¿Cómo predimensionar un puente losa pretensado con aligeramientos para carreteras?

Paso superior Liria (Valencia)
Paso superior de hormigón postesado en Liria (Valencia)

Con este post continuamos una serie iniciada con el predimensionamiento de muros que puede servir para encajar presupuestos y soluciones iniciales para el caso de puentes losa pretensados empleados en carreteras (ya publicamos dos posts sobre historia y construcción de puentes viga). Para más adelante dejaremos más información sobre puentes losa pretensados macizos o bien otros empleados para ferrocarriles. Una información en detalle de estos aspectos la podéis consultar en la publicación de Yepes et al (2009).

Los tableros losa construidos “in situ” mediante cimbra se utilizan para luces cortas y medias, en torno a 30 m, pero que pueden alcanzar los 50 ó 60 m. Esta tipología, según indica Manterola (2006) representa un compromiso entre la facilidad constructiva y las condiciones resistentes. La supresión de juntas, la reducción de momentos flectores principales cuando el tablero es continuo y una mayor libertad en forma y en la colocación de las pilas son algunas de las ventajas de estas estructuras frente a las prefabricadas de vigas. Los puentes losa suelen proyectarse en tramos continuos hiperestáticos, en hormigón pretensado casi siempre. El encofrado normalmente se fabrica para cada tablero, por lo que se adaptan a cualquier trazado, prestándose a diseños más cuidados. La estética constituye, además, un aspecto importante, pues con frecuencia son las únicas obras visibles para el usuario que circula bajo ellas.

Continue reading “¿Cómo predimensionar un puente losa pretensado con aligeramientos para carreteras?”

¿Cómo predimensionar un muro sin calculadora?

Fuerzas actuantes sobre muro de contención

Los muros de contención de tierras constituyen una de las estructuras más frecuentes en la construcción de obras civiles y de edificación, siendo habitual la tipología de muros ménsula de hormigón armado. El proyecto de estos elementos de contención constituye un problema de interacción entre el suelo y la estructura cuya finalidad consiste en retener un material de forma suficientemente segura y económica.

Los muros se proyectan basándose en la validación de un diseño inicial que se modifica sucesivamente hasta cumplir con todas las exigencias. En primer lugar, se adopta una geometría previa empleando reglas de predimensionamiento sancionadas por la práctica o referencias de casos similares. Sobre este diseño tentativo se analiza el cumplimiento de determinados requisitos de seguridad (estabilidad y resistencia) y durabilidad. Si la estructura no cumple estos requerimientos, o si lo hace de forma muy holgada, se modifica el esquema inicial y se repite el proceso.

Diseño estructural por el método de prueba y error
Diseño estructural por el método de prueba y error

Todo ello conforma un panorama de procedimientos artesanales de diseño alejados de una metodología objetiva en la elección de las dimensiones y los materiales. Tales métodos conducen a proyectos seguros estructuralmente, pero cuya economía queda muy ligada a la experiencia previa del ingeniero. Con todo, una estructura no sólo debe cumplir las condiciones de seguridad, calidad y funcionalidad, sino que además debe construirse al menor coste posible.

Algunos trabajos sobre optimización han tratado de resolver el diseño automatizado de estos problemas y buscar soluciones óptimas desde el punto de vista económico y medioambiental. Para aquellos que quieran profundizar en el tema, podéis consultar las referencias.

Pero, para los que queráis predimensionar rápidamente, os paso una serie de reglas prácticas que creo son de interés y que permiten realizar presupuestos y encajes rápidos para este tipo de estructuras, siempre dentro de rangos habituales o normales (entre 4 y 10 m). Llamamos altura total la distancia entre la parte inferior de la zapata y la parte superior del alzado.

La zapata de un muro tendrá una longitud igual a las dos terceras partes de su altura total. El canto de la zapata y el espesor del alzado serán la décima parte de la altura total. La longitud del talón será la quinta parte de la altura total más 1 metro”.

El volumen de hormigón necesario será la sexta parte del cuadrado de la altura total, repartido en proporción 3 a 2 entre el alzado y la zapata. Además, se precisan en torno a 60 kg de acero por cada metro cúbico de hormigón”.

Para los que queráis ser más precisos, os dejo una pequeña calculadora gráfica que permite obtener dicho predimensionamiento. Basta que apretéis al botón “DIBUJAR”. Esta página se encuentra en https://laboratoriosvirtuales.upv.es/eslabon/Ejercicio?do=PredimensionamientoMuros

Sin título

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.

YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140.