Medición del trabajo a través del procedimiento de observaciones instantáneas

Junto con el cronometraje, las observaciones instantáneas constituye un procedimiento de medición del trabajo que permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Igualmente se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. Sin embargo, si bien el cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso, las observaciones instantáneas cubre el resto de los escenarios posibles como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Las observaciones instantáneas se basan en comprobar si, en un momento dado, un recurso se encuentra trabajando o parado. Se puede estimar el tiempo de trabajo y el de parada, así como su error estadístico basando se en la distribución binomial de probabilidad. Se puede realizar una pasada si observamos a un conjunto de recursos y anotamos para cada uno de ellos su situación de trabajo o parada. Para planificar correctamente las observaciones, se debería garantizar que todas las actividades sean observadas un número de veces proporcional a su duración.

Detengámonos un momento en el fundamento estadístico del método. Supongamos que p es la fracción del tiempo en el que un recurso presenta una característica. Por ejemplo, si p=15% puede significar que, del tiempo total de permanencia de una máquina en una obra, el 15% del tiempo se encuentra la máquina parada. Si extraemos n elementos de la población infinita de posibilidades en las que una máquina puede estar parada en una proporción p en una obra, la probabilidad de que x máquinas se encuentren paradas se encuentre parada sería la siguiente:

Si en la distribución binomial se cumple que n·p>15, entonces la distribución binomial -que es discontinua- se puede aproximar a la distribución normal -que es continua-.

Ahora lo que nos interesa es conocer el tamaño de la muestra n para proporciones necesario para una población infinita. Para calcular este tamaño de muestra, antes debemos especificar el nivel de confianza con el que se desea realizar la estimación y el margen de error máximo tolerable D. De esta forma, se espera trabajar con una muestra que sea representativa y que las estimaciones sean consistentes. La expresión que utilizaremos será la siguiente:

Aquí os dejo una tabla que relaciona el nivel de confianza con los las variables utilizada en la fórmula anterior:

Nivel de confianza α Z α/2 (Z α/2)2
99% 0,01 2,576 6,636
95% 0,05 1,960 3,842
90% 0,10 1,645 2,706
80% 0,20 1,280 1,638
50% 0,50 0,674 0,454

 

También os dejo un vídeo explicativo y un problema resuelto.

Descargar (PDF, 100KB)

Referencia:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Por qué no nos salen las cosas siempre “exactamente” igual?

Siempre que intentamos hacer algo nunca nos sale “exactamente” igual. Por ejemplo, si corremos 100 m lisos y tuviésemos un cronómetro que nos midiera hasta 100 decimales, sería muy improbable que hiciésemos dos series en igual tiempo. Este concepto universal de la variabilidad es muy importante en los procesos productivos y en la calidad. Demos un pequeño repaso al concepto.

El enemigo de todo proceso es la variación, siendo la variabilidad inevitable. Cuando se fabrica un producto o se presta un servicio, es materialmente imposible que dos resultados sean exactamente iguales. Ello se debe a múltiples motivos, más o menos evitables. Por un lado existen múltiples causas comunes, aleatorias y no controlables que hacen que el resultado cambie siguiendo habitualmente una distribución de probabilidad normal. Se dice que dicho proceso se encuentra bajo control estadístico, siendo éste el enfoque que sobre el concepto de calidad propugna Deming y que vimos en un artículo anterior. Por otra parte, existen unas pocas causas asignables, que ocurren de forma fortuita y que podemos detectarlas y corregirlas. Ocurren de forma errática y, afortunadamente se solucionan fácilmente. Las causas comunes son difíciles de erradicar porque precisan de un cambio del proceso, de la máquina o del sistema que produce los resultados, siendo ese cambio una responsabilidad de la gerencia. Kaouru Ishikawa decía que el 85% de los problemas en un proceso son responsabilidad de la gerencia, siendo mal recibido dicho comentario por parte de la alta dirección de las empresas.

Para aclarar y entender estos conceptos, os dejo un Polimedia explicativo, de poco más de siete minutos, que espero os guste.