Preguntas frecuentes sobre el agua en medio poroso y sus problemas en excavaciones.

1. ¿Qué es un acuífero y cómo se clasifica?

Un acuífero es una formación geológica subterránea que contiene y transmite agua. Se clasifican principalmente en:

  • Acuífero libre: El agua está en contacto con la atmósfera a través de los poros o las fisuras de la zona no saturada. El límite superior es el nivel freático, donde la presión del agua es atmosférica.
  • Acuífero confinado: El acuífero está cubierto por una capa impermeable (acuicludo o acuitardo) y el agua se encuentra a una presión superior a la atmosférica. Si se perfora un pozo en un acuífero confinado y el agua sube por encima de la superficie del terreno, se dice que existen existen «condiciones artesianas».
Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Además, existen otras formaciones relevantes:

  • Acuicludo: Una formación geológica que, aunque contiene agua, no la transmite de manera efectiva, por lo que no es apta para su explotación (por ejemplo, terrenos arcillosos).
  • Acuitardo: Transmite el agua muy lentamente, por lo que no es apto para su captación, pero puede permitir la recarga vertical de otros acuíferos en condiciones especiales (por ejemplo, arcillas limosas o arenosas).

2. ¿Qué es la carga hidráulica total y por qué es importante la Ley de Darcy en el estudio del flujo de agua en medios porosos?

La carga hidráulica total (H), también conocida como potencial, representa la energía por unidad de peso de un fluido en movimiento, expresada como una altura. Incluye la altura geométrica (z), la altura de presión (u/γw) y la altura de velocidad (v²/2g). En el contexto del flujo en medios porosos, la velocidad suele ser despreciable, por lo que la carga total se simplifica a la altura piezométrica.

La Ley de Darcy es fundamental porque describe la velocidad del flujo de agua en un medio poroso. Establece que la velocidad (v) es directamente proporcional al gradiente hidráulico (i) y al coeficiente de permeabilidad (k), es decir, v = k · i. El coeficiente de permeabilidad mide la facilidad con la que el agua circula a través del suelo y depende tanto de las características del acuífero (porosidad, tamaño de los poros interconectados) como del fluido (viscosidad, peso específico). Esta ley es crucial para comprender cómo se mueve el agua a través del suelo y para calcular caudales en diversas aplicaciones geotécnicas.

Figura 2. Esquema de la ley de Darcy

3. ¿Qué son las tensiones efectivas y por qué son tan importantes en geotecnia según el postulado de Terzaghi?

Las tensiones efectivas (σ‘) son un concepto fundamental en geotecnia, postulado por Karl von Terzaghi en 1923. Se definen como el exceso de tensión sobre la presión intersticial (o presión neutra) del agua (u) presente en el suelo. Es decir, son las tensiones que actúan exclusivamente sobre la fase sólida del suelo, transmitiéndose grano a grano.

Su importancia radica en el postulado de Terzaghi, que establece lo siguiente: «Cualquier efecto medible debido a un cambio de tensiones, como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, se debe exclusivamente a cambios en las tensiones efectivas». Esto significa que la deformación y la resistencia del suelo dependen directamente de las tensiones efectivas y no de las tensiones totales. Por ejemplo, si el volumen o la distorsión de un suelo saturado no cambian, es porque sus tensiones efectivas no han cambiado. Si se permite el drenaje del agua (es decir, si se disipa la presión intersticial), las tensiones efectivas aumentan, lo que provoca la deformación del suelo y la modificación de su resistencia al corte, un fenómeno conocido como consolidación.

4. ¿Cuáles son los principales problemas geotécnicos relacionados con el agua en las excavaciones?

El agua subterránea y superficial puede causar diversos problemas geotécnicos significativos en las excavaciones:

  • Subsidencia: Un descenso del nivel freático (por bombeo o excavación) aumenta las tensiones efectivas, provocando asentamientos en el terreno circundante. Un aumento del freático también puede causar asentamientos en suelos arcillosos o reducir la capacidad portante en arenas.
  • Deslizamiento de taludes: El flujo de agua en los taludes de una excavación incrementa su peso y reduce su resistencia al corte, llevando a la inestabilidad. Esto se agrava si la excavación corta dos estratos, donde el flujo entre capas puede causar erosión.
  • Erosión superficial: El afloramiento de agua en los taludes provoca cárcavas y arrastre de terreno, lo que compromete la estabilidad y debilita las bermas.
  • Erosión interna o tubificación (piping): El agua arrastra partículas finas a través de los huecos del suelo, formando túneles internos. Esto es propenso en suelos dispersables y puede ocurrir en presas o por flujos anómalos en pozos de drenaje o anclajes defectuosos.
  • Inestabilidad del fondo o sifonamiento: Ocurre cuando un flujo ascendente de agua en un terreno granular no consolidado anula la presión efectiva, por lo que el suelo se comporta como un fluido (arenas movedizas). Esto sucede cuando las fuerzas de filtración superan el peso sumergido del suelo.
  • Levantamiento del fondo o taponazo (uplift): El fondo de la excavación se vuelve inestable cuando el empuje del agua subterránea —típico en un acuífero confinado bajo un estrato de baja permeabilidad— supera el peso del terreno que lo soporta.

5. ¿Qué es el sifonamiento o “efecto Renard” y cuándo ocurre?

El sifonamiento, también conocido como licuefacción o «efecto Renard», se produce cuando existe un flujo ascendente de agua en el terreno y la presión del agua es tan alta que anula las tensiones efectivas del suelo. En suelos granulares sin cohesión, como la arena, el terreno pierde completamente su resistencia al corte y comienza a comportarse como un fluido en ebullición, similar a las arenas movedizas.

Este fenómeno sucede cuando se alcanza un “gradiente crítico”, que es la relación entre el peso específico sumergido del suelo y el peso específico del agua. Si se sitúa un objeto con un peso específico superior al de la mezcla fluida de terreno y agua sobre un terreno con licuefacción, se hundirá. Supone un grave riesgo en las excavaciones, especialmente por debajo del nivel freático, ya que puede provocar el desprendimiento de cimentaciones y maquinaria.

6. ¿Cómo se relaciona el coeficiente de permeabilidad con la permeabilidad equivalente en estratos de suelo?

El coeficiente de permeabilidad (k) mide la facilidad con la que el agua fluye a través de un suelo concreto. Sin embargo, en la práctica, el suelo suele estar compuesto por múltiples estratos con diferentes permeabilidades y espesores. En estos casos, se calcula una permeabilidad equivalente, que puede ser horizontal o vertical:

  • Permeabilidad equivalente horizontal: Se aplica cuando el flujo de agua atraviesa horizontalmente un conjunto de estratos. El caudal total es la suma de los caudales en cada estrato.
  • Permeabilidad equivalente vertical: Se usa cuando el flujo de agua atraviesa verticalmente los estratos. En este caso, el caudal es constante a lo largo de los estratos, pero cada estrato tiene un gradiente hidráulico diferente.

Estos cálculos son esenciales para modelar con precisión el flujo de agua en suelos estratificados.

7. ¿Qué es una red de flujo y para qué se utiliza en geotecnia?

Una red de flujo es una representación gráfica del flujo de agua subterránea en un medio poroso. Está formada por dos familias de curvas ortogonales entre sí.

  • Líneas equipotenciales (Ψ): Son líneas que conectan puntos donde la altura piezométrica (carga hidráulica) es constante.
  • Líneas de corriente (Φ): Son las trayectorias que siguen las partículas de fluido a medida que se mueven a través del suelo.

La red de flujo se construye de manera que las fronteras impermeables actúan como líneas de corriente y las fronteras permeables (como una lámina de agua) son líneas equipotenciales. Al intersectarse, ambas familias de líneas deben formar «cuadrados curvilíneos».

Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)

Las principales aplicaciones de las redes de flujo en geotecnia son:

  • Calcular las presiones del agua subterránea: Permiten determinar las presiones en diferentes puntos o superficies.
  • Estimar los caudales del agua subterránea: Todos los canales de flujo (espacio entre dos líneas de corriente adyacentes) transportan el mismo caudal.
  • Calcular los gradientes hidráulicos: La pérdida de carga total se distribuye uniformemente entre las equipotenciales. Esto es crucial para evaluar la estabilidad de taludes y el riesgo de sifonamiento.

8. ¿Cómo se puede prevenir el sifonamiento en una excavación y qué factores influyen en las medidas de prevención?

Para prevenir el sifonamiento en una excavación, especialmente por debajo del nivel freático, una de las medidas principales es utilizar tablestacas o ataguías con una longitud de empotramiento suficiente. Esta longitud adicional por debajo del nivel de excavación aumenta el recorrido más corto que puede seguir el agua, lo que reduce el gradiente hidráulico y, en consecuencia, las fuerzas de filtración.

La profundidad de empotramiento necesaria depende de varios factores:

  • Profundidad de la excavación bajo el nivel freático: A mayor profundidad de excavación, mayor empotramiento se requiere.
  • Porosidad del suelo: Cuanto mayor es la porosidad del terreno (es decir, más vacíos hay en el suelo), mayor empotramiento es necesario para evitar el sifonamiento.
  • Peso específico de las partículas sólidas y del agua: Estos valores influyen en el peso específico sumergido del suelo y, por ende, en el gradiente crítico.
  • Coeficiente de seguridad (η): Se aplica un coeficiente de seguridad para garantizar que el empotramiento sea suficiente para resistir el sifonamiento. Por ejemplo, el Código Técnico de la Edificación (CTE) en España recomienda un coeficiente de seguridad de η = 2 para pantallas.
Figura 4. Sifonamiento en la base de una tablestaca o pantalla.

Es fundamental realizar cálculos geotécnicos y estructurales detallados para determinar el empotramiento necesario, que debe corresponder al mayor valor entre el requerido para evitar el sifonamiento y el necesario para soportar los esfuerzos de empuje. Además, la experiencia y el sentido común son fundamentales a la hora de implementar estas medidas.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Conceptos básicos del agua en medio poroso

Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Cualquier curso de geotecnia básica dedica una parte importante de su temario a describir y caracterizar el agua en el suelo, especialmente el flujo en medios porosos y la incidencia de las presiones efectivas en la deformación de los suelos.

En este artículo vamos a recordar algunos conceptos básicos que, de una u otra forma, influyen directamente en los procedimientos constructivos, especialmente cuando se trata de controlar el agua. Se remite al lector a la bibliografía básica para profundizar más en estos temas.

  • Acuífero: terreno por donde circula el agua. Al límite impermeable inferior del acuífero se le denomina muro y al superior techo. Si el agua se encuentra en contacto con la atmósfera a través de los poros o fisuras existentes en la zona no saturada, se denomina acuífero libre. En cambio, en un acuífero confinado, el techo se encuentra a presión superior a la atmosférica.
  • Acuicludo: formación geológica que conteniendo agua en su interior, incluso hasta la saturación, no la transmite y, por tanto, no es posible su explotación (caso de terrenos arcillosos).
  • Acuitardo: formación geológica que transmiten muy lentamente el agua, por lo que tampoco son aptos para la captación. Sin embargo, en condiciones especiales, permiten una recarga vertical de otros acuíferos. Es el caso de un estrato de arcillas limosas o arenosas.
  • Nivel freático: lugar geométrico de los puntos donde la presión del agua es la atmosférica. Es el nivel que alcanza la superficie del agua en pozos de observación en libre comunicación con los vacíos del suelo in situ. Por encima del nivel freático existe el agua capilar donde su presión es menor que la atmosférica. En un punto concreto, en un pozo, se habla de nivel piezométrico, que si se encuentra por encima de la superficie del terreno, se dice que existen “condiciones artesianas”.
  • Coeficiente de almacenamiento: cantidad de agua que cede un prisma de acuífero de base cuadrada unitaria cuando se le deprime la unidad. Es adimensional. Su valor oscila normalmente entre 0,2 y 0,4 en acuíferos libres, oscilando entre 10-5 y 10-3 en los acuíferos cautivos y semiconfinados, al entrar en juego los efectos mecánicos del terreno o de la propia agua.
Figura 2. Esquema de acuífero libre y confinado (Bouwer, 1987)
  • Porosidad: porcentaje del volumen total de un suelo o roca que está ocupado por poros. Estos poros estarán rellenos de agua si el material está saturado, o de aire y agua si no lo está. Si solo se considera el volumen de los poros que están interconectados, se denomina “porosidad eficaz”. En los acuíferos libres el coeficiente de almacenamiento coincide con la porosidad eficaz.
  • Índice de poros o huecos: razón entre el volumen de poros y el volumen de sólidos.
  • Humedad: relación entre el peso del agua que contiene un suelo y el peso del suelo seco.
  • Grado de saturación: porcentaje del volumen de huecos ocupados por el agua.
  • Carga hidráulica total: también llamado potencial, es la energía por unidad de peso (expresada como una altura) en un determinado punto de un fluido en movimiento. Donde H es la carga hidráulica total, z la altura geométrica, u/γw  la altura de presión, siendo u la presión del agua en el punto considerado y  γw  el peso específico del agua y v2/2g la altura de velocidad, siendo v la velocidad del flujo en el punto considerado y g la aceleración de la gravedad. Todos estos términos tienen unidades de longitud. Si el agua está en reposo (condiciones hidrostáticas), o bien se desprecia la velocidad por ser muy baja (caso de la circulación del agua en medio poroso), la carga total es la altura piezométrica.

  • Líneas de corriente o líneas de flujo: son las curvas por las que se mueven las partículas fluidas, invariables en el transcurso del tiempo. A medida que el agua circula a través del suelo, modifica su velocidad y potencial.
  • Líneas equipotenciales: lugares geométricos del flujo donde la altura piezométrica es constante.
Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)
  • Teorema de Bernouilli: en el caso ideal de un fluido perfecto e incompresible sujeto a un flujo permanente y estacionario, la carga hidráulica total se mantiene constante entre dos puntos cualesquiera del fluido a lo largo de una línea de corriente. Como un fluido real no es perfecto, cualquier obstáculo al flujo produce una pérdida de carga. De hecho, existe flujo entre dos puntos si existe una diferencia en la carga hidráulica, de forma que el agua circula del punto de mayor a menor potencial. Si se añade energía H al caudal mediante una bomba, y se consideran las pérdidas hr, del punto 1 al punto 2, la ecuación queda:

  • Coeficiente de permeabilidad: k, mide la facilidad para que el agua circule a través de un suelo. También se llama conductividad hidráulica, y tiene unidades de velocidad, normalmente cm/s. La permeabilidad implica una posibilidad de recorrido y exige la existencia de vacíos o huecos continuos. La permeabilidad depende de factores intrínsecos al acuífero y extrínsecos, que dependen del fluido, y son su viscosidad y su peso específico. Según Hazen, en arenas uniformes, la permeabilidad es proporcional al cuadrado del diámetro eficaz (D10 ).
  • Permeabilidad equivalente horizontal: el flujo atraviesa horizontalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal equivalente será la suma de los caudales, por lo que la permeabilidad equivalente, kh vale lo siguiente:

  • Permeabilidad equivalente vertical: el flujo atraviesa verticalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal a lo largo de los estratos, y cada estrato tendrá un gradiente distinto ii, por lo que igualando las pérdidas de carga y despejando, obtenemos la permeabilidad equivalente kv , que vale lo siguiente:

 

  • Gradiente hidráulico: i, se define como la pérdida de carga (altura piezométrica) por unidad de longitud recorrida. Es un vector cuya dirección se orienta con los potenciales decrecientes.

  • Ley de Darcy: la velocidad del fluido en medio poroso es proporcional al gradiente hidráulico a través del coeficiente de permeabilidad. No es una propiedad intrínseca del suelo y tiene unidades de velocidad. Aquí se ha supuesto un flujo laminar en medio poroso y una velocidad media a través de una sección “macroscópica” de suelo, es decir, la velocidad aparente a lo largo de las líneas de flujo.

Figura 4. Esquema de la ley de Darcy
  • Transmisividad: caudal que se filtra a través de una franja vertical de terreno, de ancho unidad y de altura igual al espesor saturado, bajo un gradiente unidad, a una temperatura determinada y durante la unidad de tiempo. Sus unidades son las de una velocidad multiplicada por una longitud.
  • Ecuación de Laplace: modeliza un flujo estacionario en medio poroso homogéneo e isótropo de un fluido incompresible, en un suelo de peso específico constante y saturado. De difícil solución analítica, se puede resolver gráficamente dibujando dos familias de curvas ortogonales entre sí, las líneas equipotenciales (Ψ) y las líneas de corriente (Φ), que forman la red de flujo. Para dibujar la red de flujo hay que considerar que las fronteras impermeables constituyen líneas de corriente y las fronteras permeables (como una lámina de agua) es una línea equipotencial. Al cortarse ambas familias de líneas, se deben obtener “cuadrados curvilíneos”.

  • Red de flujo: una vez dibujada la red, la pérdida de carga total se distribuye de forma uniforme entre las equipotenciales, todos los canales de flujo transportan el mismo caudal, y un canal de flujo es el comprendido entre dos líneas de corriente. Las principales aplicaciones de las redes de flujo son: calcular las presiones del agua subterránea en unas determinadas líneas o superficies, estimar los caudales del agua subterránea y calcular los gradientes hidráulicos.
Figura 5. Red de flujo bajo una presa
  • Fuerzas de filtración o de arrastre: son fuerzas másicas (fuerza por unidad de volumen) que el agua ejerce sobre el terreno al circular por sus poros. El módulo de estas fuerzas por unidad de volumen es el producto del peso específico del agua por el gradiente. La fuerza de filtración tiene la dirección y el sentido del flujo.

  • Presión efectiva: es la presión que se transmite grano a grano, siendo la diferencia entre las presiones totales y las intersticiales. Según el postulado de Terzaghi, la resistencia al esfuerzo cortante y el cambio de volumen de un suelo dependen de la magnitud de la presión efectiva y sus variaciones.

Os voy a dejar algunos vídeos explicativos de estos conceptos. Espero que os sean de utilidad.

Referencias:

  • BOUWER, H. (1978). Groundwater Hidrology. Mc Graw-Hill Book Co., New York, 480 pp.
  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.