La herramienta de cálculo del siglo XVII que vuelve a la vida gracias a Python.

Introducción: El arte perdido del cálculo visual.

Vivimos en un mundo donde cualquier cálculo, por complejo que sea, está a un clic de distancia. Dependemos totalmente de las calculadoras digitales y las computadoras, hasta el punto de que resulta difícil imaginar cómo se resolvían problemas de ingeniería complejos antes de la era digital. Sin embargo, hubo una herramienta ingeniosa y puramente visual que dominó el mundo técnico durante décadas: el nomograma.

¿Cómo es posible que una tecnología del siglo XVII, considerada obsoleta durante más de cuarenta años, esté resurgiendo en campos de alta tecnología como la ingeniería minera? La respuesta se halla en una sorprendente sinergia entre la sabiduría analógica del pasado y el poder del código abierto actual.

1. Más allá de la nostalgia: una herramienta antigua para problemas modernos.

Un nomograma es una representación gráfica de una ecuación matemática. Está compuesto por una serie de ejes graduados, rectos o curvos, que representan las variables de la fórmula. Para resolver la ecuación, basta con trazar una línea recta (llamada isopleta) que conecte los valores conocidos en sus respectivos ejes; el punto en el que esta línea corta el eje de la variable desconocida proporciona la solución al instante.

Aunque sus orígenes se remontan al siglo XVII, los nomogramas se convirtieron en herramientas indispensables en el siglo XIX para la navegación astronómica y, más tarde, en la década de 1920, para resolver complejos cálculos de ingeniería relacionados con la presión, el volumen y la temperatura. Durante el resto del siglo XX, vivieron su época dorada en campos como la medicina, la aeronáutica y la química, pero la llegada de los ordenadores en la década de 1980 los dejó relegados al olvido. Hoy, contra todo pronóstico, están volviendo a ser útiles, no como una curiosidad histórica, sino como una herramienta práctica y potente, especialmente en entornos de campo o talleres donde la tecnología digital no siempre es la mejor opción.

2. Ingeniería para todos: resuelve fórmulas complejas solo con una regla.

El beneficio más destacado de los nomogramas es su capacidad para democratizar el cálculo. Permiten que cualquier persona, independientemente de su formación matemática, pueda resolver ecuaciones complejas con gran precisión. Como señala un estudio reciente sobre su aplicación en ingeniería minera:

“Además, los nomogramas permiten que personas sin conocimientos previos resuelvan fórmulas complejas con una precisión adecuada”.

Este enfoque es increíblemente poderoso. Elimina la barrera del conocimiento matemático avanzado y reduce drásticamente el riesgo de cometer errores al realizar cálculos manuales en tareas repetitivas. En la práctica, son más rápidos y fáciles de entender que los procedimientos analíticos tradicionales, ya que convierten un problema abstracto en una tarea visual sencilla.

3. A prueba de fallos: la robustez del papel frente a las pantallas.

En un mundo digital, la simplicidad del papel es una ventaja formidable. Los nomogramas destacan en entornos en los que los dispositivos electrónicos no son prácticos, como en operaciones de campo en minería, talleres mecánicos u obras. Sus ventajas son evidentes: son portátiles, resistentes y no necesitan electricidad ni conexión a internet.

Esta robustez los convierte en la herramienta ideal para realizar cálculos repetitivos sobre el terreno. Por ejemplo, un ingeniero de minas podría usar un nomograma impreso para determinar al instante el diseño correcto de una voladura, simplemente conectando líneas entre la densidad de la roca, la velocidad del explosivo y el diámetro de la perforación, y así reducir un cálculo complejo a una tarea visual simple y robusta sobre el papel.

4. El Renacimiento digital: cómo el código abierto revivió el nomograma.

Si los nomogramas son tan útiles, ¿por qué desaparecieron? Su principal inconveniente histórico no radicaba en su uso, sino en su creación. La parte más engorrosa era el dibujo matemático de las escalas graduadas, un proceso laborioso y especializado que probablemente fue una de las principales causas de su declive.

Aquí es donde entra en juego el software moderno. El resurgimiento de esta técnica se debe en gran parte a PyNomo y Nomogen, dos herramientas de código abierto basadas en Python. Fueron creadas por Leif Roschier y Trevor Blight, dos de los autores del estudio que ha inspirado este resurgimiento, que han unido así la experiencia académica con la programación moderna. Estas soluciones permiten a cualquier ingeniero o científico generar nomogramas complejos y precisos en cuestión de segundos, eliminando el obstáculo que los había hecho obsoletos.

5. Intuición visual: comprendiendo la relación entre las variables.

Además de su utilidad práctica, los nomogramas ofrecen una ventaja más sutil, pero profunda: fomentan la comprensión conceptual del problema. Mientras que una calculadora o un programa informático suelen funcionar como una «caja negra» que simplemente proporciona un resultado, un nomograma permite ver la relación entre las variables.

Esta visualización intrínseca de los datos permite una comprensión mucho más profunda. Al mover la isopleta (la regla) sobre el gráfico, un ingeniero puede desarrollar una intuición sobre cómo afecta un pequeño cambio en una variable a las demás, algo que se pierde al introducir simplemente números en un software. Por ello, se convierten en una poderosa herramienta didáctica.

Conclusión: lecciones de una sabiduría olvidada.

La historia del nomograma es un ejemplo fascinante de cómo las ideas del pasado pueden recuperar su relevancia gracias a la tecnología moderna. La combinación de una técnica de cálculo del siglo XVII con un software de código abierto del siglo XXI demuestra que no se trata solo de una reliquia, sino de una prueba de que las soluciones más simples y visuales pueden seguir siendo increíblemente valiosas.

Su regreso nos obliga a plantearnos una pregunta importante: en nuestra carrera constante hacia la digitalización, ¿qué otras herramientas analógicas e ingeniosas hemos olvidado que podrían ayudarnos a resolver los problemas del mañana?

Os dejo aquí una conversación en la que se tratan estos conceptos.

En este vídeo se resumen los conceptos más relevantes sobre los nomogramas.

Os dejo la comunicación que presentamos recientemente en el VII Congreso Nacional de Áridos. En ella se ilustran, proporcionan y explican detalladamente siete ejemplos originales de nomogramas que se utilizan para resolver ecuaciones comunes en la industria de la explotación de áridos, como el diseño de voladuras y la estimación de ratios de perforación.

Descargar (PDF, 5.07MB)

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BLIGHT, T.; BOULET, D.; PERALES, A. (2025). Elaboración y uso de nomogramas para el ámbito de las explotaciones de áridos. Introducción de los códigos abiertos Pynomo y Nomogen. Actas del VII Congreso Nacional de Áridos, Córdoba, pp. 1085-1100. ISBN 978-84-125559-2-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Innovación en la enseñanza de la ingeniería: uso de la nomografía y software abierto para la representación gráfica de ecuaciones

Acaban de publicar nuestro artículo en la revista Plos One, del primer cuartil del JCR. El artículo presenta una propuesta innovadora para la enseñanza de la ingeniería mediante la aplicación de la nomografía, una técnica matemática que se utiliza para representar gráficamente ecuaciones complejas. Su principal contribución es la introducción del software Nomogen, una herramienta basada en Python que permite generar nomogramas de tres variables de manera rápida y precisa, sin necesidad de manipular determinantes ni realizar dibujos manuales.

El estudio también demuestra la viabilidad de la nomografía como recurso didáctico en la enseñanza de la ingeniería, ya que facilita la interpretación de ecuaciones multivariables y reduce los errores en cálculos repetitivos. A través de una metodología experimental aplicada a estudiantes de ingeniería de diferentes niveles, los autores confirman que existe un renovado interés en el uso de nomogramas en entornos educativos, puesto que destacan su utilidad como complemento a los métodos digitales convencionales.

Los resultados del estudio revelan que, aunque el 78,4 % de los estudiantes encuestados nunca habían utilizado nomogramas, el 86,5 % reconoció su capacidad para interpretar fenómenos con múltiples variables de manera clara. Esta percepción constituye un argumento sólido a favor de la integración de la nomografía en los programas de ingeniería.

El uso del software Nomogen permitió superar las limitaciones tradicionales de la nomografía, ya que elimina la complejidad matemática inherente a su construcción manual. La posibilidad de generar gráficos precisos y adaptables a diferentes contextos hace que la herramienta sea accesible para estudiantes y docentes.

El análisis de las respuestas de la encuesta también reveló diferencias en la valoración de los nomogramas según el nivel formativo de los estudiantes. Los estudiantes en etapas avanzadas de sus estudios mostraron una mayor valoración de su utilidad en cuanto a la comprensión de fenómenos con múltiples variables.

El estudio abre diversas oportunidades de desarrollo futuro en los campos de la ingeniería y la educación. Algunas áreas que podrían explorarse son:

  1. Ampliación del uso de nomogramas en otras disciplinas: Evaluar su aplicabilidad en áreas como la mecánica de suelos, hidráulica y estructuras, donde la representación gráfica de ecuaciones puede simplificar análisis complejos.
  2. Integración de inteligencia artificial: Incorporar algoritmos de aprendizaje automático para optimizar la generación de nomogramas y mejorar su precisión en función de patrones detectados en bases de datos de ingeniería.
  3. Desarrollo de herramientas interactivas: Explorar la posibilidad de crear versiones digitales interactivas de los nomogramas, que permitan una manipulación dinámica de las variables en tiempo real.
  4. Evaluación longitudinal de su impacto educativo: Realizar estudios a largo plazo para analizar la retención del conocimiento y la eficacia del aprendizaje cuando se incorporan nomogramas en la enseñanza de la ingeniería.
  5. Comparación con otros métodos gráficos: Investigar la efectividad de la nomografía frente a otras técnicas de visualización de datos, como los diagramas de contorno o los gráficos tridimensionales en programas informáticos especializados.

Este artículo representa un avance significativo en la enseñanza de la ingeniería, rescatando una herramienta histórica y adaptándola a las nuevas tecnologías con el objetivo de mejorar la comprensión y aplicación de conceptos matemáticos complejos.

Referencia:

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

Como se ha publicado de forma abierta, os dejo el artículo completo a continuación. Espero que sea de interés para vosotros.

Descargar (PDF, 3.93MB)

Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos

Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presentó varias comunicaciones. A continuación os paso una de ellas.

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Palabras clave:

Nomografía; PyNomo; Nomogen; ingeniería de proyectos; docencia

Agradecimientos:

This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.

Referencia:

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 2106-2118. DOI:10.61547/3509

A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.

Os dejo la comunicación completa, pues está publicada en acceso abierto. Espero que os sea de interés.

Descargar (PDF, 5.38MB)

 

Nomogramas para su empleo en trabajos de movimiento de tierras

Este artículo presenta cinco nomogramas originales que pueden ser utilizados en proyectos de movimientos de tierra. El primero de ellos calcula el peso específico aparente de un suelo, mientras que el segundo nomograma facilita el valor de la piedra en el diseño de voladuras según la metodología de Ash. Los dos siguientes se aplican para determinar la capacidad de la hoja empujadora de un buldócer, y finalmente, el último nomograma ayuda a calcular el rendimiento de escarificado de un buldócer.

Estos nomogramas demuestran también las capacidades de los programas de código abierto, PyNomo y Nomogen, para generar nomogramas adaptados a las necesidades de cálculo de cualquier proyectista. Este proyecto es el resultado de una colaboración internacional entre profesores de Finlandia, Canadá y Australia, y su artículo ha sido publicado en la revista inGEOpress en mayo de 2023.

En este trabajo se proporcionan cinco nomogramas originales generados con el programa Pynomo (http://lefakkomies.github.io/pynomo-doc/introduction/introduction.html), muy útiles para su empleo en trabajos de obra civil, movimiento de tierras y/o minería, así como en ámbito docente. Los ejemplos resueltos por cada uno de los nomogramas también demuestran que los valores obtenidos se obtienen con una precisión adecuada a los requerimientos que se exigen en ingeniería de proyectos, haciéndolos útiles cuando no se tiene acceso a ordenadores o a calculadoras programables y, especialmente, en el manejo de ecuaciones cuyo empleo sea repetitivo.

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BOULET, D.; BLIGHT, T. (2023). Nomogramas para su empleo en trabajos de movimiento de tierras. Canteras y explotaciones, 657(3):44-48.

Os paso a continuación el artículo entero por si os resulta de interés.

Descargar (PDF, 3.41MB)

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Códigos abiertos para la elaboración de nomogramas en el ámbito de la ingeniería civil y minera

En este artículo se hace una introducción sobre los códigos abiertos, PyNomo y Nomogen, para la elaboración de nomogramas o ábacos de útil aplicación en el ámbito de la ingeniería civil y minera, resolviendo de forma gráfica y eficiente ecuaciones comúnmente utilizadas y sin necesidad de realizar cálculos manuales exhaustivos. Se presentan varios ejemplos de nomogramas realizados con PyNomo y Nomogen que servirán para mostrar la utilidad de estos códigos abiertos en el campo de la ingeniería hidráulica. Se trata de una colaboración internacional con profesores de Finlandia, Canadá y Australia, cuyo resultado se ha publicado en la revista inGEOpress, en su número de abril del 2023.

La nomografía se puede definir como aquella rama de las matemáticas que se encarga de la representación gráfica de ecuaciones a través de nomogramas (también conocidos como ábacos) que permiten poner en relación tres o más variables resolviendo una de ellas cuando se conocen el resto. Esta área de las matemáticas fue implantada en 1880, y posteriormente desarrollada por Maurice d’Ocagne. El empleo de la nomografía tuvo su mayor desarrollo en el siglo pasado como una forma de resolver de forma rápida y precisa complejas expresiones matemáticas en sectores tan diversos como medicina, aeronáutica, hidráulica, química, física, matemáticas, electrónica, radio, balística, alimentación, etc. Por ello, son innumerables los ejemplos que han llegado hasta nuestros días y que aún aparecen en libros especializados de ingeniería, especialmente hidráulica, ingeniería civil, minería, etc. . Además, en la actualidad, todavía es común que un gran volumen de documentación técnica, folletos de especificaciones técnicas y catálogos de equipos faciliten el cálculo de numerosas expresiones a través de nomogramas.

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BOULET, D.; BLIGHT, T. (2023). Introducción de los códigos abiertos PyNomo y Nomogen para la elaboración de nomogramas en el ámbito de la ingeniería civil y minera. Ingeopres, 302:66-70.

Os paso a continuación el artículo entero por si os resulta de interés.

Descargar (PDF, 2.76MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.