Curso de Planificación y Gestión de Playas. Universidad de Oporto

La Faculdade de Engenharia da Universidade do Porto (Portugal), a través del Instituto de Hidráulica y Recursos Hídricos (FEUP), junto con la Universitat Politècnica de València, han organizado un Curso de Planificación y Gestión de Playas, que tendrá lugar en Oporto entre los días 25 y 29 de junio de 2018. Esta es la segunda vez que se programa este curso, de 25 horas, que en su primera edición en 2010, tuvo un éxito muy notable en cuanto a participación e inscripción. El curso se desarrollará en español, contando con la participación de tres catedráticos de la UPV: Víctor Yepes, Vicent Esteban y José Serra.

Si estás interesado, las inscripciones las puedes realizar a través del siguiente enlace: https://cursopraiasihrh.weebly.com/inscriccedilotildees.html. Asimismo, el contacto con los organizadores del Curso lo podéis obtener en la siguiente dirección: https://cursopraiasihrh.weebly.com/contactos.html

El programa que se desarrollará será el siguiente:

Bloque 1: Planificación. 5 horas. Víctor Yepes.

  1. El turismo litoral, evolución y tendencias.
  2. La importancia económica de las playas turísticas.
  3. La ordenación de usos y zonificación de las playas.
  4. Capacidad de carga turística de una playa.
  5. La gestión integrada del litoral.

Bloque 2: Infraestructuras. 5 horas. Víctor Yepes.

  1. Infraestructuras lúdicas y deportivas.
  2. Infraestructuras higiénicas y estrategias de ahorro hídrico.
  3. Diseño y gestión de playas accesibles.
  4. Servicios de información, salvamento y primeros auxilios.
  5. Equipos de limpieza de playas.

Bloque 3: Sistemas de gestión de calidad y medio ambiente. 5 horas. Víctor Yepes.

  1. La innovación y gestión de la calidad y del medio ambiente en las playas.
  2. Gestión ambiental de recursos turísticos litorales. Banderas azules.
  3. La aplicación de la norma ISO 9001 e ISO 14001 a las playas.
  4. El sistema de calidad turístico español: La “Q” del ICTE.
  5. La incidencia de la gestión turística en las playas encajadas.

Bloque 4: Procesos y riesgos litorales en playas turísticas. 5 horas. José C. Serra.

  1. El medio costero-litoral: Dinámica, procesos y formas.
  2. Estabilidad, evolución, prognosis y control y seguimiento de playas.
  3. Riesgos en el litoral.
  4. Restauración y sostenibilidad del medio costero-litoral.
  5. Diseño y gestión de paseos marítimos.

Bloque 5: Turismo náutico e instalaciones náutico-deportivas. 5 horas. Vicent Esteban.

  1. La práctica de la náutica deportiva.
  2. Las instalaciones náuticas de recreo.
  3. Tipología de usuarios y servicios náuticos.
  4. Organización y gestión de infraestructuras náuticas.
  5. Impacto socio-económico de las instalaciones náuticas de recreo.

El paisaje en la planificación y gestión de los puertos deportivos en Andalucía

Acaban de publicarnos un artículo en la Revista de Obras Públicas sobre el paisaje en la planificación y gestión de los puertos deportivos en Andalucía. La Revista de Obras Públicas, decana de la prensa española no diaria y editada por el Colegio de Ingenieros de Caminos, Canales y Puertos de España, se adentra en un mundo más amplio que el de las revistas puramente profesionales, atendiendo al mundo de la ciencia y de la tecnología; a la economía o a la política de infraestructuras; a las enseñanzas técnicas o a la historia de la ingeniería, dedicando preferente atención dentro de ellas a la investigación y a la innovación en el sector. Tal ha sido su línea editorial desde su fundación en 1853, y su objetivo sigue siendo mantener esa línea de reflexión sobre el oficio.

Os dejo a continuación la referencia, el resumen y el enlace al artículo. Espero que os sea de interés. El enlace al artículo es el siguiente: http://ropdigital.ciccp.es/detalle_articulo.php?registro=19994&anio=2017&numero_revista=3593

 

RESUMEN:

El paisaje constituye un concepto complejo que trata de las relaciones entre las personas y su entorno. El concepto engloba, por tanto, muchas perspectivas y por ello, cada área del conocimiento lo aborda de forma diferente. Los puertos son elementos singulares dentro del paisaje, con gran atractivo y de gran ornamento desde tiempos antiguos y su posición en el litoral representa una base espléndida para observar el paisaje. En este sentido, este artículo introduce el paisaje en los puertos deportivos de Andalucía —partiendo de sus particularidades de función y escala con respecto a otras instalaciones portuarias— evidenciando su influencia en su planificación y gestión. Basándose en el concepto de paisaje y tras un análisis de la literatura y documentos existentes, se plantean en el artículo los diversos elementos que se deben considerar en cada una de las escalas de aproximación. Este planteamiento sistematizado constituye una herramienta que permite una mejor comprensión y gestión del paisaje en este tipo de instalaciones, considerando los diferentes elementos que se interrelacionan en el entorno natural y social.

Palabras clave:

Paisaje, puerto deportivo, planificación, gestión

ABSTRACT:

The landscape is a complex concept that affects the relation between people and their environment. The concept of landscaping and setting incorporates many perspectives and each area of knowledge is subsequently tackled in a different manner. Ports are unique areas within the landscape that have held great attraction and embellishment since ancient times and their setting on the coastline serves as a perfect location to observe the landscape. This article considers the aspect of landscape at marinas in Andalucia – on the basis of their function and scale with respect to other harbour works- and where this is seen to have a clear influence over their planning and administration. On establishing the concept of landscape and following an analysis of available literature and documents, the authors consider the different elements that should be taken into account in each scale of approach. This systematic approach serves to obtain a greater understanding and administration of the concept of landscape in these types of installation, when considering all the different elements interlinking the natural and social environments.

Key words:

Landscape, marina, planning, management

Referencia:

MARTÍN, R.; YEPES, V. (2017). El paisaje en la planificación y gestión de los puertos deportivos en Andalucía. Revista de Obras Públicas, 164 (3593):38-55.

Descargar (PDF, 612KB)

¿Fueron los romanos más ingenieros que arquitectos?

Reconstrución de un Polyspastos romano en Bonn, Alemania.

En una entrada anterior tuvimos la ocasión de repasar brevemente algunos aspectos de la ingeniería romana, como fue la construcción de calzadas o puentes. Como podréis comprobar, el tema da para varias enciclopedias y el objetivo aquí es simplemente dar un par de pinceladas para despertar la curiosidad sobre aspectos históricos de la ingeniería. Además, en internet existen multitud de enlaces que permiten ampliar el tema considerablemente.

Podríamos empezar por la ingeniería municipal. Las ciudades del imperio romano disponían de sistemas de drenaje y suministro de agua, calefacción, baños públicos, calles pavimentadas, mercados de carne y pescado y otras infraestructuras municipales comparables a las actuales. La aplicación de la ingeniería en las artes militares y en los problemas de navegación, adecuación de puertos y bahías implicó, como en los otros casos, el uso de máquinas, materiales y procesos, que hablan del grado de desarrollo de la ingeniería romana, de la cual quedó constancia escrita en muchos tratados escritos en aquel tiempo y entre los cuales descuellan los trabajos de Marco Vitruvio. Su libro De Archítectura, lo escribió durante primer siglo d.C., donde incluyó el concocimiento del momento sobre materiales y métodos de construcción, hidráulica, mediciones, diseño y planificación urbana. Otra innovación en el ámbito urbano fue la invención del alumbrado público en la ciudad de Antioquía, aproximadamente hacia el año 3~0 d.C. Una innovación interesante de esa época fue la reinvención de la calefacción doméstica central indirecta, que se había usado cerca de 1200 a.C., en Beycesultan, Turquía. Lo extraño es que, tras la caída del Imperio Romano, este tipo de calefacción no se volviera a utilizar.

Restos de los acueductos Aqua Claudia y Anio Novus, integrados como portones de la Muralla Aureliana en el año 271.

Los romanos también fueron buenos ingenieros hidráulicos. En comparación con los anteriores, sus acueductos  eran mayores y más numerosos. Casi todo lo que se sabe actualmente del sistema romano de distribución de aguas proviene del libro “De Aquis Urb’is Romae” de Sexto Julio Frontino, quien fue autor del Aquarum de Roma, de 97 a 104 a.C. Frontino llevaba registros de la utilización del agua, que indican que el emperador usaba el 17%, el 39% se usaba en forma privada, y el 44% en forma pública. Se calcula que en Roma diariamente se consumían entre 380 y 1 100 millones de litros de agua. La fracción del 44% para uso público estaba subdividida adicionalmente en 3% para los cuarteles, el 24% para los edificios públicos, incluidos once baños públicos, 4% para los teatros, y 13% para las fuentes. Había 856 baños privados a la fecha del informe. En todo caso, la administración del agua en Roma era una tarea considerable e importante. Gran parte del agua que supuestamente debería entrar a la ciudad jamás lo hizo, debido a las derivaciones que tenían escondidas los usuarios privados.

Para resolver el problema de la toma de agua para las ciudades, los romanos construyeron acueductos  siguiendo en esencia el mismo diseño, que usaba arcos semicirculares de piedra montados sobre una hilera de pilares. Cuando un acueducto cruzaba una cañada, con frecuencia requería niveles múltiples de arcos. Uno de los mejor conservados de la actualidad es el Pont du Gard en Nimes, Francia, que tiene tres niveles. El nivel inferior también tenía una carretera. Los romanos usaron tubería de plomo y luego comenzaron a sospechar que no eran salubres. Sin embargo, el envenenamiento por plomo no se diagnosticó específicamente sino hasta que Benjamín Franklin escribió una carta en 1768 relativa a su uso.

Las técnicas utilizadas en la edificación por los romanos eran muy depuradas empleando, ya en aquellos tiempos, en sus edificios públicos el hormigón y el ladrillo, construyendo grandes bóvedas, como la del Panteón de Roma de 44 m de luz, realizada en el siglo II a.C. e impresionantes acueductos. Estas técnicas no fueron superadas en Europa hasta cerca del 1800. Uno de los grandes triunfos de la construcción pública durante este periodo fue el Coliseo, que fue el mayor lugar de reunión pública hasta la construcción del Yale Bowl en 1914.

El Coliseo de Roma

En el campo de las cimentaciones de los edificios, una de las innovaciónes reseñables son sus plataformas de hormigón en masa, donde la capacidad hidráulica del cemento puzolánico permitió la colocación de las plataformas de cimentación incluso bajo el agua. En algunos casos, la utilización de estas cimentaciones continuas de gran espesor (losa de cimentación), supuso una solución eficaz en suelos pobres, con riesgo de asientos diferenciales. Así, por ejemplo, El Coliseo se alza sobre el antiguo lago del palacio de Nerón, sobre un anillo macizo de 12 m de profundidad y 170 m de diámetro, compuesto de hormigón y de grandes bloques de piedra. De forma similar el Panteón descansa sobre un anillo sólido de 4,5 m de profundidad y más de 7 m de anchura.

El Panteón de Agripa o Panteón de Roma.

La ingeniería civil romana, y sobre todo la rama que se dedicó a las obras marítimas, experimentó un gran avance cuando descubrió la forma de fabricar morteros y hormigones hidráulicos. Vitruvio comentaba las condiciones para la construcción de distintas obras marítimas. Por ejemplo, en el caso de un dique vertical de hormigón en masa establecía que era necesaria la existencia de una playa apropiada, calidad de los fondos aceptable, posibilidad de utilizar en obra el cemento puzolánico y solicitaciones de oleaje de pequeña entidad. El procedimiento constructivo comenzaba construyendo un recinto tablestacado mediante la hinca de maderas de roble. Posteriormente se procedía a sanear sus capas superficiales dragando, al mismo tiempo que se realizaba el perfilado de la cimentación. Las dragas eran manuales, iguales a las que se han utilizado hasta principios del siglo XIX. Posteriormente se hormigonaba bajo el agua, llenando el recinto de conglomerado hidráulico. Se desencofraba retirando las tablestacas y se procedía a un nuevo avance repitiendo los pasos descritos. Se finalizaba la obra coronando el dique con un cabecero realizado mediante muros perimetrales de ladrillo o sillería. El hueco entre ellos se rellenaba de “todo uno” y sobre este material disgregado, se construía la calzada. Se desarrollaron grúas y barcazas que se utilizaron intensivamente en la construcción. Otro de los procedimientos constructivos a destacar es la de los cajones flotantes celulares herméticos, precursor de los diques monolíticos actuales. También hicieron uso de diques con baja cota de coronación (como en Cesarea Marítima, Israel en el 20 a.C.) para reducir la energía del oleaje antes de alcanzar el dique principal. El mayor complejo portuario artificial fue el Puerto Imperial de Roma, diseñado por Trajano, con una dársena hexagonal y un tráfico de trigo con Egipto y Francia de 300,000 t anuales.

Por supuesto, nos dejamos para otros posts, otros aspectos que irán surgiendo sobre la ingeniería y la arquitectura romanas.

Os dejo un vídeo explicativo de la construcción de los muros en este periodo.

 

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gánguil o pontón

Gánguil BOCAMI – FCC Construcciones, S.A. www.astillerosdeaviles.com

El gánguil, también llamado pontón o barcaza, es una embarcación plana, con una cántara o depósito donde se almacena el material dragado y que sirve para transportarlo hasta el lugar de vertido.

Presenta una capacidad entre 50 y 2000 m3. Pueden ser autopropulsados (mar abierto) o remolcados (aguas poco profundas).

Según el modo de descarga, los gánguiles se pueden clasificar en:

  • Gánguil cerrado: descarga por medios mecánicos auxiliares
  • Gánguil de compuerta de fondo: descarga por la apertura de una compuerta giratoria
  • Gánguil de charnela: vaciado por apertura longitudinal del casco
  • Gánguil de volcado lateral

Vamos a ver en un par de vídeos varios ejemplos de cómo funciona esta máquina de transporte. En el primer vídeo veremos un gánguil de 57 m de eslora y 11,20 m de manga, con una capacidad de transporte de 1400 toneladas de escollera.

En el segundo, podremos ver el sistema de apertura de cántara de doble sentido y de velocidad controlable.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es una draga estacionaria de succión?

http://www.hollandmt.com/
http://www.hollandmt.com/

La draga estacionaria de succión (plain suction dredger, en inglés) es una draga hidráulica dotada de un mecanismo de succión sumergible, similares a las de succión en marcha. Sin embargo, a diferencia de las dragas de succión en marcha, las estacionarias operan ancladas. La succión crea una depresión en el lecho en forma de cono invertido, vertiéndose el material extraído sobre barcazas o bien impulsándose mediante bombeo. Son máquinas muy útiles cuando la zona de trabajo se encuentra muy lejos de la zona de vertido, pero su inconveniente es que la carga del material sobre gánguiles sólo se puede efectuar en aguas tranquilas.

Este tipo de dragas se emplea normalmente en la extracción de material granular para la posterior restauración de terrenos, alcanzándose grandes rendimientos cuando la capa de sedimentos presenta un buen espesor, de al menos 3 m. El límite habitual de profundidad máxima de dragado es de unos 50 m. La máquina puede operar incluso con alturas máximas de ola de 3 m y una velocidad máxima de corriente de 3 nudos.

http://www.theartofdredging.com/

El modo de operación es el siguiente:

  • Estacionamiento en la zona de trabajo
  • Posicionamiento de la barcaza junto a la draga o conexión a las tuberías de impulsión en el caso de bombeo
  • Descenso de los equipos de succión hasta la capa de material granular
  • Puesta en marcha de la succión y de los cabezales inyectores de agua que fluidifican y arrastran el terreno
  • Carga de los gánguiles a través de conductos elevados con difusores o bombeo

Os pongo un vídeo que muestra el funcionamiento de esta máquina de succión. Espero que os sea útil.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2006). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universidad Politécnica de Valencia. Ref. 2006.4038.

 

Importancia de las obras de dragado

https://es.m.wikipedia.org/wiki/Archivo:Dragagem_Luschi.jpg
https://es.m.wikipedia.org/wiki/Archivo:Dragagem_Luschi.jpg

Entendemos por dragado al conjunto de tareas de limpieza de rocas, sedimentos y otros materiales situados bajo el agua, ya sea en medio marino, fluvial o lacustre. Comprende las operaciones de extracción, transporte y vertido de dichos materiales. El objetivo puede ser aumentar el calado de ríos, canales o accesos portuarios para facilitar el tráfico de embarcaciones o bien aumentar la capacidad de transporte de agua en ríos para evitar inundaciones aguas abajo. La extracción de materiales se realiza mediante equipos de dragado, el transporte del material del punto de extracción al de vertido se puede realizar con la misma embarcación que realiza el dragado, mediante gánguiles de carga o por tuberías. Por último, el vertido suele realizarse por el fondo de la embarcación de transporte o bien mediante bombeo por tubería, si bien últimamente el aprovechamiento de los materiales dragados es cada vez más frecuente.

La aplicación de los dragados es muy amplia, fundamentalmente ingeniería civil y minería. Se clasifican según: objetivo del dragado, emplazamiento y características de los terrenos a dragar. El dragado se considera como un medio para conseguir un objetivo determinado. Entre otros se podrían enunciar los siguientes:

  • Construcción y ampliación de puertos
  • Mantenimiento y mejora de calados en puertos y cauces
  • Mantenimiento y mejora de capacidad de desagüe en ríos y canales
  • Recuperación de zonas bajas inundables y drenaje de zonas pantanosas
  • Sustitución de terrenos de bajas características geotécnicas
  • Creación de suelo ganando terreno al mar
  • Cimentación y protección de Obras marítimas (offshore)
  • Construcción de rellenos para bases de carreteras, diques y aeropuertos
  • Trincheras submarinas para oleoductos, tuberías y emisarios
  • Extracción de materiales para la construcción y minerales
  • Extracción de sedimentos y áridos marino
  • Extracción de arenas para la regeneración de playas
  • Creación de Islas artificiales en aguas costeras
  • Limpieza de fondos contaminados y sustitución de los mismos
  • Actuaciones de regeneración de hábitats subacuáticos

 

Draga con tolva continua. https://es.m.wikipedia.org/wiki/Archivo:Draga_con_tolva_continua.jpg
Draga con tolva continua. https://es.m.wikipedia.org/wiki/Archivo:Draga_con_tolva_continua.jpg

Las operaciones de dragado requieren de altas inversiones en maquinaria y medios especiales, por lo que la elección del equipo para caso determinado resulta crítica. Una primera clasificación de los equipos atendería a los métodos de excavación, forma de operación y desalojo del material (subida del material a la superficie). De esta forma tendríamos dragas mecánicas, dragas hidráulicas y dragas especiales. Las primeras utilizan medios mecánicos para la excavación y el desalojo, mientras las segundas lo hacen con medios hidráulicos (succión o inyección). Los medios especiales son muy diversos y de usos muy específicos.

Antes de realizar un dragado, se necesitan conocer una serie de aspectos sobre las zonas de extracción y de vertido como son la batimetría, las características geotécnicas y geológicas del material a dragar y las condiciones medioambientales de las zonas de dragado, transporte y vertido. Estos datos servirán para reducir al máximo posible los costes ambientales y económicos asociados.

También podéis consultar mi canal Youtube para ver más vídeos de obras marítimas y dragados: https://www.youtube.com/playlist?list=PLcy8Kq2fLuWlw_QLb3O6M3tvYxyFoqYNG

Referencia:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

Draga retroexcavadora

Draga retroexcavadora. Fuente: http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html
http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html

La draga retroexcavadora (backhoe/dipper dredge, en inglés) es una draga mecánica montada sobre un pedestal situado en un extremo de una pontona. Se trata normalmente de una retroexcavadora usada en el ámbito terrestre. Los cazos suelen tener una capacidad entre 1 y 20 m3. La pontona debe fondearse mediante tres pilones, uno en popa y los otros en los laterales de la parte delantera de la pontona, que aportan la reacción necesaria al esfuerzo de excavación.

Se usa esta draga en todo tipo de suelos, incluso rocas de hasta 10 MPa de resistencia a compresión simple. La profundidad máxima de dragado está en torno a los 24 m. Puede trabajar con alturas máxima de ola de 1,5 m y una velocidad máxima de corriente de 2 nudos. Se puede emplear en espacios reducidos. Sin embargo, necesita barcazas o vertido directo, lo cual dificulta su uso en las regeneraciones costeras. Además, debido a su operación discontinua, presenta menor producción que otras dragas. El campo de aplicación de estas dragas es muy similar a las de rosario, aunque las retro serían más adecuadas para el dragado de rocas y menos resistencia al oleaje.

Os dejo unos vídeos donde podréis ver cómo funciona esta draga. Espero que os gusten.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2006). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universidad Politécnica de Valencia. Ref. 2006.4038.

Dragas de succión en marcha o de arrastre

Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/
Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/

Una draga hidráulica de succión en marcha o de arrastre es una embarcación autopropulsada y autoportante que draga de forma continua elevados volúmenes de material en aguas profundas, incluso admitiendo condiciones marítimas desfavorables. Este tipo de dragas suponen algo menos de la cuarta parte del parque mundial de dragas hidráulicas.

El material se aspira mediante una tubería que presenta en su extremo un cabezal de succión. La bomba de dragado, centrífuga, puede ser sumergible (ésta se instala en la tubería de succión a medio camino entre el cabezal y la conexión del tubo de succión al forro exterior del casco), o estar a bordo. La bomba pone en suspensión al material suelto y al agua, aspira dicha mezcla mientras el barco sigue en movimiento y la almacena en la cántara de la propia draga. El material sólido se decanta y el agua se evacua por rebose. La cántara puede almacenar entre 1000 y 20000 m3, pudiéndose transporta el material a grandes distancias. Se descarga el material por apertura del fondo o por bombeo.

Esta draga es muy útil en terrenos blandos no demasiados compactos ni cohesivos (fangos, arcillas blandas, arenas y algunas gravas). La profundidad de trabajo de esta draga se encuentra habitualmente entre los 4 y 50 m, aunque ya se han alcanzado profundidades de trabajo que llegan a 120-150 m. La velocidad de navegación, de 17 nudos. Puede trabajar hasta con una altura de ola de 5 m. El tamaño máximo de partícula es de 300 mm y la resistencia máxima al corte del material a dragar es de 75 kPa.

Os paso un vídeo donde podéis observar cómo trabajan estas dragas. Espero que os guste.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cimentación mediante cajones de aire comprimido

Disposición general de un cajón neumático (adaptado de Wilson y Sully, 1949)

Un cajón es una estructura que hundida a través  del terreno o del agua permite colocar la cimentación a la profundidad de proyecto, y que posteriormente pasa a formar parte de la estructura definitiva. Estos cajones pueden ser de fondo abierto o de fondo cerrado (ver cajones flotantes). Nos centraremos en este post en los cajones de fondo abierto en las que existe una cámara de trabajo sometida a una presión superior a la atmosférica para impedir que el agua entre en la excavación. Se trata de las cimentaciones mediante cajones neumáticos o de aire comprimido.

Alguien puede preguntarse a qué viene un post sobre una técnica que tiene riesgos evidentes de ejecución y que ya en un artículo de Presa y Eraso (1970) nos avisaba que era una técnica en trance de desaparecer. Hoy día existen procedimientos (por ejemplo pilotes de gran diámetro) que son más sencillos de construir, suficientemente seguros, rápidos y económicos que permiten evitar riesgos innecesarios, especialmente los procesos de compresión y descompresión que requieren tiempos suficientes, tal y como ocurre en los trabajos realizados por los buzos o submarinistas. Pues bien, razones históricas y docentes nos llevan a analizar brevemente este procedimiento constructivo y a dejar unas cuantas referencias al lector curioso que quiera ampliar información al respecto.

En 1830 el británico Thomas Cochrane ideó y patentó un sistema para cimentar en seco, mientras que en Francia, de forma paralela, el ingeniero de minas francés Jacques Triger ideó en el año 1839 un sistema para poder excavar en el interior de la mina de Chalonnes  -que dirigía- en la zona cubierta por el agua del cercano río Loira. Mediante una cámara llena de aire a presión conseguía evitar la entrada del agua y así poder trabajar cómodamente. Habían inventado el cajón de aire comprimido.

Puente de Saltash (Isambar Brunel, 1854-1859)

El aire comprimido fue empleado por primera vez en cajones de puentes por John Wright en 1851 para los pilares de puente Rochester, y algunos años más tarde por Isambard Brunel en el puente Saltash. El primero que lo utilizó en cimentaciones de puentes muy grandes fue James B. Eads, en el puente St. Louis sobre el río Mississippi, comenzado en 1864. El capitán Eads conocía muy bien el Mississippi, por eso sabía que el lecho era muy socavable. En una ocasión había buceado con escafandra durante una de las crecidas del rió y pudo observar el movimiento de las arenas del fondo. Por eso no dudó en bajar las cimentaciones a gran profundidad por debajo del lecho del río. Los dos pilares situados en el río se hundieron por medio de aire comprimido hasta profundidades de 26 y 28 m bajo el nivel del agua, lo que constituyó un éxito notable ya que los efectos fisiológicos al trabajar bajo elevadas presiones de aire eran más o menos desconocidos por aquel tiempo. Los métodos de hundimiento ideados por Eads han variado hasta ahora únicamente en algunos detalles. Daniel E. Moran introdujo en 1936 un nuevo tipo de cajón conocido con el nombre de “cajón de flotación”, siendo empleado para el puente sobre la  bahía de San Francisco-Oakland.

Puente de St. Louis sobre el río Mississippi (James B. Eads, 1864-1874)
Puente de Brooklyn, Nueva York (John Augustus Roebling, 1867-1883)
Puente de Brooklyn, Nueva York (John Augustus Roebling, 1867-1883)

En Estados Unidos el ejemplo más llamativo en el uso de cajones de aire comprimido es el puente de Brooklyn. Se trata de cajones de 52 por 31 m, en el lado de Nueva York, que se dividieron en seis habitaciones donde trabajaban entre 15 y 20 personas en cada una de ellas –hasta 180 personas en su interior- y lo bajaron cerca de 24 metros bajo las aguas del East River. Hubieron grandes problemas y accidentes con las descompresiones, donde la mitad de los trabajadores sufrieron graves secuelas, y donde el propio Washington Roebling,  ingeniero jefe tras la muerte de su padre John A. Roebling, diseñador del puente, sufrió también las secuelas tras una visita de obra.

El procedimiento constructivo consiste en la hinca de un cajón con su borde inferior biselado o con forma de cuchilla que se va construyendo a medida que progresa la excavación del material que va quedando encerrado en su interior. Cuando se alcanza el lecho de roca, la cámara de trabajo se llena de hormigón y se convierte en la base permanente para la cimentación.  Su uso se limita a terrenos muy permeables o flojos debido al posible sifonamiento, cuando no sea posible el uso de un método alternativo. Antes de iniciar el proceso constructivo se hunde como un cajón abierto, tan profundo como sea posible. Mediante la inyección de aire comprimido se evita el desmoronamiento de las paredes.

El cajón de aire comprimido suele tener un cilindro de acceso para los trabajadores,  y otro cilindro independiente para los cangilones donde se coloca el material excavado. Hay unas compuertas herméticas que permiten mantener constante la presión de la campana durante la entrada y la salida de trabajadores y materiales. La presión debe equilibrarse en ambos lados de la compuerta para poder abrirla.

Mediante este método se pueden llegar a estratos de hasta 35 m de profundidad bajo el nivel del agua (pues los hombres on pueden trabajar a presiones de aire superiores a los 3,5 kg/cm2), no es necesario el agotamiento, es posible el acceso directo al fondo para vencer ciertos obstáculos durante el proceso de hinca y el fondo, una vez alcanzado, se puede observar y limpiar directamente, por lo que se garantiza unas condiciones buenas de cimentación. Sin embargo, entre los inconvenientes de este tipo de técnica destacan los siguientes: costes unitarios por material excavado altos y primas por peligrosidad a los trabajadores, pues se puede producir la muerte de los trabajadores por asfixia si hay una descompresión rápida de la cámara de trabajo. Ello obliga a duplicar las fuentes de energía para mantener la seguridad en la presión de aire.

Referencias:

Marsal, R.; Lloréns, M. (1980). Cimentaciones semiprofundas, en Jiménez-Salas, J.A. (Ed.) Geotecnia y Cimientos III: 212-251. Editorial Rueda, Madrid.

Presa, J.; Eraso, A. (1970). Las cimentaciones realizadas con cajones de aire comprimido. Una técnica en trance de desaparecer. Revista de Obras Públicas, 117(3064):855-862.

Tomlinson, M.J. (1982). Diseño y construcción de cimientos. Urmo, S.A. de Ediciones, Bilbao.

Willson, W.S.; Sully, F.W. (1949). Compressed-air caisson foundations. Inst. C.E. Works Comstruction Paper núm. 13.

Yepes, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Posibles efectos del cambio climático en el turismo en España

La subida del nivel medio del mar en el litoral español es un hecho constatado, la comunidad científica y técnica aceptan los 6 mm/año. Asimismo investigadores e ingenieros especializados en ingeniería de costas aceptan la ley de Brunn que se traduce en que 1 ud. de ascenso vertical del mar se traduce en un retroceso de la línea de costa entre 35 y 40 uds. Este fenómeno puede acelerarse en función del modelo climático escogido. La velocidad de cambio se presenta como el parámetro determinante. En España, con 8.000 km de costas y en la que el sector turismo supone el 15% de su P.I.B., es el turismo de playa el que produce mayores ingresos. Determinados estudios concluyen que 1 m2 de playa puede llegar a producir 700 € de beneficio neto año, convirtiendo a las playas en una de las “infraestructuras” de mayor retorno económico. Ante cambios de tal magnitud y transcendencia, España debe estudiar el fenómeno en detalle y planificar mecanismos que le permitan adaptarse ante los grandes cambios, al parecer inexorables, que se avecinan sobre nuestro litoral. A través de tres ponentes de lujo, se pretende aproximar a los ingenieros y a la sociedad a este complejo fenómeno, que desafía a la humanidad con consecuencias económicas directas y que constituye en sí mismo, un nuevo campo para el desarrollo profesional de los ingenieros.
El Comité de Asuntos Marítimos del Instituto de la Ingeniería de España ha organizado una jornada denominada “Posibles efectos del cambio climático en el turismo en España” para el día 29 de octubre de 2015, a la cual he sido invitado como ponente como en la posterior mesa redonda. El tema creo que es de gran interés y la inscripción es gratuita en: http://goo.gl/forms/vt08pkk87Z o en el 91.319.74.17 . La jornada se podrá seguir en directo a través de la página web del IIE.
Os dejo a continuación el programa previsto y también os adjunto un documento explicativo de la jornada.

PROGRAMA

18:00 Bienvenida a los asistentes y presentación de los ponentes:

D. Manuel Moreu Munaiz
Presidente del Instituto de la Ingeniería de España.

D. Pascual Pery Paredes
Vicepresidente del Comité de Asuntos Marítimos del IIE.18:15 “La subida del nivel medio del mar en el litoral español, datos medidos y escenarios de evolución”

D. Íñigo Losada Ródriguez
Dr. ICCP. Director de investigación del Instituto de Ingeniería Hidráulica de Cantabria.
Miembro de la delegación española en la cumbre mundial por el clima de París 2015.
Miembro de la Real Academia de Ingeniería.18:35 “El valor económico de la playa”

D. Víctor Yepes Piqueras
Profesor Titular de la ETS ICCP de Valencia. Dr. ICCP. Especialista en turismo litoral y en su repercusión económica.

18:55 “La estrategia española de adaptación del litoral al cambio climático”

D. Ángel Muñoz Cubillo, ICCP subdirector general para la protección de la costa del Ministerio de Agricultura y Medio Ambiente.

19:15 Coloquio con los asistentes

20:00 Copa de vino español.