Conceptos básicos del agua en medio poroso

Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Cualquier curso de geotecnia básica dedica una parte importante de su temario a describir y caracterizar el agua en el suelo, especialmente el flujo en medios porosos y la incidencia de las presiones efectivas en la deformación de los suelos.

En este artículo vamos a recordar algunos conceptos básicos que, de una u otra forma, influyen directamente en los procedimientos constructivos, especialmente cuando se trata de controlar el agua. Se remite al lector a la bibliografía básica para profundizar más en estos temas.

  • Acuífero: terreno por donde circula el agua. Al límite impermeable inferior del acuífero se le denomina muro y al superior techo. Si el agua se encuentra en contacto con la atmósfera a través de los poros o fisuras existentes en la zona no saturada, se denomina acuífero libre. En cambio, en un acuífero confinado, el techo se encuentra a presión superior a la atmosférica.
  • Acuicludo: formación geológica que conteniendo agua en su interior, incluso hasta la saturación, no la transmite y, por tanto, no es posible su explotación (caso de terrenos arcillosos).
  • Acuitardo: formación geológica que transmiten muy lentamente el agua, por lo que tampoco son aptos para la captación. Sin embargo, en condiciones especiales, permiten una recarga vertical de otros acuíferos. Es el caso de un estrato de arcillas limosas o arenosas.
  • Nivel freático: lugar geométrico de los puntos donde la presión del agua es la atmosférica. Es el nivel que alcanza la superficie del agua en pozos de observación en libre comunicación con los vacíos del suelo in situ. Por encima del nivel freático existe el agua capilar donde su presión es menor que la atmosférica. En un punto concreto, en un pozo, se habla de nivel piezométrico, que si se encuentra por encima de la superficie del terreno, se dice que existen “condiciones artesianas”.
  • Coeficiente de almacenamiento: cantidad de agua que cede un prisma de acuífero de base cuadrada unitaria cuando se le deprime la unidad. Es adimensional. Su valor oscila normalmente entre 0,2 y 0,4 en acuíferos libres, oscilando entre 10-5 y 10-3 en los acuíferos cautivos y semiconfinados, al entrar en juego los efectos mecánicos del terreno o de la propia agua.
Figura 2. Esquema de acuífero libre y confinado (Bouwer, 1987)
  • Porosidad: porcentaje del volumen total de un suelo o roca que está ocupado por poros. Estos poros estarán rellenos de agua si el material está saturado, o de aire y agua si no lo está. Si solo se considera el volumen de los poros que están interconectados, se denomina “porosidad eficaz”. En los acuíferos libres el coeficiente de almacenamiento coincide con la porosidad eficaz.
  • Índice de poros o huecos: razón entre el volumen de poros y el volumen de sólidos.
  • Humedad: relación entre el peso del agua que contiene un suelo y el peso del suelo seco.
  • Grado de saturación: porcentaje del volumen de huecos ocupados por el agua.
  • Carga hidráulica total: también llamado potencial, es la energía por unidad de peso (expresada como una altura) en un determinado punto de un fluido en movimiento. Donde H es la carga hidráulica total, z la altura geométrica, u/γw  la altura de presión, siendo u la presión del agua en el punto considerado y  γw  el peso específico del agua y v2/2g la altura de velocidad, siendo v la velocidad del flujo en el punto considerado y g la aceleración de la gravedad. Todos estos términos tienen unidades de longitud. Si el agua está en reposo (condiciones hidrostáticas), o bien se desprecia la velocidad por ser muy baja (caso de la circulación del agua en medio poroso), la carga total es la altura piezométrica.

  • Líneas de corriente o líneas de flujo: son las curvas por las que se mueven las partículas fluidas, invariables en el transcurso del tiempo. A medida que el agua circula a través del suelo, modifica su velocidad y potencial.
  • Líneas equipotenciales: lugares geométricos del flujo donde la altura piezométrica es constante.
Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)
  • Teorema de Bernouilli: en el caso ideal de un fluido perfecto e incompresible sujeto a un flujo permanente y estacionario, la carga hidráulica total se mantiene constante entre dos puntos cualesquiera del fluido a lo largo de una línea de corriente. Como un fluido real no es perfecto, cualquier obstáculo al flujo produce una pérdida de carga. De hecho, existe flujo entre dos puntos si existe una diferencia en la carga hidráulica, de forma que el agua circula del punto de mayor a menor potencial. Si se añade energía H al caudal mediante una bomba, y se consideran las pérdidas hr, del punto 1 al punto 2, la ecuación queda:

  • Coeficiente de permeabilidad: k, mide la facilidad para que el agua circule a través de un suelo. También se llama conductividad hidráulica, y tiene unidades de velocidad, normalmente cm/s. La permeabilidad implica una posibilidad de recorrido y exige la existencia de vacíos o huecos continuos. La permeabilidad depende de factores intrínsecos al acuífero y extrínsecos, que dependen del fluido, y son su viscosidad y su peso específico. Según Hazen, en arenas uniformes, la permeabilidad es proporcional al cuadrado del diámetro eficaz (D10 ).
  • Permeabilidad equivalente horizontal: el flujo atraviesa horizontalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal equivalente será la suma de los caudales, por lo que la permeabilidad equivalente, kh vale lo siguiente:

  • Permeabilidad equivalente vertical: el flujo atraviesa verticalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal a lo largo de los estratos, y cada estrato tendrá un gradiente distinto ii, por lo que igualando las pérdidas de carga y despejando, obtenemos la permeabilidad equivalente kv , que vale lo siguiente:

 

  • Gradiente hidráulico: i, se define como la pérdida de carga (altura piezométrica) por unidad de longitud recorrida. Es un vector cuya dirección se orienta con los potenciales decrecientes.

  • Ley de Darcy: la velocidad del fluido en medio poroso es proporcional al gradiente hidráulico a través del coeficiente de permeabilidad. No es una propiedad intrínseca del suelo y tiene unidades de velocidad. Aquí se ha supuesto un flujo laminar en medio poroso y una velocidad media a través de una sección “macroscópica” de suelo, es decir, la velocidad aparente a lo largo de las líneas de flujo.

Figura 4. Esquema de la ley de Darcy
  • Transmisividad: caudal que se filtra a través de una franja vertical de terreno, de ancho unidad y de altura igual al espesor saturado, bajo un gradiente unidad, a una temperatura determinada y durante la unidad de tiempo. Sus unidades son las de una velocidad multiplicada por una longitud.
  • Ecuación de Laplace: modeliza un flujo estacionario en medio poroso homogéneo e isótropo de un fluido incompresible, en un suelo de peso específico constante y saturado. De difícil solución analítica, se puede resolver gráficamente dibujando dos familias de curvas ortogonales entre sí, las líneas equipotenciales (Ψ) y las líneas de corriente (Φ), que forman la red de flujo. Para dibujar la red de flujo hay que considerar que las fronteras impermeables constituyen líneas de corriente y las fronteras permeables (como una lámina de agua) es una línea equipotencial. Al cortarse ambas familias de líneas, se deben obtener “cuadrados curvilíneos”.

  • Red de flujo: una vez dibujada la red, la pérdida de carga total se distribuye de forma uniforme entre las equipotenciales, todos los canales de flujo transportan el mismo caudal, y un canal de flujo es el comprendido entre dos líneas de corriente. Las principales aplicaciones de las redes de flujo son: calcular las presiones del agua subterránea en unas determinadas líneas o superficies, estimar los caudales del agua subterránea y calcular los gradientes hidráulicos.
Figura 5. Red de flujo bajo una presa
  • Fuerzas de filtración o de arrastre: son fuerzas másicas (fuerza por unidad de volumen) que el agua ejerce sobre el terreno al circular por sus poros. El módulo de estas fuerzas por unidad de volumen es el producto del peso específico del agua por el gradiente. La fuerza de filtración tiene la dirección y el sentido del flujo.

  • Presión efectiva: es la presión que se transmite grano a grano, siendo la diferencia entre las presiones totales y las intersticiales. Según el postulado de Terzaghi, la resistencia al esfuerzo cortante y el cambio de volumen de un suelo dependen de la magnitud de la presión efectiva y sus variaciones.

Os voy a dejar algunos vídeos explicativos de estos conceptos. Espero que os sean de utilidad.

Referencias:

  • BOUWER, H. (1978). Groundwater Hidrology. Mc Graw-Hill Book Co., New York, 480 pp.
  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El efecto Renard, o por qué un suelo parece que entra en ebullición: Sifonamiento

Figura 1. Arenas movedizas. https://churbuck.com/category/clamming/page/2/

Cuando existe un flujo ascendente de agua en un terreno, la corriente circula en sentido contrario al peso del terreno. Este empuje puede ser tan algo que supere al peso del terreno, con lo cual tenemos la impresión que el terreno se ha licuado y se comporta como un líquido en ebullición. Este efecto, muy estudiado en cualquier libro de geotecnia, tiene lugar cuando las tensiones efectivas se anulan. Se produce el fenómeno del sifonamiento o licuefacción, también llamado “efecto Renard”. En este caso, una arena, por ejemplo, pierde su consistencia y parece que entre en ebullición. Esto se debe a que un suelo sin cohesión pierde completamente su resistencia al corte y pasa a comportarse como un fluido.

Resulta sencillo demostrar que este fenómeno ocurre cuando se alcanza un gradiente crítico, cuyo valor es el cociente entre el peso específico sumergido del suelo y el peso específico del agua. Este valor se aproxima en muchos casos a la unidad. Cualquier objeto que se sitúe sobre un terreno con licuefacción que tenga un peso específico superior al del la mezcla fluida de terreno y agua, se hundirá; esto es especialmente importante si tenemos maquinaria dentro de la excavación o existen cimentación que se apoye en esa zona. Se trata del conocido fenómeno de las arenas movedizas.

Este problema es importante cuando tenemos que excavar bajo nivel freático una profundidad “h” (ver Figura 2). Una forma de solucionar evitar el sifonamiento consiste en utilizar tablestacas o ataguías que tengan una longitud de empotramiento “x” suficiente. En este caso, la línea de filtración más corta del agua tiene una longitud igual a h+2x.

Figura 2. Longitud de empotramiento para evitar el sifonamiento

Supongamos que nos dan como datos el peso específico de las partículas sólidas de un suelo “γs ” y su porosidad “n“. El peso específico del agua es  “γw“. Vamos a considerar un coeficiente de seguridad  “η“. Como el gradiente es h/(h+2x), se puede comparar con el gradiente crítico dividido por su coeficiente de seguridad. De este modo, es fácil demostrar que la longitud de empotramiento es:

En la Figura 3 se representa la evolución del empotramiento en función de la profundidad de la excavación bajo nivel freático y de la porosidad del suelo. Se ha supuesto γs = 2,65 t/m3   y un coeficiente de seguridad η = 3. Es fácil comprobar la relación lineal entre el empotramiento y la altura del nivel freático sobre la excavación. Además, cuanto más poros presenta el terreno, más empotramiento es necesario.

Figura 3. Profundidad de empotramiento de una tablestaca para evitar el sifonamiento

Respecto al coeficiente de seguridad frente al sifonamiento, el Código Técnico de la Edificación (CTE), en su Documento Básico SE-C Cimientos, se indica que, en el caso de las pantallas, el coeficiente de seguridad será η = 2.

Nota muy importante: una cosa es la profundidad mínima de empotramiento para evitar el sifonamiento y otra bien diferente es calcular el empotramiento necesario de una tablestaca para soportar los esfuerzos de empuje a los que está sometido. Por tanto, el empotramiento real será el mayor de los dos valores. Se recomienda siempre efectuar con detalle los cálculos geotécnicos y estructurales necesarios. Y sobre todo, utilizar el sentido común.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La magia de las tensiones efectivas en geotecnia

Karl von Terzaghi (1883 – 1963) ://es.wikipedia.org/wiki/Karl_von_Terzaghi

Os presento uno de los conceptos básicos utilizados en geotecnia que, en ocasiones, complica a muchos de mis estudiantes cuando en la asignatura Procedimientos de Construcción explicamos algunos aspectos de la mejora de terrenos (columna de grava, precarga, drenes verticales, etc.). Se trata del concepto de “tensiones efectivas”, que hoy es sencillo, pero que confundió a numerosos ingenieros durante mucho tiempo.

La ley de elasticidad Hooke, donde la aplicación de una fuerza supone una deformación proporcional a la misma, desde luego no era aplicable directamente a muchos problemas que los ingenieros tenían con el terreno. Desde siempre se conoce que el comportamiento mecánico del suelo es algo complejo, pero era sorprendente, por ejemplo, que una carga aplicada sobre un terreno con nivel freático elevado, no se deformase. Y lo más sorprendente, es que, al cabo de cierto tiempo, sin modificar el estado de cargas, el terreno se deformara “por arte de magia”.

Este problema ingenieril traía de cabeza a muchos ingenieros hasta los primeros años del siglo XX. Si se analiza un suelo desde el punto de vista “microscópico”, la transmisión de esfuerzos se realiza mediante cadenas de partículas, unas apoyadas con otras. Lo que es peor, si este suelo es de partículas tan finas como son las arcillas, la fuerza de gravedad pierde importancia frente a las fuerzas fisico-químicas. La solución es entender la mecánica del suelo como si fuera un medio continuo, es decir, desde el punto de vista “macroscópico”. Tal simplificación necesita un marco teórico de partida que fue postulado por uno de los grandes genios y padre de la mecánica de suelos: Karl von Terzaghi (Praga, 2 de octubre de 1883 – Winchester, Massachusetts, 25 de octubre de 1963).

Su aportación genial fue formular un postulado acerca de lo que denominó como “tensiones efectivas“. Como todo postulado que se precie, se trata de una proposición no evidente por sí misma, ni demostrada, pero que se acepta, ya que no existe otro principio al que pueda ser referida. De todos modos, las evidencias empíricas del correcto funcionamiento de este postulado hace que hoy día se admita en el campo de la mecánica de suelos porque permite explicar multitud de problemas geotécnicos. Terzaghi definió el concepto de tensiones efectivas, en 1923, partiendo de resultados experimentales. De forma muy simple, diremos que las tensiones efectivas que actúan en el terreno son el exceso de tensión sobre la presión intersticial del agua presente en él. Y lo más importante de todo ello es que son las tensiones efectivas las que pueden provocar cambios en la deformación del terreno. Pero vamos a reproducir (González de Vallejo et al., 2004) las dos partes fundamentales del enunciado de su postulado, según las propias palabras de Terzaghi:

“Las tensiones en cualquier punto de un plano que atraviesa una masa de suelo pueden ser calculadas a partir de las tensiones principales totales σ1, σ2 y σ3 , que actúan en ese punto. Si los poros del suelo se encuentran rellenos de agua bajo una presión u, las tensiones principales totales se componen de dos partes. Una parte, u, llamada presión neutra o presión intersticial, actúa sobre el agua y sobre las partículas sólidas en todas direcciones y con igual intensidad. Las diferencias σ’1 = σ1 – u, σ’2 = σ2 – u, σ’3 = σ3 – u  representan un exceso de presión sobre la presión neutra u, y actúan exclusivamente en la fase sólida del suelo. Estas fracciones de las tensiones principales totales se denominan tensiones efectivas.

Cualquier efecto medible debido a un cambio de tensiones, tal como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, es debido exclusivamente a cambios en las tensiones efectivas”.

Podemos sacar varias conclusiones directamente de este postulado:

  1. Si en un suelo saturado no hay cambios de volumen ni de distorsión, eso significa que las tensiones efectivas no han cambiado.
  2. Como el agua no es capaz de soportar tensiones tangenciales, las que existan en un suelo saturado la debe absorber el esqueleto sólido del suelo.
  3. Si a un suelo saturado se le permite el drenaje (disipación de la tensión intersticial), entonces este suelo se deforma y se modifica su resistencia a corte. Al fenómeno se denomina consolidación.

Como entretenimiento práctico podéis deducir cómo la tensión efectiva en un punto de un estrato situado bajo nivel freático es igual al producto de la profundidad del punto en el estrato multiplicado por el peso específico sumergido del material de dicho estrato. Asimismo, si existen distintos estratos, es la suma de las alturas de los posibles estratos por sus correspondientes pesos específicos sumergidos.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.