Columna de grava mediante vibrosustitución

Figura 1. Lanzas de agua a presión en el vibrador

Las columnas de grava pueden ejecutarse mediante vibración profunda en terrenos cohesivos (más de un 15% de contenido de finos) mediante la técnica de mejora de terrenos denominada vibrosustitución. Con ello se incrementa la capacidad portante global, reducen los asentamientos y eliminan o reducen significativamente el potencial de licuefacción por sismo.

A diferencia del vibrodesplazamiento, la alimentación de grava se realiza por arriba (“top-feed“) y se utiliza el agua a presión para facilitar la introducción del vibrador en el terreno. Por tanto, a este procedimiento también se le denomina columna de gravas por vía húmeda (“wet-way“). No obstante, la vía seca del vibrodesplazamiento es la que más se utiliza actualmente debido a las dificultades que acarrea el uso del agua.

Sin embargo, cuando las paredes laterales del hueco realizado por el vibrador no son autoestables o nos encontramos bajo el nivel freático, entonces no hay más opción que la vibrosustitución. El procedimiento es útil para resistencias al corte sin drenaje entre 20 y 50 kPa, aunque ocasionalmente se puede llegar a 15 kPa. El diámetro de las columnas suele variar entre 0,80 y 1,20 m, dependiendo del tipo de suelo, tamaño de la grava, tipo de vibrador y procedimiento constructivo seguido. Se prefieren gravas de granulometría uniforme, con tamaños entre 25 y 50 mm, aunque se debería estudiar el uso granulométrico para cada caso.

Las lanzas de agua provocan un flujo que ayuda a la estabilidad del hueco y también permite el arrastre y evacuación del detritus generado (Figura 1). Junto con la vibración, el agua a presión de las boquillas laterales superiores impide el efecto arco de la grava al acodalarse entre las paredes de la perforación, el tubo de prolongación o el propio vibrador. Además, también permite refrigerar el motor del vibrador, especialmente si es eléctrico.

Las fases de ejecución son las siguientes (Figura 2):

  1. Introducción del vibrador en el terreno por su propio peso y ayudado por la inyección de agua a presión por su punta.
  2. Licuefacción local por vibración hasta llegar a la profundidad necesaria. Una vez se llega, se reduce la inyección de agua en punta y se aporta la grava.
  3. El vibrador asciende y desciende vibrando e inyectando agua. Al subir, la grava cae por el espacio anular, y cuando baja, compacta la brava contra el terreno contiguo. Suele subirse y bajarse de dos a tres veces en cada tramo, de 30 a 120 cm.
  4. Se extrae el vibrador lenta y escalonadamente, creando una columna densificada con un diámetro que depende del terreno y la potencia empleada.

 

Figura 2. Fases del procedimiento constructivo de la vibrosustitución. Terratest

Las columnas de grava se disponen normalmente en una malla triangular equilátera, con unos espaciamientos entre 1,50 y 3,00 m. Además, en la parte superior se dispone de una plataforma de trabajo de una capa granular de 60 a 100 cm para facilitar las operaciones y el tráfico, reforzando esta capa la parte superior de las columnas y sirviendo de drenaje.

Por último, es importante indicar los grandes volúmenes de agua necesarios en la vibrosustitución. Este caudal, junto con el material en suspensión, se deben tratar en función de las restricciones medioambientales vigentes. Ello supone disponer de un sistema de canales y balsas de decantación, recirculación de agua y tratamiento de lodos decantados antes de su vertido.

Os paso una animación de Hayward Baker sobre la vibrosustitución.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

ORTUÑO, L. (2003). Vibroflotación. Columnas de grava. Jornada sobre mejora del terreno de cimentación, Madrid, diciembre de 2003.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava mediante vibrodesplazamiento

Figura 1. Esquema de una sonda vibrante en vibrodesplazamiento

El vibrodesplazamiento, junto con la vibrosustitución, son técnicas de mejora del terreno de vibración profunda empleadas para ejecutar columnas de grava en terrenos cohesivos que derivan de la vibroflotación clásica, aplicable a los terrenos granulares.

El vibrodesplazamiento  se diferencia de la vibrosustitución tanto por el sistema de aporte de la grava, que se realiza por el fondo (“bottom – feed“), como por el uso del aire comprimido en lugar del agua a presión para la ejecución. Por tanto, a este procedimiento también se le denomina columna de gravas por vía seca (“dry-way“). Utiliza un vibrador cilíndrico, que puede ser de accionamiento eléctrico o hidráulico (Figura 1). Una vez compacta el suelo lateralmente, se rellena la perforación con grava compactada por el propio vibrador. También es posible acoplar un tubo “tremie” a la sonda vibrante para colocar la grava (Figura 2).

Si bien actualmente el material granular se introduce por la parte inferior del vibrador, y el procedimiento en vía seca es continuo, en procedimientos anteriores se tenía que retirar el vibrador cada vez para colocar el material granular, lo cual podía poner en riesgo la continuidad de la columna de grava, además de repercutir en el rendimiento del proceso constructivo.

Figura 2. Sonda vibrante con tubería acoplada para colocar la grava. https://www.larimit.com/mitigation_measures/981/

El vibrodesplazamiento se utiliza para formar columnas de grava en suelos cohesivos estables, no sensitivos, cuando el nivel freático se encuentra alejado. Para que el hueco abierto por el vibrador sea estable, es necesario que la resistencia al corte sin drenaje del suelo sea suficiente, entre 30 y 60 kPa. El aire comprimido, más que ayudar a la penetración del vibrador, sirve para compensar la succión del mismo cuando se eleva. Es un procedimiento adecuado en zonas urbanas, donde el uso de grandes cantidades de agua y su evacuación suele ser complicado. También sirven en terrenos semisaturados.

El material de relleno suele ser grava bien graduada, angular, con tamaños entre 25 y 80 mm. Puede ser grava natural o de machaqueo, o cualquier material duro y limpio, como la escoria. Con gravas menores a 10 mm, se dificulta la penetración de las arcillas con las gravas. El diámetro habitual de las columnas de grava así ejecutadas es de 60 a 75 cm, que es algo menor que el conseguido por la vía húmeda para un mismo vibrador.

Las fases constructivas son las siguientes (Figura 3):

  1. Una vez posicionado el vibrador, se introduce en el terreno por peso propio, por sus vibraciones y por el aire comprimido. Se hinca hasta la profundidad requerida o antes si hay rechazo. Una cargadora lleva la grava a un balde sujeto por una grúa.
  2. El balde descarga la grava sobre una tolva superior que la conduce a un tubo alimentador hasta la parte inferior del vibrador. Una vez alcanzada el sustrato competente, el vibrador se eleva ligeramente y aporta la grava a través del orificio de salida inferior. Cada elevación suele ser de medio metro de relleno, una vez compactado.
  3. El vibrador realiza un movimiento ascendente y descendente permitiendo que la grava caiga por el tubo, compactándola al descender contra el terreno adyacente.
Figura 3. Vibrodesplazamiento. Terratest

Una variante a este procedimiento es el vibrodesplazamiento “off – shore” (Figura 4). Se trata de un vibrohincador con un sistema de transporte hidráulico de la grava hasta una doble cámara de descarga, desde donde la grava se conduce a un tubo alimentador que permite la descarga en el fondo del vibrador.

Figura 4. Columnas de grava off-shore por vibrodesplazamiento. Terratest

Os dejo a continuación una animación de Hayward Baker sobre el vibrodesplazamiento (“vibro replacement“).

En esta otra animación también podemos ver el procedimiento constructivo del vibrodeplazamiento, esta vez de Keller.

KellerTerra muestra en un vídeo de 5 minutos cómo se ejecuta una columna de grava en la obra de la Central de Ciclo Combinado de la Bahía de Escombreras, Murcia.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

ORTUÑO, L. (2003). Vibroflotación. Columnas de grava. Jornada sobre mejora del terreno de cimentación, Madrid, diciembre de 2003.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/es/Tecnolog%C3%ADas/vibrosustituci%C3%B3n

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata normalmente de mejorar la capacidad portante, reducir la deformabilidad, reducir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que pueden aplicarse a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o para estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora; sin embargo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en el caso de tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden clasificar las técnicas de mejora del terreno en función de la temporalidad de la técnica (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo a los métodos de refuerzo y mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava mediante vibrosustitución

KellerTerra muestra en un vídeo de 5 minutos cómo se ejecuta una columna de grava (vibrosustitución) en la obra de la Central de Ciclo Combinado de la Bahía de Escombreras, Murcia. Después de visualizarlo, contesta a las siguientes preguntas:

  1. ¿Qué es una central de ciclo combinado?
  2. ¿Qué circunstancias del terreno hicieron recomendable la mejora del suelo mediante columnas de gravas?
  3. ¿Qué características se querían conseguir del terreno mejorado?
  4. ¿De qué partes consta un tubo vibrador?
  5. ¿Pará qué sirve el tamiz que se encuentra en la tolva donde la cargadora descarga grava?
  6. ¿Qué hace el aire comprimido en la cámara de descarga?
  7. ¿Qué diámetros de columna de grava se ejecutaron?

Otro vídeo de interés sobre la vibrosustitución es el siguiente:

Columnas de gravas

Figura 1. Tratamiento del terreno con columnas de grava en función de la altura del terraplén. Fuente: Carlos Oteo

Las columnas de grava constituyen un método de mejora de terrenos cohesivos blandos mediante la rigidización que produce la introducción de columnas de grava en los orificios creados por el vibrador o equipo de pilotaje convencional, según sea el método de ejecución escogido. Aumenta la capacidad portante del terreno, la estabilidad al deslizamiento en terraplenes, acelera el proceso de consolidación del terreno (constituyen drenes verticales) y provoca una reducción de los asientos en servicio. Se aplica sobre arenas limosas, limos, limos arcillosos, arcillas y rellenos heterogéneos.

En casos en los que además de una preconsolidación es necesario un refuerzo del terreno, como en el caso de terraplenes elevados, que precisan de terrenos portantes de mayor resistencia, la inclusión de columnas de grava permite solucionar el problema.

La columna de grava puede realizarse mediante un pilotaje convencional o mediante el uso de vibradores especiales (Figura 2). La técnica mediante pilotaje convencional puede ser por sustitución o por desplazamiento. La vibrosustitución o vibrodesplazamiento, se aplica en terrenos cohesivos (contenido de finos > 12%), y supone la sustitución del terreno por un material granular de aportación.

Figura 2. Ejecución de columnas de grava

No obstante, también se puede aplicar la vibración profunda en suelos granulares (contenidos de finos < 12%), normalmente con vibradores específicos de baja frecuencia y usando agua a presión para facilitar el hincado, lo que produce una licuefacción parcial del terreno y su densificación. Este procedimiento se denomina vibroflotación o vibrocompactación. El terreno no se sustituye, rellenándose el cono de hundimiento alrededor del vibrador con el terreno, no siendo propiamente una columna de grava. Sin embargo, a veces se aporta material granular de mayor calidad transportado a la obra, por ejemplo, árido de machaqueo de 20-40 mm, por lo que se podría hablar en este caso de una columna de grava.

En la Figura 3 se puede observar el ámbito de aplicación de las columnas de grava frente a la vibrocompactación en función del tipo de terreno. En las arenas se comprueba que existe una zona de transición entre ambas técnicas de mejora de terrenos mediante vibración profunda.

Figura 3. Ámbito de aplicación de las técnicas

Como limitación de esta técnica, en suelos blandos originales que tengan baja capacidad portante para soportar la resistencia lateral que le pueden exigir las columnas cargadas, con resistencias a corte sin drenaje cu ≤ 0.015 MPa.

Figura 4. Relaciones asiento-tiempo en terraplenes con diferentes tratamientos. Fuente: Carlos Oteo

A continuación os dejo un catálogo de Terratest sobre columnas de grava que creo os puede ampliar la información al respecto.

Descargar (PDF, 3.14MB)

Dejo también un artículo de Juan Manuel Fernández Vincent sobre las columnas de grava.

Descargar (PDF, 1MB)

Os pasos varios vídeos de esta técnica de mejora de terrenos. Espero que os sean útiles.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

MONTEJANO, J.C. (2017). Ejecución de columnas de grava como refuerzo de la cimentación de un parque eólico en Nouakchott, Mauritania. Interempresas.net

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.