Curso en línea de “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 10 de mayo de 2021 y termina el 21 de junio de 2021. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos de las técnicas y equipos necesarios para la compactación de suelos, así como para su control, rendimientos y costes. El curso se centra especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la compactación, tanto superficial como profunda. Es un curso de espectro amplio que incide en el conocimiento de la maquinaria y procesos constructivos. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Asimismo, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Este curso único, impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Los objetivos de aprendizaje son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria y de las técnicas de compactación superficial y profunda de terrenos
  2. Evaluar y seleccionar la mejor maquinaria y técnica de compactación en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Composición y clasificación de suelos
  • – Lección 2. Materiales de terraplén
  • – Lección 3. Efectos de la compactación y deformaciones
  • – Lección 4. Porosidad y permeabilidad
  • – Lección 5. La curva de compactación
  • – Lección 6. Densidad de los suelos granulares
  • – Lección 7. Ensayo Proctor
  • – Lección 8. Sistemas de compactación: compactación normal y seca
  • – Lección 9. Ensayos de resistencia del suelo
  • – Lección 10. Fundamentos de las técnicas de compactación
  • – Lección 11. Clasificación de los equipos de compactación mecánica
  • – Lección 12. Apisonadoras estáticas de rodillos lisos
  • – Lección 13. Compactadores estáticos de patas apisonadoras
  • – Lección 14. Compactadores estáticos de ruedas neumáticas
  • – Lección 15. Rodillos de malla y compactador por impactos con rodillo lobular
  • – Lección 16. Introducción a la compactación vibratoria
  • – Lección 17. Compactadores vibratorios cilíndricos
  • – Lección 18. Compactadores de pequeño tamaño y de tracción manual
  • – Lección 19. Compactadores de zanja
  • – Lección 20. Selección del equipo y método de compactación
  • – Lección 21. Espesor de tongada y número de pasadas óptimo: tramo de prueba
  • – Lección 22. Normas y recomendaciones de trabajo
  • – Lección 23. El control de la compactación
  • – Lección 24. Condiciones de seguridad de los compactadores
  • – Lección 25. Costes y productividad de la compactación
  • – Lección 26. Compactación de aglomerado asfáltico
  • – Lección 27. Mejora del terreno mediante vibrocompactación
  • – Lección 28. Mejora del terreno mediante Terra-Probe
  • – Lección 29. Método vibroalas para mejora de suelos no cohesivos
  • – Lección 30. Compactación por resonancia de suelos
  • – Lección 31. Compactación dinámica
  • – Lección 32. Compactación dinámica rápida
  • – Lección 33. Sustitución dinámica
  • – Lección 34. Compactación con explosivos
  • – Lección 35. Compactación por impulso eléctrico
  • – Lección 36. Refuerzo del terreno mediante inclusiones rígidas
  • – Lección 37. Pilotes de compactación
  • – Lección 38. Columna de grava mediante vibrodesplazamiento
  • – Lección 39. Columna de grava mediante vibrosustitución
  • – Lección 40. Columnas de grava ejecutadas por medios convencionales
  • – Lección 41. Columnas de grava compactada
  • – Lección 42. Columnas de arena compactada
  • – Lección 43. La estabilización de suelos
  • – Lección 44. Estabilización de suelos con cal
  • – Lección 45. Estabilización de suelos con cemento
  • – Lección 46. Estabilización de suelos con ligantes bituminosos
  • – Lección 47. Problema resuelto sobre rendimientos y costes
  • – Lección 48. Problema resuelto sobre curva de compactación
  • – Lección 49. Problema resuelto sobre tramo de prueba
  • – Lección 50. Problema resuelto sobre control de calidad
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

El ensayo que inventó Ralph R. Proctor, ¿por qué es tan importante?

Figura 1. Ralph Roscoe Proctor (1894-1962) https://www.eng.hokudai.ac.jp/labo/geomech/ISSMGE%20TC202/proctor.html

El peso específico seco es un índice que evalúa la eficiencia de un proceso de compactación, pero debido al diferente comportamiento de los distintos rellenos, suele utilizarse el denominado grado de compactación o porcentaje alcanzado respecto a un peso unitario patrón, obtenido con cada suelo en un ensayo normalizado.

El ingeniero Ralph Roscoe Proctor inició en 1929 una serie de trabajos, publicados en 1933, en los cuales se constató la relación entre humedad-peso específico seco y la influencia de la energía de compactación. Propuso un ensayo normalizado con el cual obtener la curva de ensayo Proctor correspondiente a una determinada energía, comunicada a una muestra del terreno mediante la caída desde altura fija de una pesa y un determinado número de veces. Por cierto, a pesar de que la palabra Proctor es llana y en castellano debería acentuarse, por respeto al apellido del autor, se mantiene este sin modificarlo. Esta es la tradición que han seguido los libros de texto españoles en carreteras en el ámbito universitario.

Con posterioridad, el Corps of Engineers de la U. S. Army propuso el Proctor Modificado, con una aplicación de energía unas cuatro veces y media superior al Proctor Normal. El ensayo Proctor Modificado consume una energía de 0,75 kWh/m3, mientras que el Proctor Normal equivale a 0,16 kWh/m3. Estos ensayos se encuentran normalizados en España por las normas UNE 103-500-94 y UNE 103-501-94 (ASTM D-698 o ASTM D-1557, en normas americanas).

Para realizar el ensayo, además del equipamiento de laboratorio común a muchos ensayos como son una báscula, una estufa de secado o pequeño material (bandejas, mazo de goma, palas, etc.), se requiere un equipamiento específico tal y como muestra la Figura 2.

Hay que hacer notar que el procedimiento para realizar tanto el Proctor Normal como el Proctor Modificado es el mismo, siendo sus diferencias principales los parámetros básicos del ensayo. En particular, las diferencias relevantes son el tipo de maza y molde de las probetas.

Figura 2. Molde del ensayo del Proctor Modificado

El experimento consiste en introducir capas sucesivas, con una humedad conocida, en el interior de un cilindro y golpear cada una con idéntico número de golpes mediante una maza que cae desde una altura normalizada. Se trata de medir el peso específico seco de la muestra y construir una curva para cada humedad diferente tomada. Son suficientes en general cuatro o cinco operaciones para trazar dicha curva y determinar el peso específico máximo y su humedad óptima correspondiente. No hay una relación definida entre las densidades máximas obtenidas en los ensayos Proctor Normal y Modificado, aunque a modo orientativo podemos decir que en éste último la densidad oscila entre el 5 y 10% de incremento según sean suelos granulares a cohesivos. Se debe considerar que las curvas Proctor obtenidas reutilizando el terreno ofrecen pesos específicos máximos algo superiores a las que se obtienen con muestras de terrenos nuevas.

Figura 3. Curva de compactación del Proctor Modificado. http://www2.caminos.upm.es/departamentos/ict/lcweb/ensayos_suelos/proctor_modificado.html

El ensayo Proctor origina una compactación por impacto, en tanto que en obra no siempre son habituales los compactadores de este estilo. Así existen otros ensayos en laboratorio, como NLT-311/96 que determina la densidad máxima y humedad óptima de compactación, mediante martillo vibrante, de materiales granulares con o sin productos de adición. Sería adecuado este ensayo cuando se utilizasen en obra rodillos vibratorios.

Las normas PG3 fijan como límites inferiores de la densidad máxima Proctor Normal 1,45 t/m3 para los suelos tolerables y 1,75 t/m3 para los suelos adecuados y seleccionados. En el lenguaje coloquial a veces se confunden pesos específicos con densidades, aunque son conceptos distintos. La unidad de masa común en laboratorio de 1 g/cm3 se debe multiplicar por la aceleración de 9,81 para convertirlo en kN/m3, que es la unidad correcta en el Sistema Internacional. A efectos prácticos suelen usarse indistintamente dichos conceptos, aunque es recomendable el uso del Sistema Internacional.

Raras veces de admite un peso específico seco inferior al 95% del máximo Proctor Normal obtenido en laboratorio, ya que un material suelto, sin apisonar, presenta un valor próximo al 85%. La normativa limita (ver Tabla 1) los valores para carreteras en función de la Intensidad Media Diaria (IMD) de vehículos pesados. De esta forma, para la zahorra artificial y tráficos T00 y T2, se exige un mínimo del 100% PM; para zahorra artificial y tráficos T3, T4 y arcenes, un mínimo del 98% PM. En cambio, para la zahorra natural, que suele colocarse en las capas inferiores (subbase), la densidad mínima es del 98% PM.

Es importante indicar que a veces es posible superar el 100% del Proctor correspondiente sin que por ello se pueda afirmar que la capa está suficientemente compactada. Ello es posible, entre otras posibles causas, cuando la capa ensayada presenta gran cantidad de gruesos cuyo elevado peso específico respecto al promedio del resto de la capa hace subir el valor del peso específico in situ. Tengamos presente que el ensayo en laboratorio se realiza sobre la fracción de suelo inferior a 20 mm. En estos casos es necesario realizar una corrección.

El proyecto (o Director de las obras) debe definir el ensayo de referencia: el ensayo Proctor Normal o Proctor Modificado. En la mayoría de los casos, el ensayo de referencia es el Proctor Modificado, pues puede reproducir con mayor fidelidad las condiciones de compactación de la obra, que emplea compactadores más pesados debido al aumento de la carga por eje experimentado por los vehículos. Sin embargo, en suelos expansivos se recomienda el Proctor Normal. Este ensayo también es más útil en compactaciones menores, como son las correspondientes a relleno de zanjas o ejecución de caminos.

Os dejo un vídeo elaborado por los alumnos de Ingeniería Civil de la Universidad de Granada donde nos cuentas cómo realizar el ensayo Proctor.

Aquí tenéis una explicación del profesor Agustín Rodríguez, que igual os puede complementar ideas.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.