismo ocurre con un test de embarazo o de alcoholemia, puede dar un falso positivo o un falso negativo. ¿Que significa que una encuesta afirma que el partido “A” va a ganar las elecciones? De esto trata una prueba de hipótesis, pero vayamos por partes.

B-DERsTIQAAgORN

Una hipótesis puede definirse como una explicación tentativa de un fenómeno investigado que se enuncia como una proposición o afirmación. A veces las hipótesis no son verdaderas, e incluso pueden no llegar a comprobarse. Pueden ser más o menos generales o precisas, y abarcar dos o más variables, pero lo que es común a toda hipótesis, es que necesita una comprobación empírica, es decir, se debe verificar con la realidad. Pero ahora viene el problema: ¿en cuántos casos necesitamos para verificar una hipótesis? Siempre quedará la duda de que el caso siguiente negará lo planteado en la hipótesis. Por tanto, nos encontramos ante un método inductivo donde el reto será generalizar una proposición partiendo de un conjunto de datos, que denominaremos muestra.

Este tipo de hipótesis son, en realidad, hipótesis de investigación o de trabajo. Pueden ser varias, y suelen denominarse como H1, H2, …, Hi. Se trata de proposiciones tentativas que pueden clasificarse en varios tipos:

a) Descriptivas de un valor o dato pronosticado

b) Correlacionales

c) De diferencia de grupos

d) Causales.

En estadística, se llaman hipótesis nulas aquellas que niegan o refutan la relación entre variables, denominándose como H0. Estas hipótesis sirven para refutar o negar lo que afirma la hipótesis de investigación. Por ejemplo, si lo que quiero comprobar es la relación existente entre la relación agua/cemento con la resistencia a compresión a 28 días de una probeta de hormigón, entonces la hipótesis nula es que no existe una relación entre ambas variables. La idea es demostrar mediante una muestra que no existen pruebas suficientemente significativas para rechazar la hipótesis nula que indica que no existe relación entre dichas variables. Sin embargo, en un lenguaje menos formal, lo que realmente queremos es verificar que existe dicha relación. Sin embargo, también existen hipótesis alternativas, que son posibilidades diferentes de las hipótesis de investigación y nula. Así, si nuestra hipótesis de investigación establece que “esta silla es roja”, la hipótesis nula es “esta silla no es roja”, pero las hipótesis alternativas pueden ser: “esta silla es verde”, “esta silla es azul”, etc. Realmente, la hipótesis alternativas no son más que otras hipótesis de investigación. Curiosamente, en investigación no hay una regla fija para la formulación de hipótesis. Hay veces que sólo se incluye la hipótesis de investigación, en otras ocasiones se incluye la hipótesis nula y, en otras, también las alternativas.

Pero, ¿se puede afirmar que un partido va a ganar las elecciones según una encuesta?, o dicho de otro modo, ¿se puede probar que una hipótesis es, con toda rotundidad, verdadera o falsa? Desgraciadamente no se puede realizar dicha afirmación. Lo único que se puede hacer es argumentar, a la vista de unos datos empíricos obtenidos de una investigación particular, que tenemos evidencias para apoyar a favor o en contra una hipótesis. Cuantas más investigaciones, más credibilidad tendrá, y ello sólo será válido para el contexto en que se comprobó. De ahí la importancia de elegir una muestra que sea suficientemente representativa de la población total. Por tanto, sólo podemos argumentar la validez de las hipótesis desde el punto de vista estadístico. Las pruebas de hipótesis sirven para este cometido.

A continuación os dejo una figura donde se describe, de forma muy resumida, lo que es una prueba de hipótesis. Me gustaría que os fijaseis en que en toda prueba de hipótesis existen dos tipos de errores, el falso positivo (mandar a un inocente a la cárcel) y el falso negativo (exculpar a un culpable). Estos errores deberían ser lo más bajos posibles, pero a veces no es sencillo. Para que ambos errores bajen de forma simultánea, no hay más remedio que aumentar el tamaño de la muestra. Por este motivo, para hacer un examen lo más justo posible, éste debería aprobar a los que han estudiado y suspender a los que no. Lo mejor es que el número de preguntas sea lo más alto posible.

Por tanto, ojo cuando el titular de un periódico nos ofrezca una previsión electoral. Hay que mirar bien cómo se ha hecho la encuesta y, lo más importante, saber interpretar los resultados desde el punto de vista estadístico.

Test de hipótesis

Referencias:

Hernández, R.; Fernández, C.; Baptista, P. (2014). Metodología de la investigación. Sexta edición, McGraw-Hill Education, México.

Análisis de componentes principales y su aplicación a los puentes

¿Cuántas variables nos hace falta para definir completamente un puente losa? Las variables se encuentran relacionadas unas con otras, de forma que es posible determinar variables sintéticas subyacentes (llamadas componentes principales) capaces de explicar un elevado porcentaje de la variación de dichas variables. Como veremos en el artículo que os dejo, bastan tres componentes principales para explicar el 80,8% de la varianza de los datos de las losas macizas, y cuatro para modular el 79,0% en las aligeradas.

El análisis de componentes principales pretende transformar el conjunto de datos inicial (de variables correlacionadas) en un nuevo conjunto reducido de nuevas variables independientes, llamadas componentes principales. El análisis de componentes principales es un análisis estadístico que pertenece a los denominados métodos multivariantes. Se utiliza en multitud de disciplinas para interpretar los datos. A continuación os dejo un vídeo introductorio a este tipo de análisis, referenciándolo a datos de un puente losa postesado.

En este vídeo se realiza un ejemplo para la interpretación de datos de caracterización morfológica típicos de la conservación de recursos fitogenéticos. Autor: Fita Fernández, Ana María.

A continuación os dejo una explicación intuitiva del análisis de componentes principales del profesor José Luís Vicente Villardón, de la Universidad de Salamanca.

También os dejo un artículo científico donde utilizamos esta técnica en la caracterización de puentes losa postesados. Su referencia es:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Revista de la Construcción, 8(2):95-109.

Descargar (PDF, 1.08MB)

¿Qué es la metodología de la superficie de respuesta?

La Metodología de la Superficie de Respuesta (RSM) es un conjunto de técnicas matemáticas y estadísticas utilizadas para modelar y analizar problemas en los que una variable de interés es influenciada por otras.  El propósito inicial de estas técnicas es diseñar un experimento que proporcione valores razonables de la variable respuesta y, a continuación, determinar el modelo matemático que mejor se ajusta a los datos obtenidos. El objetivo final es establecer los valores de los factores que optimizan el valor de la variable respuesta. Esto se logra al determinar las condiciones óptimas de operación del sistema.

La diferencia entre (RSM) y un diseño experimental corriente estriba en que un diseño experimental por si solo tiene como objetivo localizar el tratamiento “ganador” entre todos aquellos que se han probado. En cambio, RSM pretende localizar las condiciones óptimas de operación del proceso. Ello supone un reto para el investigador, requiere una estrategia más completa e incluye la posibilidad de efectuar varios experimentos secuenciales y el uso de técnicas matemáticas más avanzadas.

Os dejo a continuación un vídeo explicativo que espero os aclare la metodología.

Otro vídeo complementario al anterior es el siguiente:

Referencias:

  • Box, G. E. P., Wilson, K. G. (1951), On the experimental attainment of optimum conditions,Journal of the Royal Statistical Society, B 13, 1-45
  • Cornell, John A. (1984), How to apply Response Surface Methodology, American Society for Quality Control, Milwaukee, WI.
  • Kuehl, Robert O. (2001) Diseño de Experimentos, 2a. Edición, Thomson Learning.
  • Melvin T. A. Response Surface Optimization using JMP Software, < http://www2.sas.com/proceedings/sugi22/STATS/PAPER265.PDF>
  • Montgomery, D. C. (2002), Diseño y Análisis de Experimentos, Editorial Limusa, Segunda Edición.
  • http://www.cicalidad.com/articulos/RSM.pdf
  • http://catarina.udlap.mx/u_dl_a/tales/documentos/lii/peregrina_p_pm/capitulo2.pdf

Diseño de experimentos en cuadrado latino

En el diseño en cuadrado latino se tienen cuatro fuentes de variabilidad que pueden afectar a la respuesta observada: los tratamientos, el factor de bloque I (columnas), el factor de bloque II (filas) y el error aleatorio. Se llama cuadrado latino porque se trata de un cuadrado que tiene la restricción adicional de que los tres factores involucrados se prueban en la misma cantidad de niveles, y es latino porque se utilizan letras latinas para denotar a los tratamientos o niveles de factor de interés.

Veamos un ejemplo práctico: se trata de averiguar si la resistencia característica del hormigón a compresión (MPa) varía con cuatro dosificaciones diferentes (D1, D2, D3, D4). Para ello se han preparado amasadas en 4 amasadoras diferentes y los ensayos se han realizado en 4 laboratorios diferentes. Los resultados obtenidos se han representado en la tabla que sigue.

TIPO DE AMASADORA
1 2 3 4
Laboratorio 1 26,7 (D3) 19,7 (D1) 28,0 (D2) 29,4 (D4)
Laboratorio 2 23,1 (D1) 20,7 (D2) 24,9 (D4) 29,0 (D3)
Laboratorio 3 28,3 (D2) 20,1 (D4) 29,0 (D3) 27,3 (D1)
Laboratorio 4 25,1 (D4) 17,4 (D3) 28,7 (D1) 34,1 (D2)

 

En este caso, la variable de respuesta es la resistencia característica del hormigón a compresión (MPa), el factor es la dosificación, y los bloques son las amasadoras y los laboratorios. Se supone que no existe interacción entre el factor y los bloques entre sí. El ANOVA trata de comprobar los efectos de los tratamientos (las dosificaciones).

Os dejo a continuación un vídeo tutorial para resolver este diseño con el programa estadístico SPSS.

Referencias:

  • Gutiérrez, H.; de la Vara, R. (2004). Análisis y Diseño de Experimentos. McGraw Hill, México.
  • Vicente, MªL.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de Experimentos. Soluciones con SAS y SPSS. Pearson, Prentice Hall, Madrid.
  • Pérez, C. (2013). Diseño de Experimentos. Técnicas y Herramientas. Garceta Grupo Editorial, Madrid.