Perforación con hélice corta

Hélice cortaCuando se trata de perforaciones de diámetros elevados y la extracción del material se realiza de forma discontinua, se utiliza la perforación con hélice corta (intermittent augering).

Con este procedimiento se pueden abrir perforaciones de hasta unos 2,5 m de diámetro y profundidades de hasta unos 50 m. El terreno debe ser lo suficientemente seco y cohesivo para evitar derrumbes en las paredes. En caso contrario, se debería recurrir a la perforación con lodos y extracción con cazo.

 

 

 

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Principios de las perforaciones a rotación

Figura 1. Principio de la perforación rotativa

En un artículo anterior explicamos los fundamentos de la perforación por extracción de material. De entre los procedimientos existentes, la perforación mecánica por rotación constituye uno de los procedimientos más habituales. Aquí vamos a explicar los principios básicos en los que se basa.

El principio utilizado por las perforadoras rotativas consiste en aplicar energía al terreno haciendo rotar un útil de corte o destroza conjuntamente con la acción de una fuerza de empuje. Este tipo de perforación se empezó a utilizar en minería sobre rocas blandas; sin embargo, la rapidez de desplazamiento y montaje de estos equipos, la variedad de útiles de corte han favorecido su uso en otros campos.

El giro del útil lo realiza el motor de la perforadora en superficie, que acciona una mesa o cabeza de rotación que, a su vez, mueve el tren de varillaje y éste finalmente transmite el giro al útil. Los útiles de corte que se emplean en rotación son las barrenas helicoidales, las coronas circulares y las cabezas tricono, según el tipo de terreno, del diámetro del talador y de la finalidad de la perforación (extracción de testigos o avance a destroza).

La perforación a rotación presenta características diferentes si se realiza en roca o en suelos. En roca el avance se produce por corte y compresión: el giro se realiza mediante sonda o rotor y la presión por barra de carga, varillaje y empuje hidráulico. En el caso de los suelos, si éstos son granulares no demasiado cohesivos, la perforación se realiza con una barrena helicoidal; en el caso de granulares muy sueltos es necesario el uso de cucharas.

En otros artículos anteriores ya hablamos de la perforación rotativa de rocas, de la perforación rotativa con triconos, de la perforación rotativa con cazo, del sondeo a rotación con barrena helicoidal, entre otros. También podéis leer algunas entrada que escribimos en su momento sobre técnicas de reconocimiento en el estudio geotécnico,  la ejecución de pilotes o de procedimientos de perforación horizontal dirigida con sistemas de perforación a rotación.

Sistemas de avance

El avance de la perforación rotativa en rocas se produce por la influencia simultánea de la presión que el útil de corte ejerce sobre el terreno y el efecto producido por el giro de dicho útil sobre la roca. Estas dos acciones se pueden provocar con diversos medios y potencia según las fuentes de energía y los sistemas de empuje y rotación empleados.

Las formas de energía motriz de uso más frecuente son la térmica y la eléctrica. La primera se suele utilizar en perforadoras pequeñas y medianas, generalmente montadas sobre camión en equipos accionados por el propio motor del camión o más frecuentemente por dos motores, el del camión más otro independiente. Para perforadoras montadas en equipos de mayor tamaño (diámetros de perforación superior a 250 mm, lo más normal es emplear energía eléctrica a media tensión, alimentando la perforadora con corriente alterna. En algunas instalaciones mineras también se emplean equipos diésel-eléctricos cuyo coste de mantenimiento es aproximadamente un 15% inferior al de los equipos diésel.

La aplicación de la potencia se realiza mediante mecanismos de transmisión mecánicos e hidráulicos. La energía se transmite a través de las barras de perforación, que giran al mismo tiempo que penetra la boca, debido a la intensidad de la fuerza de avance. Prácticamente, casi sin excepciones, esta fuerza de empuje se obtiene a partir de un motor hidráulico. En este tipo de perforación, las pérdidas de energía en las barras y la boca son despreciables, por este motivo, la velocidad de penetración no varía apenas con la longitud del barreno. Para girar las barras y conseguir el par necesario, estas máquinas tienen un sistema de rotación montado habitualmente sobre un bastidor que se desliza a lo largo del mástil de la perforadora. El barrido del detritus de la perforación se realiza con aire comprimido, para lo cual el equipo está dotado de uno o dos compresores ubicados en la sala de máquinas.

Figura 2. Perforación a rotación para estudios de terrenos

Empuje y elevación

El empuje a aplicar dependerá de la resistencia del terreno y del diámetro de la perforación (Figura 3). El mecanismo de empuje está diseñado para aplicar una fuerza del orden del 50% del peso de la máquina, alcanzando los equipos de mayor tamaño un peso de unas 120 t. Los sistemas de empuje, además de proporcionar la presión suficiente sobre el fondo de la perforación, sirven para elevar y manipular el conjunto de varillas o barras que hay que añadir o quitar durante la ejecución de la perforación. Se pueden emplear sistemas mecánicos (por cadena o cremallera) o hidráulicos. Los sistemas hidráulicos están formados por dos cilindros combinados, son más potentes y fácilmente controlables.

Figura 3. Mecanismos de empuje y elevación

El empuje transmitido al fondo del taladro debe ser suficiente para que el efecto conjunto sobre la roca genere una tensión superior a su resistencia a compresión. Pero tampoco conviene un empuje excesivo que aumente el desgaste del equipo. La velocidad de penetración aumenta proporcionalmente al empuje hasta un límite a partir del cual el útil se agarrota y los insertos se incrustan en la roca. En estas condiciones, el desgaste aumenta considerablemente junto con un mayor consumo de energía y, si la roca es dura, puede producirse la rotura de los dientes del útil (Figura 4).

Figura 4. Relación velocidad de avance-empuje

Como suele ser habitual, os dejo unos vídeos al respecto.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa con cazo

Figura 1. Cazo rotativo abierto

Cuando se utilizan lodos tixotrópicos para el sostenimiento de la perforación, o estamos ante la presencia de agua, la barrena helicoidal no puede retirar el material, pues éste se escurre entre los pasos de ésta. En estos casos se emplea la perforación rotativa con cazo (bucket auger boring).

La perforadora con cazo rotativo utiliza un accionamiento mecánico o hidráulico que hace girar una Kelly que se fija a la cuchara. Para perforar, la cuchara gira para permitir que la parte inferior de los dientes de corte llene la cuchara. Las aletas en el fondo de la cuchara se cierran para mantener los detritus en su interior. El fondo de la cuchara es abatible (Figura 1) para permitir el vertido de la excavación.

La perforación con cazo es más lenta, con rendimientos previstos pueden ser la mitad (40-50 m/turno) de los conseguidos con hélices. Si bien es cierto que pueden triplicar los alcanzados con cuchara de valvas. Existen variantes de cazo con dientes de tierra, con dientes de widia, de fondo plano, se entrada simple, doble, etc.

Este sistema presenta algunos inconvenientes, además de los asociados a la perforación con lodos. Cuando se extrae el cazo se ejerce cierta succión que puede inestabilizar las paredes. Este efecto es particularmente sensible con diámetros de 500 mm o menos, por lo que lo habitual es perforar con cazo por encima de los 600 mm de diámetro.

Figura 2. Cazo rotativo

 

Os dejo algunos vídeos que ilustran la forma de trabajar con este tipo de perforación rotativa.

En el siguiente vídeo de Keller se muestra la perforación de un pozo de gran diámetro mediante cazos de diámetros sucesivamente mayores. Previamente se ha realizado una pantalla de pilotes secantes.

Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema “Omega” de ejecución de pilotes de desplazamiento por rotación

Sistema Omega de ejecución de pilotes. Imagen: W. Van Impe (http://scon.persianblog.ir/post/121/)

El sistema Omega de ejecución de pilotes permite mediante la aplicación rotación y empuje a la cabeza en la fase de perforación, y rotación y tiro en la fase de extracción, la instalación de pilotes con total ausencia de vibraciones y produciendo un desplazamiento lateral del terreno que lo compacta y evita la extracción de detritus.

Por encima del diámetro máximo de la cabeza, unas hélices horizontales y la inclinación adecuada del ángulo superior producen un segundo desplazamiento del terreno durante la secuencia de extracción y la fase de hormigonado. En esta fase, la presión controlada de inyección de hormigón a través de la varilla del tubo central induce un tercer estado de desplazamiento, asegurando una perfecta adherencia del pilote con el terreno.

Se utiliza una perforadora de vuelo parcial con una seccion de desplazamiento que comprime y mejora la densidad de los flancos del agujero. Esto mejora la friccion perimetral y la capacidad  de carga del pilote vaciado en el molde.

Un documento explicativo lo podéis encontrar aquí: http://www.ifc-es.com/docs/doc478f25b17f2af6.04560118.pdf de la empresa IFC Cimentaciones Especiales S.A. Otro muy interesante, de Juan José Rosas: http://www.consultorsestructures.org/images/stories/quaderns/quaderns15.pdf?phpMyAdmin=1f73cb5e5b5871b17a5dd37e0ee619a6

Os dejo un vídeo donde podéis observar cómo se realiza este tipo de pilote. Espero que os guste.

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema “Fundex” de ejecución de pilotes de desplazamiento a rotación

El sistema “Fundex” de pilotes de desplazamiento por rotación requiere una cabeza de rotación en punta, que no se vuelve a recuperar.

En la figura se puede apreciar el método de ejecución, que consta de las siguientes fases:

  1. El hueco de perforación se cierra de forma estanca mediante una cabeza especial de perforación
  2. A través de una mesa de rotación se hace girar el taladro formado por la cabeza de perforación y el entubado
  3. Se coloca la armadura sobre la longitud del pilote
  4. Se hormigona hasta alcanzar la cota del terreno
  5. A través de la mesa de perforación, se retira el entubado, manteniendo un control constante del cuele del hormigón.

Os dejo unos vídeos explicativos, que espero os gusten.

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa con trépanos triturantes o triconos

Tricono de dientes para formación blanda. Wikipedia

Trépano es la herramienta de corte localizado en el extremo inferior de la sarta de perforación que se utiliza para cortar o triturar la formación durante el proceso de la perforación rotatoria. Actualmente los trépanos más utilizados son los trépanos triturantes o triconos. Esta herramienta apareció en 1910, sin embargo su utilización masiva se introdujo cuando se perfeccionaron los equipos de rotación en la década de los 60. Este tipo de perforación al principio se utilizó al principio en rocas blandas o de poca resistencia, pero actualmente estos sistemas ya son competitivos en rocas duras. Con este sistema de perforación se alcanzan buenos rendimientos, del orden de 60-100 m/turno, en profundidades de hasta 200 m. Se utiliza en ingeniería civil con diámetros entre 100 y 300 mm. Sin embargo, estos límites se superan, por ejemplo en perforaciones petrolíferas, donde en España se han superado los 4500 m de profundidad.

El principio de perforación se basa en dos acciones combinadas:

  • Indentación: Los dientes o insertos penetran en la roca debido al empuje sobre la boca. Este mecanismo tritura la roca.
  • Corte: La roca se fragmenta debido al movimiento lateral de desgarre de los conos al girar sobre el fondo del barreno.

Trépano

La fuerza de avance se produce al introducir los botones del tricono en la roca. Este empuje se transmite al varillaje mediante una cadena de accionamiento hidráulico. La magnitud del empuje no debe sobrepasar cierto umbral para evitar el agarrotamiento del trépano sobre la roca y otro tipo de fallos. La limpieza de la perforación se realiza mediante un fluido, generalmente lodo, aunque en ocasiones se usa agua o aire comprimido, que se inyecta por el interior de la columna de barras hacia el fondo del barreno. Este caudal, aparte de barrer el detritus, permite la refrigeración y lubricación de los rodamientos del tricono.

La velocidad de penetración de este sistema depende de la dureza o resistencia de la roca y de las variables de operación, que son las siguientes:

  • Velocidad de rotación
  • Fuerza de empuje
  • Diámetro de la perforación
  • Velocidad y caudal del aire de barrido
  • Desgaste de los trépanos

 

Tricono de insertos. https://www.talleresegovia.com

Se pueden distinguir dos tipos de triconos: de dientes y de insertos de carburo de tungsteno. Los triconos de dientes tienen un coste económico menor, aproximadamente una quinta parte menos que los de insertos. Sin embargo éstos últimos presentan claras ventajas:

  • Mantienen la velocidad de penetración durante la vida útil
  • Requieren menos empuje para una determinada velocidad de penetración
  • Necesitan menos par, disminuyendo las tensiones sobre los motores de rotación
  • Reducen las vibraciones, con menos fatiga sobre la perforadora y el varillaje
  • Disminuye el desgaste sobre el estabilizador y la barra
  • Producen menos pérdidas de tiempo por cambio de bocas y menores daños en las roscas.

Un Polimedia explicativo es el siguiente:

Os dejo a continuación algunos vídeos sobre triconos que espero os sean útiles.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa de rocas

Figura 1. Trépano tricono típico. Wikipedia

El principio utilizado por las perforadoras rotativas consiste en aplicar energía a la roca haciendo rotar un útil de corte o destroza conjuntamente con la acción de una gran fuerza de empuje. Los diámetros habituales de barreno conseguidos con este tipo de perforadoras oscilan entre 50 y 311 mm, estando los mayores diámetros especialmente indicados para los grandes volúmenes de excavación.

Este sistema consta de una fuente de energía, una columna de barras o tubos individuales o conectados en serie, que transmiten el peso, la rotación y el aire de barrido a una boca con dientes de acero o de insertos de carburo de tungsteno que deben fragmentar la roca. De este modo, se puede distinguir la perforación con tricono (Figura 1) y la perforación con útiles de corte (Figura 2). El primer sistema se aplica a rocas de dureza media a alta y el segundo a rocas blandas.

Figura 2. Trialeta. www.krham.com

La fuente primaria de potencia utilizada por estos equipos puede ser eléctrica o motores diésel, y su aplicación se realiza mediante mecanismos de transmisión mecánicos e hidráulicos. La energía se transmite a través de las barras de perforación, que giran al mismo tiempo que penetra la boca, debido a la intensidad de la fuerza de avance. Prácticamente, casi sin excepciones, esta fuerza de empuje se obtiene a partir de un motor hidráulico. En este tipo de perforación, las pérdidas de energía en las barras y la boca son despreciables, por este motivo, la velocidad de penetración no varía apenas con la longitud del barreno. Para girar las barras y conseguir el par necesario, estas máquinas tienen un sistema de rotación montado habitualmente sobre un bastidor que se desliza a lo largo del mástil de la perforadora. El barrido del detritus de la perforación se realiza con aire comprimido, para lo cual el equipo está dotado de uno o dos compresores ubicados en la sala de máquinas.

El empuje a aplicar dependerá de la resistencia de la roca y del diámetro de la perforación. El mecanismo de empuje está diseñado para aplicar una fuerza del orden del 50% del peso de la máquina, alcanzando los equipos de mayor tamaño un peso de unas 120 toneladas. La rotación la provee un motor eléctrico o hidráulico y se transmite a la herramienta por  medio de la columna de barras. Los sistemas de rotación pueden ser los siguientes:

  • Directos
  • De mesa de rotación
  • Falsa barra Kelly
Rotacion01
Figura 3. Sistemas de rotación: (a) directo, (b) mesa de rotación y (c) falsa barra Kelly

A su vez, los estas perforadoras se pueden montar sobre orugas o sobre neumáticos. La elección de uno u otro depende de las condiciones del terreno y de factores como la maniobrabilidad, la movilidad o la estabilidad de la máquina. El montaje sobre orugas se utiliza preferentemente en las grandes excavaciones a cielo abierto, donde los requerimientos de movilidad son escasos. Su limitación en cuanto a menor velocidad de traslación, 2 a 3 km/h, es poco relevante cuando el equipo permanece durante largos períodos de tiempo operando en un mismo banco o sector de la excavación. En tareas medianas, donde se requiere un desplazamiento más frecuente y ágil del equipo, se prefiere el montaje sobre neumáticos. Estos equipos van montados sobre un camión de dos o tres ejes los más ligeros, y sólo los de mayor tamaño se construyen sobre un chasis de cuatro ejes. Su velocidad media de desplazamiento es de 20 a 30 km/h.

El éxito de la perforación rotativa depende de una serie de factores, unos directamente relacionados con la máquina y otros que son factores externos a la misma. Entre los primeros caben resaltar la magnitud del empuje sobre la roca, la velocidad de rotación, el desgaste de la boca, el diámetro del barreno y el caudal de aire necesario para la evacuación del detritus. Entre los factores que no dependen de la máquina se encuentran las características del macizo rocoso y los rendimientos dependientes del operario.

TIPO DE ROCA

RESISTENCIA A

COMPRESIÓN SIMPLE (MPa)

VELOCIDAD

(rpm)

Muy blandas

< 40

120 – 100

Blandas

40 – 80

100 – 80

Medianas

80 – 120

80 – 60

Duras

120 – 200

60 – 40

Muy duras

> 200

40 – 30

 

En el Polimedia que os presento se resumen las ideas más importantes acerca de la perforación rotativa de roca. Espero que os sea útil.

Os dejo a continuación un pequeño vídeo donde se muestra el funcionamiento del tricono.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

Sondeo a rotación con barrena helicoidal

pilote-cpi8-2grandeEl sondeo a rotación con barrena helicoidal, maciza o hueca es un método a perforación a destroza en la que los materiales salen desmenuzados por la boca del sondeo. Se puede utilizar si el terreno es relativamente blando y cohesivo, y no se encuentran capas cementadas, gravas, o roca en toda la profundidad de realización del sondeo. Si se emplea la barra helicoidal hueca, es posible la toma de muestras inalteradas y la realización de ensayos “in situ” por el interior de la sonda.

Podemos destacar tres tipos fundamentales: hélice corta, hélice continua y cucharas auger.

Hélice corta

 

Hélice continua

 

Os dejo un vídeo explicativo de estas técnicas. Espero que os guste.

Referencia:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.