Número de observaciones a realizar en un cronometraje

Figura 1. Cronometraje industrial

El cronometraje, junto con las observaciones instantáneas, constituye un procedimiento de medición del trabajo que permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. El cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso. En cambio, las observaciones instantáneas cubre el resto de los escenarios posibles, como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Una medición del tiempo requerido para una operación elemental en la que se divide un trabajo debe ofrecer brindar cierta seguridad que que se recogen todas las posibles causas que pueden influir en los tiempos, incluyendo los datos que se producen de forma esporádica. Para ello, las medidas se basan en una muestra representativa formada por un determinado número de ciclos sucesivos.

La Oficina Internacional de Trabajo recomienda cronometrar al menos 50 ciclos en operaciones breves y de 20 a 30 ciclos en operaciones más largas. Sin embargo, es posible que con un número de lecturas superiores a 10, el valor medio puede cambiar tan poco que no merece la pena aumentar el número de observaciones.

El número de ciclos a cronometrar depende, entre otros, de la duración de los elementos, de la precisión que se quiera para los tiempos representativos y de la estabilidad del operario o máquina cronometrado.

Duración de los elementos

Cuanto mayor sea la duración de los elementos, será menor la influencia de las causas de variación. Aunque los errores tengan el mismo valor absoluto, su valor relativo será menor. La Tabla 1 proporciona un ejemplo del número de lecturas según la duración de la operación (Alonso y Ruiz, 1982) .

Sin embargo, muchas empresas se basan en su propia experiencia o consideran la repetitividad de la operación. Se otorga más importancia y se busca mayor exactitud en los trabajos más frecuentes.

Precisión deseada

Figura 2. Precisión en las mediciones.

Suponiendo que la distribución de probabilidad de los tiempos es normal, entonces se puede determinar el número de observaciones a realizar, de forma que la mayoría de los valores individuales no se desvíen del valor medio más allá de unos límites aceptables de variabilidad. Por lo tanto, se puede determinar el número de observaciones teniendo en cuenta el margen de error y una probabilidad fija de no excederlo.

Si tenemos n medidas, la media muestral se expresa como:

La desviación típica muestral sería:

Y se define el error cuadrático de la media, o desviación típica de la media, como:

Teniendo en cuenta las propiedades de la distribución normal, el 95,45% de los valores probables de la media es que se encuentren en el intervalo de ±2Δx de la media.

De esta forma, si se hacen n lecturas, se puede calcular la media y su error cuadrático, lo cual nos indicará el error que tendrá la lectura. Por aproximaciones sucesivas, se podría aumentar el número de lecturas hasta que el error no supere un determinado límite.

Supongamos, por ejemplo, que el error no sobrepase el 5%, con el nivel de confianza del 95,45%, entonces, el número n’ de observaciones será:

Y por tanto,

Si el número inicial de observaciones, n, es insuficiente al aplicar la fórmula, entonces se debe aumentar las observaciones a n’ y volver a comprobar.

Estabilidad del operario

Como se ha visto anteriormente, el número de observaciones n necesarias será función de la desviación típica muestral. Si el tiempo medido varía poco, se requieren pocas observaciones. Por tanto, es conveniente cronometrar a operarios que realicen su trabajo de la forma más uniforme posible, en condiciones normalizadas. De esta forma, con un número relativamente bajo de medidas, se obtendrá el tiempo estándar como el promedio de las observaciones.

Sin embargo, no es posible desterrar la variabilidad, pues siempre existen ligeros errores en la lectura del cronómetro, pequeños cambios en el material o la posición de la herramienta, variaciones en las propiedades del material o pequeñas variaciones no intencionadas en el ritmo del operario o en el patrón de movimientos.

Os paso un vídeo explicativo al respecto.

Referencias:

ALONSO, J.; RUIZ, J.M. (1982). Ingeniería de producción. Ediciones Deusto, Bilbao.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué hacemos con los valores atípicos (outliers)?

Figura 1. Valor atípico en el diagrama de caja y bigotes

Un valor atípico (outlier, en inglés) es una observación que numéricamente es muy distinta al resto de elementos de una muestra. Estos datos nos pueden causar problemas en la interpretación de lo que ocurre en un proceso o en una población. Por ejemplo, en el cálculo de la resistencia media a compresión simple de unas probetas de hormigón, la mayoría se encuentran entre 25 y 30 MPa. ¿Qué ocurriría si, de repente, medimos una probeta con una resistencia de 60 MPa? La mediana de los datos puede ser 27 MPa, pero la resistencia media podría llegar a 45 MPa. En este caso, la mediana refleja mejor el valor central de la muestra que la media.

La pregunta que nos podemos plantear es inmediata. ¿Qué hacemos con esos valores atípicos? La opción de ignorarlos a veces no es la mejor de las soluciones posibles si pretendemos conocer qué ha pasado con estos valores. Lo bien cierto es que distorsionan los resultados del análisis, por lo que hay que identificarlos y tratarlos de forma adecuada. A veces se excluyen si son resultado de un error, pero otras veces son datos potencialmente interesantes en la detección de anomalías.

Los valores atípicos pueden deberse a errores en la recolección de datos válidos que muestran un comportamiento diferente, pero reflejan la aleatoriedad de la variable en estudio. Es decir, valores que pueden haber aparecido como parte del proceso, aunque parezcan extraños. Si los valores atípicos son parte del proceso, deben conservarse. En cambio, si ocurren por algún tipo de error (medida, codificación…), lo adecuado es su eliminación. En la Tabla 1 se recogen algunas de las causas comunes de los valores atípicos y sus acciones posibles.

Tabla 1. Causas comunes de los valores atípicos. Fuente: Soporte de Minitab(R) 18.

Causa Acciones posibles
Error de entrada de datos Corregir el error y volver a analizar los datos.
Problema del proceso Investigar el proceso para determinar la causa del valor atípico.
Factor faltante Determinar si no se consideró un factor que afecta el proceso.
Probabilidad aleatoria Investigar el proceso y el valor atípico para determinar si este se produjo en virtud de las probabilidades; realice el análisis con y sin el valor atípico para ver su impacto en los resultados.

Los valores atípicos a veces son subjetivos y existen numerosos métodos para clasificarlos. La detección de valores atípicos se puede realizar a nivel univariante usando gráficos sencillos como histogramas o diagramas de caja y bigotes. A nivel bivariante se pueden localizar mediante análisis de diagrama de dispersión o análisis de los residuos. En el ámbito multivariante se pueden descubrir los valores atípicos mediante un análisis de la matriz de residuos.

El método más habitual por su sencillez y resultados es el test de Tukey, que toma como referencia la diferencia entre el primer cuartil (Q1) y el tercer cuartil (Q3), o rango intercuartílico. En un diagrama de caja se considera un valor atípico el que se encuentra 1,5 veces esa distancia de uno de esos cuartiles (atípico leve) o a 3 veces esa distancia (atípico extremo). Se trata de un método paramétrico que supone que la población es normal (Figura 2). No obstante, también existen métodos no paramétricos cuando la muestra no supere la prueba de normalidad correspondiente.

Figura 2. Detección paramétrica de valores atípicos, basado en la curva de distribución normal. Wikipedia

Os dejo algún vídeo donde se explica cómo detectar los valores atípicos.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Medición del trabajo a través del procedimiento de observaciones instantáneas

Las observaciones instantáneas constituye un procedimiento de medición del trabajo que, junto con el cronometraje, permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. El cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso. En cambio, las observaciones instantáneas cubre el resto de los escenarios posibles, como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Las observaciones instantáneas se basan en comprobar si, en un momento dado, un recurso se encuentra trabajando o parado. Se puede estimar el tiempo de trabajo y el de parada, así como su error estadístico basándose en la distribución binomial de probabilidad. Se puede realizar una pasada si observamos a un conjunto de recursos y anotamos para cada uno de ellos su situación de trabajo o parada. Para planificar correctamente las observaciones, se debería garantizar que todas las actividades sean observadas un número de veces proporcional a su duración.

Detengámonos un momento en el fundamento estadístico del método. Supongamos que p es la fracción del tiempo en el que un recurso presenta una característica. Por ejemplo, si p=15% puede significar que, del tiempo total de permanencia de una máquina en una obra, el 15% del tiempo se encuentra parada. Si extraemos n elementos de la población infinita de posibilidades en las que una máquina puede estar parada en una proporción p en una obra, la probabilidad de que x máquinas se encuentren paradas se encuentre parada sería la siguiente:

Si en la distribución binomial se cumple que n·p>15, entonces la distribución binomial -que es discontinua- se puede aproximar a la distribución normal -que es continua-.

Ahora lo que nos interesa es conocer el tamaño de la muestra n para proporciones en una población infinita. Para calcular este tamaño de muestra, antes debemos especificar el nivel de confianza con el que se desea realizar la estimación y el margen de error máximo tolerable D. De esta forma, se espera trabajar con una muestra que sea representativa y que las estimaciones sean consistentes. La expresión que utilizaremos será la siguiente:

Aquí os dejo una tabla que relaciona el nivel de confianza con los las variables utilizada en la fórmula anterior:

Nivel de confianza α Z α/2 (Z α/2)2
99% 0,01 2,576 6,636
95% 0,05 1,960 3,842
90% 0,10 1,645 2,706
80% 0,20 1,280 1,638
50% 0,50 0,674 0,454

 

También os dejo un vídeo explicativo y un problema resuelto.

Descargar (PDF, 100KB)

Referencia:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Por qué no nos salen las cosas siempre “exactamente” igual?

Siempre que intentamos hacer algo nunca nos sale “exactamente” igual. Por ejemplo, si corremos 100 m lisos y tuviésemos un cronómetro que nos midiera hasta 100 decimales, sería muy improbable que hiciésemos dos series en igual tiempo. Este concepto universal de la variabilidad es muy importante en los procesos productivos y en la calidad. Demos un pequeño repaso al concepto.

El enemigo de todo proceso es la variación, siendo la variabilidad inevitable. Cuando se fabrica un producto o se presta un servicio, es materialmente imposible que dos resultados sean exactamente iguales. Ello se debe a múltiples motivos, más o menos evitables. Por un lado existen múltiples causas comunes, aleatorias y no controlables que hacen que el resultado cambie siguiendo habitualmente una distribución de probabilidad normal. Se dice que dicho proceso se encuentra bajo control estadístico, siendo éste el enfoque que sobre el concepto de calidad propugna Deming y que vimos en un artículo anterior. Por otra parte, existen unas pocas causas asignables, que ocurren de forma fortuita y que podemos detectarlas y corregirlas. Ocurren de forma errática y, afortunadamente se solucionan fácilmente. Las causas comunes son difíciles de erradicar porque precisan de un cambio del proceso, de la máquina o del sistema que produce los resultados, siendo ese cambio una responsabilidad de la gerencia. Kaouru Ishikawa decía que el 85% de los problemas en un proceso son responsabilidad de la gerencia, siendo mal recibido dicho comentario por parte de la alta dirección de las empresas.

Para aclarar y entender estos conceptos, os dejo un Polimedia explicativo, de poco más de siete minutos, que espero os guste.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.