Perforación rotativa por corte

Figura 1. Secuencia de corte

La perforación rotativa por corte tuvo su máximo desarrollo en la década de los 40 en las minas de carbón americanas. Hoy día su uso se limita a las rocas blandas y de pequeños diámetros, aunque en los trabajos a cielo abierto este sistema entra en competencia con el arranque directo y en los trabajos subterráneos con la perforación rotopercusiva.

Con este sistema, la fuerza de avance trata de mantener en contacto el útil de corte con la roca, de forma que el filo sea el encargado de realizar los sucesivos cortes.

El corte se realiza con bocas que presentan elementos de carburo de tungsteno u otros materiales como los diamantes sintéticos, pudiéndose distinguir varios tipos:

  • Bocas bilabiales o de tenedor, en diámetros de 36 a 50 mm
  • Bocas trialetas o multialetas, en diámetros de 50 a 115 mm
  • Bocas de labios reemplazables, con elementos escariadores y perfil de corte escalonado, en diámetros de 150 a 400 mm
Figura 2. Tipos de bocas para perforación por corte

El ángulo de ataque α del útil de corte varía entre 110º y 140º, siendo más obtuso cuanto más dura sea la roca. El ángulo del labio de corte β varía entre 75º y 80º. El ángulo de corte γ oscila entre -6º y 4º, siendo positivo en rocas blandas y negativo en las duras.

Figura 3. Ángulos característicos de un útil de corte

 

Figura 4. Trayectoria de un punto de la boca

Existe una relación empírica entre el diámetro de perforación, la velocidad de penetración y el tipo de roca:

donde

Vp = Velocidad de penetración

μ = Coeficiente de fricción de la roca

E = Empuje sobre la boca

Vr = Velocidad de rotación

re = Radio efectivo de la roca

Ev = Energía específica de la roca

Ar = Área de la sección transversal del barreno

 

Sin embargo, en la práctica existe una desviación importante de los datos, pues el coeficiente de fricción depende del empuje y la velocidad de rotación se limita por el desgaste continuo que se produce en las bocas al aumentar el número de revoluciones.

Figura 5. Relación entre el empuje y la velocidad de penetración

En la práctica, se pueden definir dos campos claros de operatividad de este sistema de perforación rotativa:

  • Aquellas rocas de resistencia a compresión menor a 80 MPa
  • Rocas con contenido en sílice menor al 8%, para evitar un desgaste excesivo

La eliminación del detrito de perforación suele realizarse con un fluido de barrido que puede ser aire, en los trabajos a cielo abierto o agua o aire húmedo en los trabajos de interior. Emplear aire con inyección de agua no sólo facilita la evacuación del detritus y favorece la velocidad de avance, sino que también refrigera las bocas de perforación y disminuye su desgaste. Además, evita el colmatado de la perforación y elimina el polvo. Se necesita aproximadamente de 1000 a 1500 l/min de aire y por cada perforadora unos 250 cm3/min de agua.

En rocas muy blandas (30 a 40 MPa) puede emplearse varillaje helicoidal, de paso mayor cuanto más grande sea la velocidad de penetración, para evacuar el residuo de la perforación.

Figura 6. Varilla helicoidal y bocas de perforación

Os dejo a continuación un vídeo donde explico, en general, la perforación rotativa de rocas. Espero que os complemente la información anterior.

Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plataformas petrolíferas

Plataforma Mittelplate en Alemania. Wikipedia

El mundo necesita energía desesperadamente. Pero cada vez cuesta más encontrar petróleo y gas. Las prospecciones se llevan a sitios complicados. Los primeros pozos petroleros se perforaban mediante percusión, martillando una herramienta sujeta a un cable. Poco tiempo después las herramientas de cables fueron substituidas por la perforación rotatoria, que permitía perforar a mayor profundidad y en menor tiempo. En 1989 se alcanzó un récord en el pozo Kola Borehole al norte de Rusia, que alcanzó 12.262 m de profundidad, usando un motor de perforación no rotatoria en el fango.

Una plataforma petrolífera o plataforma petrolera es una estructura de grandes dimensiones cuya función es extraer petróleo y gas natural de los yacimientos del lecho marino que luego serán exportados hacia la costa. También sirve como vivienda de los trabajadores que operan en ella y como torre de telecomunicaciones. Dependiendo de las circunstancias, la plataforma puede estar fija al fondo del océano, flotar o ser una isla artificial.

1, 2) Plataformas convencionales fijas; 3) Plataformas de torre autoelevable; 4, 5) Plataformas flotantes tensionadas; 6) Plataformas Spar; 7,8) Plataformas semi-sumergibles; 9) Plataformas en barcos perforadores; 10) Plataformas sustentadas en el zócalo y unidas a instalaciones de extracción en el fondo marino. Wikipedia

Os dejo un vídeo donde podéis ver una plataforma petrolífera de récord. Es tan alta como la Torre Eiffel y pesa unas 20.000 toneladas. La compañía Shell ha tardado un año y medio en construirla.

Sondeo a rotación con barrena helicoidal

pilote-cpi8-2grandeEl sondeo a rotación con barrena helicoidal, maciza o hueca es un método a perforación a destroza en la que los materiales salen desmenuzados por la boca del sondeo. Se puede utilizar si el terreno es relativamente blando y cohesivo, y no se encuentran capas cementadas, gravas, o roca en toda la profundidad de realización del sondeo. Si se emplea la barra helicoidal hueca, es posible la toma de muestras inalteradas y la realización de ensayos “in situ” por el interior de la sonda.

Podemos destacar tres tipos fundamentales: hélice corta, hélice continua y cucharas auger.

Hélice corta

 

Hélice continua

 

Os dejo un vídeo explicativo de estas técnicas. Espero que os guste.

Referencia:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

Perforación a rotación por circulación inversa

Existen dos posibilidades a la hora de realizar una perforación a rotación: la rotación con circulación directa y la rotación con circulación inversa. La diferencia entre ambas estriba en el sentido de circulación del fluido de perforación. En la circulación inversa, objeto de este post, el fluido de perforación y el detritus se eleva a la superficie por el interior del varillaje hasta una balsa de lodos. En este depósito, el lodo se recupera para volver a introducirlo en la perforación por el espacio anular comprendido entre el varillaje y la perforación. La principal diferencia entre los equipos de rotación directa  o los de rotación inversa es que, mientras los primeros utilizan una bomba de lodos, los segundos utilizan un compresor, que generalmente suele llevar su propio motor. En ambos casos, estos elementos suelen ir montados sobre el propio chasis de la máquina, aunque a veces, debido al tamaño de los compresores suelen ir en remolques independientes.

Este sentido inverso de circulación es adecuado cuando Continue reading “Perforación a rotación por circulación inversa”