Contención del agua mediante escudos de aire comprimido

Figura 1. Distribución de presiones en el frente del escudo

La necesidad de equilibrar suelos inestables que además se encuentran bajo el nivel freático, ha desarrollado un conjunto de escudos con diversas tecnologías que estabilizan el frente empleando aire comprimido, lodos o las propias tierras extraídas en la excavación.

El aire comprimido es el sistema más antiguo empleado como medio de estabilización en la excavación de túneles. En 1874, James H. Greathead plantea el primer escudo que utiliza aire comprimido, aunque no se llegó a emplear. En 1879, De Witts Haskins maneja por primera vez la presurización a 0,24 MPa en la construcción del túnel en Nueva York, bajo el río Hudson, y del túnel Antwerp Docks recurriendo a dovelas de fundición.

En sus primeras aplicaciones se utilizaron escudos abiertos con una presurización integral del túnel, para construir túneles bajo niveles freáticos poco importantes (0,1 a 0,2 MPa), entre el frente y la esclusa inicial de entrada. En el frente bastaban simples escudos de entibación u otros con rueda abierta, pues el único condicionante era disponer un frente con un coeficiente de permeabilidad al aire bajo, compuesto en su mayoría por arenas finas, arcillas y limos. Estos escudos tenían acceso al frente de excavación por medio de dos sistemas de esclusas de cierre hermético: una para la entrada y salida del personal, y otra para la evacuación del escombro.

Sin embargo, es a partir de los años 1950-60 cuando se reconocen los problemas que plantea el trabajo prolongado en condiciones hiperbáricas. En efecto, cualquier pérdida de aire podría implicar un desastre de enormes proporciones.

En terrenos con frentes con suelos granulares no cohesivos, el riesgo es alto de accidentes debido a la inestabilidad del frente por su rotura. Además, los rendimientos son muy bajos, pues la entrada al túnel del personal y la maquinaria se hace a través de esclusas para mantener la presión. Incluso trabajando por debajo de los 0,3 MPa, se exigen tiempos de descompresión cercanos a las 4 horas, por lo que solo son útiles de 2 a 3 horas por turno, lo cual dispara los costes.

Los inconvenientes de esta forma de trabajo, especialmente por razones de seguridad y salud para los operarios, han eliminado por completo la presurización integral del túnel. Sin embargo en escudos cerrados, el aire comprimido cuando el terreno reúne las condiciones necesarias, puede ser un medio de estabilización eficaz, aplicable en combinación con otros medios de sustentación. Por tanto, se presuriza exclusivamente el terreno del frente, es decir, el espacio comprendido entre la rueda de corte y un mamparo, que es lo que se denomina “cámara de tierras”. De esta forma, se aísla la presión del resto de la máquina, pudiendo los operarios trabajar a presión atmosférica. Hoy día solo se entra en la cámara presurizada para la revisión de la rueda de corte y la reposición de herramientas, siempre con la máquina parada. De todas formas, los escudos de aire comprimido apenas se utilizan hoy en día, pues el aire comprimido complica mucho la organización de la obra. Solo se emplean en labores complementarias o túneles muy cortos y siempre con presiones inferiores a unos 0,3 MPa.

El reparto desigual de presiones sobre el frente de excavación, puede ser un inconveniente tanto más importante cuanto mayor sea la altura del escudo según se aprecia en el esquema siguiente: en escudos de grandes dimensiones la diferencia de cota entre la solera y la clave del túnel, puede llegar a establecer importantes diferencias de presión. Para una diferencia h2 – h1 » 10 m la sobrepresión en clave sería del orden de una atmósfera.

Por otra parte, para que el aire comprimido sea un medio efectivo de sostenimiento arenas o gravas, es necesario que el suelo contenga una proporción mínima (>10 %) de finos, es decir, son necesarios terrenos muy homogéneos. En el caso de materiales no cohesivos con riesgo de roturas del frente, se prefieren otro tipo de escudos, tal y como se describirá en lecciones posteriores.

Los principales componentes de un escudo de aire comprimido son los siguientes:

  • Cabeza de corte, formada por cuchillas y dientes
  • El escudo cilíndrico de protección. Su parte frontal está cerrada por un mamparo que separa la cámara presurizada donde está la cabeza de corte, del resto
  • Gatos hidráulicos de empuje horizontal

En estos escudos la extracción del escombro se realiza hasta la zona despresurizada a través de un tornillo sinfín, que puede descargar en una válvula esférica rotativa. Cuando existen dificultades, se pueden adicionar espumas o polímeros para conformar un gel viscoso manejable.

Existe un tipo especial de tuneladora denominada escudo abierto de aire comprimido, donde la excavación se realiza con un minador puntual o rozadora, mientras que el frente se sostenien con aire comprimido.

La realidad, la presurización neumática actual de la cámara frontal del escudo queda reducida a situaciones de emergencia en escudos de presión de lodos o de tierras para, mediante una esclusa situada en la cabeza de la máquina, permitir el acceso para la sustitución de picas, reparar o solucionar alguna situación inesperada.

Referencias:

  • GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco, Bilbao, 277 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tuneladoras de frente en presión de lodos: los hidroescudos

Vista frontal de un hidroescudo. https://www.eurohinca.com/escudo-cerrado-hidroescudo.html

Los escudos de frente en presión de lodos, o hidroescudos (hydroshield, en inglés) son tuneladoras que emplea lodos tixotrópicos para garantizar la estabilidad del frente, con un sistema de conducción del escombro por vía húmeda mediante bombeo. Estas máquinas surgieron en los años sesenta para resolver el problema de la presurización de los frentes de excavación en materiales no cohesivos.

Actualmente, los hidroescudos son aptos para trabajar para excavar bajo nivel freático en terrenos complicados, formados por arenas y gravas u otros materiales blandos y fragmentados. El límite del tamaño máximo transportable hidráulicamente es de 80 a 100 mm. No obstante, si se incorpora una trituradora en la cabeza de la máquina, se puede abordar el desalojo de tamaños mayores. Cuando el porcentaje de finos (tamiz 200) supera el 20%, la solución no es económica por la dificultad de separar el escombro de la bentonita. Además, se trata de una máquina especialmente indicada para la perforación de pequeños diámetros. No obstante, siempre con los inconvenientes propios de este medio de estabilización: vertido de los lodos y sobrecoste de la instalación para su preparación, bombeo y recuperación.

Estos escudos son las más apropiados para excavar túneles en terrenos inestables sometidos a una elevada presión de aguas subterráneas o a filtraciones que deben contenerse proporcionando sostenimiento al frente de excavación con un fluido a presión. Este fluido de excavación normalmente es una suspensión de bentonita o bien una mezcla de arcilla y agua.

El fluido de perforación se bombea hacia el interior de la cámara de excavación, donde llega al frente de excavación y penetra en el suelo formando la torta de filtro o el mamparo impermeable en suelos finos, o la zona impregnada en suelos gruesos, que garantiza la presión en el frente. La función de los lodos, además de estabilizar el terreno, es facilitar la evacuación del escombro que, mezclado con ellos, se bombea y dirige hacia el exterior.

En estos escudos, la parte de la máquina que realiza la excavación, está separada del resto por una mampara completamente estanca. Los lodos ocupan una cámara con dos compartimentos: uno anterior lleno de lodos con el escudo en funcionamiento y otro posterior en el que se regula la presión por medio de un colchón de aire que está separado de la cámara por un diafragma. El volumen de lodos, se controla automáticamente con un regulador de nivel superior e inferior que actúa sobre los sistemas de alimentación y de extracción del detritus, de forma que cuando los lodos alcanzan uno de estos niveles, las bombas de impulsión o extracción se paran automáticamente.

En la Figura 2 se representan las distintas partes de la que consta un hidroescudo.

Figura 2. Esquema básico de un hidroescudo

La numeración de las partes del hidroescudo de la Figura 2 es la siguiente:

  1. Rueda de corte
  2. Accionamiento
  3. Suspensión de bentonita
  4. Sensor de presión
  5. Esclusa de aire comprimido
  6. Erector de dovelas
  7. Dovelas
  8. Cilindros de propulsión
  9. Burbuja de aire comprimido
  10. Mamparo sumergible
  11. Machacadora
  12. Tubería de extracción

Como en cualquier aplicación con lodos bentoníticos, la permeabilidad del terreno tiene un límite (k > 10-2 cm/s.) a partir del cual la capa de gel ya no se forma sobre el terreno y en consecuencia ha de recurriese a otro medio auxiliar de excavación.

La mezcla con los residuos se bombea desde la cámara de excavación hasta una planta de separación situada en la superficie, compuesta generalmente por cribas y ciclones, lo cual permite reciclar la suspensión de bentonita y arcilla.

Por último, resulta relevante comentar que los hidroescudos son la única forma de excavar un túnel bajo nivel freático cuando las presiones del agua son muy elevadas, por encima de los 5 Bar.

Os dejo a continuación la Figura 3, tomada de Mendaña y Fernández (2011), donde se pueden ver, de una forma aproximada, los rangos de utilización de los hidroescudos frente a los escudos EPB. A la izquierda de la figura tenemos en azul los terrenos cohesivos, donde lo ideal son los escudos EPB, mientras que a la derecha son terrenos no cohesivos con escasez de finos, donde lo más adecuado son los hidroescudos. Existe, como siempre, un campo intermedio donde se debe estudiar con mayor detenimiento la aplicación. En cualquier caso, es muy importante elegir bien los aditivos adecuados.

Figura 3. Campo de aplicación de los escudos presurizados (Mendaña y Fernández, 2011)

Os dejo a continuación un artículo de Mendaña y Fernández publicado en la Revista de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/2011/2011_octubre_3525_04.pdf

Descargar (PDF, 1.27MB)

Referencias:

  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Medición del grado de fracturación de un macizo rocoso: el índice RQD

La fracturación de un macizo rocoso se define por el número, espaciado y condiciones de las discontinuidades que presenta, cualquiera que sea su origen y clase. El grado de fracturación se suele expresar mediante el índice RQD (Rock Quality Designation), que representa la relación entre la suma de las longitudes de los framentos de testigo mayores de 10 cm y la longitud total del tramo considerado. Éste índice fue desarrollado por Don U. Deere entre 1963 y 1967, en principio, para rocas ígneas.

 Para estimar el RQD sólo se consideran los fragmentos o trozos de testigo de material fresco, excluyéndose los que presentan un grado de alteración importante. La medida de este índice se realiza en cada maniobra de sondeo o en cada cambio litológico, siendo recomendable que la longitud de maniobra no exceda de 1,5 m. Además, el diámetro mínimo de los testigos debe ser de 48 mm.

Se puede decir que un RQD inferior a 25 indica un macizo rocoso de muy mala calidad, mientras que de 90 a 100, indica una calidad muy buena. Una calidad media en relación a la fracturación podría situarse entre 50 y 75.

Aunque este índice es muy utilizado, hay que tener en cuenta que no tiene en cuenta aspectos tan importantes como la orientación del sondeo, separación, rellenos y demás condiciones de las discontinuidades, por lo que no es suficiente para describir completamente las características de la fracturación de un macizo rocoso.

Si no se dispone de datos de sondeos, el RQD aproximado puede estimarse por medio de la siguiente fórmula:

RQD ≈ 115 – 3,3 Jv

donde Jv es el número de fracturas observado por metro cúbico de roca.

Os recomiendo el artículo de Enrique Montalar acerca de éste índice. Recojo las referencias de dicho artículo.

Referencias:

 

Método alemán de construcción de túneles

metodo-alemanEl método alemán es un procedimiento de construcción de túneles de grandes luces que también se emplea cuando el terreno es muy malo y resulta peligroso descalzar parte de la bóveda para ejecutar los hastiales, como es el caso del método belga. Con este procedimiento se puede reaccionar con mayor rapidez que el método belga en el caso de aparecer agua, en terrenos sueltos o capas arenosas. Además, permite reducir los posibles asientos diferenciales que producirían grietas en la bóveda y asientos en superficie.

El sistema sería conceptualmente parecido al método belga, pero cambiando el orden las fases de ejecución y la propia ejecución de la bóveda. El procedimiento inicia la excavación con dos galerías de avance, fase 1; se hormigonan los hastiales para después proceder a la excavación de las fases 3 y 4, se procede al recubrimiento de la bóveda y, por último se excava la parte central, fase 5, con el fin de facilitar la entibación y el apuntalamiento de la parte superior. El avance de las galerías (fase 1) se suele realizar por tramos de 25 a 30 m, dependiendo del tipo de terreno; sin embargo, si el túnel no es muy largo (menos de 200 m, por ejemplo) se puede excavar de un tirón. Estas galerías son muy útiles si es necesario drenar agua durante la ejecución. El hormigonado de la bóveda no apoya sobre el terreno (método belga), sino sobre los estribos hormigonados. Esta bóveda se ejecuta por costillas, construidas de forma alterna. Es decir, se construye la galería central superior y cada semicostilla se ataca desde la parte superior del hastial antes de verter hormigón. Se hormigona la bóveda una vez excavada a través de la galería superior. Este procedimiento permite la construcción de grandes secciones de túnel sin que el frente abierto supere los 3-5 m2.

Os dejo un par de vídeos donde se explica con mayor detalle el método. Espero que os sean útiles.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

MELIS, M.J.; TRABADA, J.M. (2000). Construcción de una estación en caverna de gran luz. La estación de Guzmán el Bueno. Revista de Obras Públicas, 3485:85-90.

 

El método inglés de excavación de túneles

metodo-inglesLa excavación de túneles en arcillas y areniscas, terrenos típicos en Inglaterra, ha dado nombre al procedimiento de construcción de túneles a sección completa, en una sola operación. También se llama método de ataque a plena sección. Se aplica a túneles de pequeña sección, de no más de 15 m2, con lo cual se puede corregir cualquier imprevisto que surja durante la excavación. Este procedimiento constructivo se utilizó en el primer túnel bajo el Támesis (1825), que pudo realizarse gracias a un escudo de frente abierto.

El proceso de excavación comienza, en su fase 1, con una galería centras de sección pequeña y fácil de controlar, de unos 3 m2 y una longitud de 3-4 m. La excavación se entiba con puntales y tablones o con placas metálicas. Una vez asegurada la fase 1, se puede ampliar la excavación hacia los laterales, en la fase 2. Este proceso es más rápido al atacar los laterales. Posteriormente se excavan en franjas horizontales, en las fases 3 y 4. Una vez se ha excavado la sección completa del túnel, se procede al revestimiento, comenzando por la solera o contra-bóveda.

Este procedimiento presenta la ventaja de que el hormigonado se realiza de una sola vez, evitando juntas y posibles asientos. Sin embargo, hay que tener en cuenta que no se hormigona la sección hasta el final de la excavación, con lo que en cualquier momento se puede producir un fallo en el sostenimiento. Es por ello que el material requiere de un mínimo de cohesión para poder excavar la destroza y la contra-bóveda en una única fase. También se podría utilizar el método en roca, cuando no hay necesidad de revestimiento.

Os dejo a continuación un vídeo sobre la construcción del metro bajo el Támesis, obra de Sir Marc Isambard Brunel. Espero que os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Método Bernold de ejecución de túneles

Construcción con método Bernold. Túnel de Jeresa (Fotografía: M. Romana)
Construcción con método Bernold. Túnel de Jeresa (Fotografía: M. Romana)

El método ideal de perforación de un túnel sería aquel que permitiese excavar el perfil y hormigonar la bóveda de un túnel simultáneamente. El método Bernold de ejecución de túneles consiste en la colocación, inmediatamente después de la excavación, de un sostenimiento rígido compuesto por cerchas sobre las que se monta una chapa troquelada denominada chapa Bernold, dejándose hasta la superficie de excavación una distancia igual al espesor del recubrimiento. Posteriormente se hormigona detrás de la chapa, sirviendo ésta como encofrado perdido y armadura. Esta es una opción válida para macizos de calidad mala o muy mala, aunque, según indica Romana (2001), su utilización ha decaído en España debido a la popularización del Nuevo Método Austríaco. Este sistema incorpora los siguientes elementos:

  • Chapas metálicas troqueladas, onduladas y curvadas, de 2 a 3 mm. de espesor y 1 m2 de superficie útil, solapadas y unidas entre sí por medio de pasadores también metálicos.
  • Cimbras de montaje o cerchas, formadas por perfiles de acero de ala ancha (HEB) con 3 o 4 articulaciones que facilitan el montaje de la chapa a la que sirven de soporte.
  • Tubos separadores metálicos, para arriostrar las cimbras y fijar su distancia. Las cerchas llevan unas chapas preparadas para encajar los separadores en ellas.

La aplicación del sistema Bernold es compatible con el control y gunitado del terreno y además proporciona un refuerzo adicional con el recubrimiento final del túnel realizado con los elementos anteriores, de la siguiente forma: Conforme se va realizando la excavación se van colocando las cimbras de montaje, arriostradas con los tubos separadores. La distancia entre cimbras es normalmente de 0,96 m. Partiendo de la base y a cada lado de la sección, se va montando la chapa Bernold, solapando y uniendo los sucesivos tramos con pasadores hasta llegar a la clave del túnel.

Chapa Bernold
Chapa Bernold

Colocada la chapa se hormigona el hueco que queda entre ella y la superficie del terreno, que debe tener un espesor mínimo de 1/15 a 1/20 del radio de la sección. Las ranuras de la chapa facilitan su adherencia y completa unión con el hormigón al refluir éste por ellas y por los huecos que quedan entre los solapes de los tramos contiguos; al mismo tiempo, estas ranuras facilitan la eliminación del agua sobrante durante el vibrado.

El hormigón que se emplea tiene una dosificación de cemento de 250-300 kg/m3, una relación a/c = 0,4-0,5 y un tamaño máximo de áridos de 30 mm. El tape frontal es perdido y se realiza normalmente con metal deplové o nervometal.

Como en cualquier método de excavación-entibación, el sistema Bernold puede combinarse con el bulonado, la inyección u otros medios de refuerzo complementario, aunque las cerchas y la chapa por su forma, ya constituyen un medio altamente resistente y capaz de absorber cargas disimétricas. Su empleo es muy recomendable en las zonas de boquillas y en el cruce de fallas o zonas tectonizadas.

Fuente: Tedesa, técnicas de entibación, s.a. http://www.dfdurofelguera.com/catalogo_tedesa/prod/prod_cat/chapa/Bernold/bernold.pdf
Fuente: Tedesa, técnicas de entibación, s.a. http://www.dfdurofelguera.com/catalogo_tedesa/prod/prod_cat/chapa/Bernold/bernold.pdf

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

ROMANA, M. (2001). Recomendaciones de excavación y sostenimiento para túneles. Revista de Obras Públicas, 148(3408):19-28. (link)

Cargadoras LHD para obras subterráneas

Cargadora LHD Scooptram ST1030LP

Las labores de extracción de material en obras subterráneas y túneles no es una tarea sencilla. Al poco espacio de maniobra hay que añadir los problemas derivados de la ventilación de espacios cerrados y problemas de seguridad y salud que afectan a los trabajadores.

Este tipo de cargadoras se desarrollan para las más duras aplicaciones subterráneas, con objetivos orientados a economizar la producción, incrementar la seguridad y fiabilidad.  Este equipo de cargador LHD (load haul dump) es especialmente adecuado para trabajar debajo de condiciones difíciles, como estrechos, de baja altura y lugares de trabajo con lodo.

En este sentido, las cargadoras LHD, de perfil bajo, empleadas en este tipo de obras adquieren características especiales. Su diseño es compacto, tanto en altura como en anchura. Su radio de giro es mínimo (articuladas), lo que le permite una gran maniobrabilidad en zonas estrechas. Son muy productivas en recorridos cortos o medios (hasta 1000 m). Pueden ser de accionamiento eléctrico o mediante motores diésel.

Para distancias inferiores a unos 500 m y túneles de pequeña y mediana sección, se utiliza una pala con un cazo de gran capacidad (3m³) que carga el escombro del frente y lo lleva hasta el exterior. La máquina no gira, sentándose el maquinista de forma lateral para conducir en ambas direcciones. Para distancias mayores se utilizan zonas de acopio intermedio de escombros.

Con marcos optimizados, una fuerza motriz muy potente, avanzada tecnología de transmisión, tracción, controles de dirección articulados y ergonómicos, son extremadamente resistentes, muy maniobrables y excepcionalmente productivas. Estas máquinas presentan una capacidad de 1 a 25 toneladas.

 

Un cargador SANDVIK LH517. Wikipedia

Os paso varios vídeos para que podáis ver su funcionamiento. Espero que os gusten.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València. 148 pp.

Hormigón proyectado: gunitado

La técnica del gunitado, también conocida como hormigón proyectado, es un sistema constructivo consistente en proyectar con un “cañón”, o manguera a alta presión, hormigón o mortero pudiendo construir sobre cualquier tipo de superficie, inclusive la tierra, con el objetivo de conseguir un muro continuo, con mayor resistencia y menor espesor, para soportar y contener la presión ejercida por el terreno, con cualquier tipo de pendiente, ofreciendo una impermeabilización óptima gracias a la baja porosidad. Una de las grandes ventajas respecto al hormigón tradicional es que no precisa compactación (tampoco el autocompactante), por lo que se puede adaptar a superficies de todo tipo y geometría. La velocidad de impacto es la que compacta inmediatamente el material. El hormigón proyectado es actualmente un elemento indispensable en los procedimientos de sostenimiento y revestimiento estructural de túneles y taludes.

Este hormigón se llamó originalmente “Gunite” o Gunita, cuando Carl Akeley diseñó un duplicado de pistola de cemento de cámaras en 1910. Su aparato neumático aplicó una mezcla de cemento-arena a gran velocidad a la superficie prevista. El desarrollo de la gunita en Europa siguió a EE.UU. cuando un ingeniero de la CEMENT-GUN CO. americana fundó la TORKRET GmbH en 1921, utilizándose entonces la gunita en reparaciones de muros defectuosos y en mucho menor escala en revestimiento de túneles y galerías.

Podemos distinguir tres procesos distintos de gunitado: mezcla seca, mezcla húmeda y mezcla semi-húmeda. En el proceso de mezcla seca, introduce y se mezcla el agua necesaria en la boquilla de aplicación, que el material seco de cemento (cenizas, escorias, humo de sílice, etc) y los agregados son entregados a través de la pistola. El proceso de mezcla húmeda utiliza hormigón entregado a la tarea que esté bien mezclada con exclusión de los aceleradores necesarios. Los ingredientes son generalmente entregados en camiones mezcladoras de hormigón listos, como se hace con el hormigón normal. La dosificación de cemento oscila entre 300 y 375 kg/m3 con relaciones agua/cemento que están en torno a 0,40 y 0,56, con la limitación del tamaño máximo de árido, generalmente inferior a los 10 mm dependiendo del tamaño de la manguera y boquilla empleada.

http://vgatec.blogspot.com.es
http://vgatec.blogspot.com.es
http://vgatec.blogspot.com.es
http://vgatec.blogspot.com.es

Os dejo el siguiente enlace de Alberto Rey donde podéis ampliar la información al respecto: http://www.ciccp.es/ImgWeb/Castilla%20y%20Leon/Art%EDculos%20T%E9cnicos/Hormigon%20Proyectado.pdf . También os dejo varios vídeos sobre cómo se aplica la técnica. Espero que os gusten.

Máquinas de gunitar por la vía seca:

Gunitado por vía seca:

Gunitado por vía húmeda:

Construcción de túneles mediante empuje de tramos sucesivos

Una forma de construir un túnel consiste en ir empujando, mediante gatos, tramos sucesivos. Este método es similar al de los cajones empujados.

A continuación os paso una infografía realizada por  Hispana y Estudio da Vinci, en León, sobre este procedimiento constructivo empleado por la empresa española OPEMA. Espero que os guste.

 

 

 

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.