Reglas de Corini y cálculo de la distancia de transporte en la compensación de tierras

Figura 1. Aspecto de un diagrama de masas de Bruckner.

El diagrama de masas de Bruckner permite la optimización del transporte en el movimiento de tierras. De este tema ya hicimos un artículo anterior que os recomiendo repasar. En este vamos a centrarnos más en el proceso de cálculo.

Este tema y ejercicios resueltos son algunos casos que se explican dentro del Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Volviendo al contenido de este artículo, se trata de determinar los volúmenes a transportar, las distancias de acarreo, los vertederos y los préstamos. Este diagrama permite ajustar la compensación longitudinal y las distancias a las que trasladar los volúmenes de desmonte y terraplén (Figura 1).

Entre las propiedades más interesantes del diagrama, se tienen las siguientes:

  • La ordenada de un punto cualquiera mide el volumen acumulado desde el origen.
  • El volumen excedente acumulado en el origen es nulo, y la horizontal trazada por él, se llama fundamental.
  • La curva de volúmenes es ascendente para desmontes y descendente para terraplenes.
  • Un máximo o un mínimo de la curva, son puntos de paso entre terraplenes y desmontes.
  • La diferencia de ordenadas entre dos puntos mide el volumen a mover entre ambos.
  • Entre las secciones correspondientes a los puntos de intersección de una horizontal cualquiera con la curva de volúmenes, existe compensación entre desmonte y terraplén. El volumen total de tierra a transportar está dado por la ordenada máxima del arco de diagrama comprendido, con relación a la horizontal considerada (Figura 2).
Figura 2. Volúmenes de tierra a transportar en el diagrama de masas
  • El momento de transporte es el trabajo necesario para mover un volumen de suelo desde su posición original, una vez determinada la distancia, hasta la posición final de proyecto. Es el producto del volumen transportado (ordenada) por la distancia (abscisa).
  • El área de cada cámara de compensación respecto a una horizontal cualquiera mide el momento de transporte de la compensación entre las secciones correspondientes a la intersección de dicha horizontal con la línea del diagrama. El área dividida por la ordenada máxima es la distancia media de transporte. Existe entonces un rectángulo de área equivalente al área de la onda y que tiene por altura el volumen de tierra a transportar (Figura 3).
Figura 3. Distancia media de transporte en una cámara de compensación del diagrama de masas
  • Con respecto a una horizontal cualquiera, las ondas situadas por arriba, con el primer tramo ascendente (exceso de excavación) y el segundo descendente (exceso de terraplén) se llaman “montes”. Asimismo, las situadas por debajo con el primer tramo descendente y el segundo ascendente se llaman “valles”.
  • Para minimizar el coste, en el diagrama la suma de las bases de los valles debe ser igual a la suma de las bases de los montes (Figura 4).

    Figura 4. La suma de las longitudes de valles y montes deben ser iguales para minimizar el coste.

Para optimizar el movimiento de tierras, se pueden seguir las denominadas reglas de Corini, que son las siguientes:

  1. La longitud de distribución estará comprendida entre la fundamental y una horizontal trazada por la sección extrema.
  2. Se trazarán diversas horizontales de compensación, comprendiendo cada una un monte y un valle de igual base.
  3. De no ser posible la 2, se trazarán horizontales, en sentido ascendente o descendente, comprendiendo más valles y más montes, de modo que la suma de la base de los montes sea igual a la suma de la base de los valles.
  4. La horizontal de distribución secundaria (dentro de una cámara autocompensada) debe ser tangente a la onda (Figura 5).
Figura 5. La horizontal de distribución secundaria debe ser tangente a la onda dentro de una cámara autocompensada

La obtención de las distancias medias de transporte se ha realizado apoyándose en las propiedades de la línea de volúmenes:

  • Cálculo de la diferencia entre dos ordenadas con respecto a una horizontal cualquiera. Esta diferencia da el volumen de desmonte o terraplén disponible entre ellas.
  • Entre las secciones correspondientes a los puntos de intersección de una horizontal con la línea de volúmenes existe compensación de desmonte y terraplén; el volumen total de tierras a mover entre esas dos secciones será la ordenada máxima con relación a la horizontal considerada.
  • Efectuando la compensación por horizontales, la tierra del punto N se arroja en el P, el área de cada cantera de compensación, correspondiente a una horizontal determinada, mide el momento de transporte de la compensación entre las secciones de intersección de la horizontal con la línea de volúmenes. El área ABC (Figura 2) mide el momento de transporte de la compensación entre A y C.
Figura 6. Obtención de las distancias de transporte
  • Los parámetros que intervienen en el cálculo de la distancia media de transporte de las compensaciones longitudinales son, básicamente, los volúmenes parciales y las áreas parciales entre perfiles, con cuya suma se obtiene el volumen transportado y la superficie total de cada área compensada denominada esencialmente cantera de compensación.
  • Considerando las propiedades analíticas de los diagramas de masas para la obtención del producto volumen por cada distancia de cada compensación longitudinal, la distancia media de transporte para cada área compensada que delimita el diagrama y el eje de abscisas, será el cociente entre el área y el volumen transportado de la misma.

  • Por último, la distancia media de transporte global de la compensación longitudinal se determina con la ponderación de los productos volumen por distancia media de las áreas compensadas existentes dividida por el volumen transportado total.

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compensación de tierras: el diagrama de masas

Figura 1. Perfil del terreno y diagrama de masas (Bruckner)

Cuando todas las tierras a desmontar, después del oportuno estudio geotécnico, resultan aprovechables para la ejecución de los terraplenes, no es necesario desecharlas o llevarlas a vertederos o “caballeros”. Si todos los terraplenes necesarios pueden construirse con los productos obtenidos del desmonte, no será necesario recurrir a tierras de “préstamo”. Si ambas condiciones se cumplen simultáneamente, lo cual es difícil de lograr, se producirá una compensación total de tierras.

Para lograr este objetivo, no habrá que olvidar el “entumecimiento” que sufren las tierras excavadas al compactarlas.  Además, para planificar el transporte de la tierra, es necesario contar con el “esponjamiento” que experimenta el terreno natural al excavarlo.

Figura 2. Compensación transversal

Si en una sección a media ladera se emplean los productos procedentes del desmonte en la ejecución del terraplén de dicho tramo, lograremos una compensación transversal (Figura 2) que es, en principio, la opción más económica, pues implica un menor costo de transporte. En este sentido, el buldócer suele ser la opción más adecuada. Sin embargo, también debemos analizar la compensación longitudinal de tierras, es decir, qué haremos con el excedente de tierra de cada desmonte para construir el terraplén requerido, así como el costo del transporte asociado a esta operación. Por tanto, es fundamental considerar los medios auxiliares necesarios para llevar a cabo la obra de manera eficiente.

En la planificación de obras de infraestructuras lineales, la elección de la maquinaria para el movimiento de tierras se basa en las condiciones del terreno y las distancias de transporte estimadas a partir de los volúmenes de excavación y relleno. Estos datos se representan en los diagramas de masas, también llamado diagrama de Bruckner, que permite ajustar la compensación longitudinal y las distancias de transporte de los volúmenes de desmonte y terraplén (Figura 1). En este diagrama, la diferencia de ordenadas entre dos puntos mide el volumen a mover entre ambos. Además, los puntos de corte del perfil del terreno con la rasante de la vía corresponden a máximos o mínimos en el diagrama de masas.

En ocasiones, la optimización técnica puede no ser rentable por los altos costos de combustible de maquinaria pesada, como las traíllas. Esto podría obligar a buscar préstamos o recurrir a vertederos, lo que implica gastos adicionales y la responsabilidad de rehabilitar y reforestar el área, además de pagar cánones a los propietarios. Es importante tener en cuenta la calidad de los materiales que se encuentren en el terreno, tanto dentro como fuera de la traza, a través de sondeos geotécnicos, pues esto afecta la distribución de las tongadas y las distancias de transporte, dependiendo de si se trata de pedraplenes, suelos seleccionados, etc.

La compensación adecuada de volúmenes se ve afectada significativamente por su impacto ambiental. Por lo tanto, se busca no solo igualar los volúmenes de desmonte y terraplén para minimizar los costos, sino también reducir el impacto ambiental. Esto implica evitar la construcción de terraplenes altos y prolongados que ocupen áreas de alto valor económico o ecológico, y en su lugar, construir viaductos. En algunos casos, los grandes costos de desmontes se evitan mediante la construcción de túneles o la implementación de permeabilidad territorial.

Sin embargo, todo esto puede aumentar significativamente los costos del proyecto, lo que requiere que el Director del Proyecto (representante de la propiedad) esté dispuesto a gastar el dinero. Por lo tanto, el autor del proyecto debe conocer las demandas y prioridades de la propiedad con respecto al impacto ambiental.

Algunas de las recomendaciones en la compensación de volúmenes son las siguientes:

  • Un factor importante que influye en la compensación de volúmenes son las obras de drenaje transversal, caños, estructuras, etc. que pueden requerir curvas y pendientes en las pistas de acarreo, lo que puede distorsionar las distancias teóricas.
  • Es fundamental considerar que los volúmenes de desmonte y terraplén dependen de la diferencia entre la cota del terreno y la del perfil de la obra. Por lo tanto, es posible modificar ambos volúmenes mediante la alteración del perfil de la obra.
  • Un aumento de las cotas del trazado reduce el volumen de desmonte y aumenta el de terraplenes, mientras que una disminución produce un aumento de desmontes y una disminución de terraplenes. De esta manera, ajustando la rasante, es posible lograr la compensación óptima entre ambos volúmenes.
  • Es recomendable buscar una compensación de volúmenes por tramos no demasiado largos, en lugar de referirse a la totalidad de la obra, pues puede generar distancias de transporte excesivamente largas.

A continuación os dejo varios vídeos explicativos y varios problemas resueltos que, espero, sean de vuestro interés. Se trata de uno de los muchos casos que explicamos en el Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Descargar (PDF, 1.31MB)

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Terminación, texturado y curado del pavimento de hormigón

Figura 1. Fratás automático http://www.imcyc.com/revistacyt/jul10/pavimentos.htm

La terminación o acabado final del hormigón es una tarea crítica en la construcción de un pavimento, pues tiene la importante misión de corregir las irregularidades o defectos producidos durante la colocación y compactación del material. Para lograr una superficie adecuada en el hormigón fresco, se pueden llevar a cabo diferentes trabajos, que van desde un ligero fratasado manual hasta intervenciones más significativas como reparaciones de bordes.

El fratasado es una técnica que se utiliza para nivelar la superficie del hormigón, eliminar la capa superficial de lechada, así como los puntos altos y bajos, sumergir las partículas de árido más gruesas, remover y corregir pequeñas imperfecciones, y presentar mortero en la superficie para el texturizado. Esta técnica puede ser realizada de forma manual o mecánica, y puede ser longitudinal o transversal.

En las carreteras de alta velocidad en España, se logra una textura superficial longitudinal mediante el estriado del hormigón con cepillos metálicos o de plástico y una arpillera húmeda y lastrada para conseguir una microtextura áspera en toda la superficie. La arpillera también se emplea para eliminar las marcas de la bailarina. En los bordes de las carreteras se suele crear una textura transversal. En otros países, la macrotextura se logra mediante técnicas como la denudación química o la incrustación de gravilla en el hormigón fresco.

Después de que la pavimentadora haya terminado su trabajo, el carro de texturizado y curado (Figura 2) se acerca para aplicar la textura deseada con un cepillo de cerdas o flejes, mientras que se rocía líquido de curado como última operación. Si se desea una textura de árido visto, el carro extiende el retardador de fraguado y, en algunos casos, el compuesto de curado. Algunos productos pueden realizar ambas funciones simultáneamente. En regiones lluviosas, se protege el retardador de superficie con una lámina de plástico desplegada desde un rollo montado en el carro. Después de retirar el mortero sin fraguar, se aplica el producto de curado sobre el pavimento.

Figura 2. Equipo de texturizado y curado (Calo et al., 2015)

El curado del pavimento es esencial para evitar la pérdida de agua necesaria para el fraguado y endurecimiento del hormigón, así como la aparición de fisuras por retracción que pueden debilitar su resistencia. Aunque es posible usar agua para el curado en carreteras con poco tráfico, se recomienda utilizar productos de calidad que creen una capa impermeable sobre el pavimento para evitar la evaporación del agua. Estos productos suelen tener un pigmento blanco que, además de reducir la ganancia de calor por incidencia de la radiación solar, ayudan en la inspección visual de la uniformidad de la aplicación. Después, al sellar las juntas, es necesario volver a aplicar el producto en la ranura correspondiente.

Figura 3. Tren de curado (Calo et al., 2015)

Las membranas químicas de curado están formuladas a base de resinas y solventes de rápida evaporación que no son solubles en agua. Estas membranas permiten ser aplicadas inmediatamente después de la finalización de las tareas de texturizado y terminación del hormigón, incluso si hay agua presente en la superficie. Al aplicarse por aspersión sobre la superficie del pavimento, se forma una película protectora en pocos minutos, impidiendo la evaporación del agua de exudación y mejorando su acción preventiva al adherirse a la superficie del hormigón. Debido a estas características, son especialmente útiles en la pavimentación con encofrados deslizantes.

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Componentes principales de un pavimento de hormigón

Figura 1. Estructura típica de un pavimento rígido (Calo et al., 2015)

Una sección común de un pavimento rígido se compone de una capa superior, conocida como calzada de hormigón, que es responsable de proporcionar la mayor parte de la capacidad estructural del pavimento. Esta capa se apoya sobre una base de material seleccionado, que puede o no estar tratada con un ligante, y a su vez descansa sobre el suelo natural o la explanada (ver Figura 1).

Calzada de hormigón

La capa superior del pavimento está conformada por la calzada de hormigón, la cual tiene la responsabilidad de proporcionar tanto las características funcionales como gran parte de la capacidad estructural requerida. En cuanto a las características funcionales, es la encargada de brindar las condiciones superficiales necesarias, como el drenaje superficial, la fricción y la regularidad, de acuerdo con el tipo de vía y las condiciones de servicio, a fin de garantizar una conducción segura y cómoda. En lo que respecta a su capacidad estructural, debe ser lo suficientemente resistente para soportar las cargas durante el periodo de servicio y actuar como una barrera impermeable para las capas inferiores del pavimento, minimizando la entrada de agua desde la superficie hacia el interior de la estructura.

El espesor de la calzada dependerá en gran medida del nivel de tránsito pesado previsto, oscilando entre 15 cm y 20 cm para vías urbanas o de bajo tránsito pesado y de 20 cm a 30 cm en rutas de mayor volumen de vehículos pesados.

Base

La capa fundamental en el comportamiento del firme de un pavimento rígido es su base, pues proporciona un apoyo continuo, uniforme y estable a lo largo del tiempo. Si no se cumple esta condición, las losas del pavimento se ven sometidas a tensiones y deformaciones significativas debido a las cargas del tráfico. Esta capa se encuentra ubicada justo debajo de la calzada de hormigón y su función principal es prevenir la erosión en la interfaz entre la losa y el apoyo, lo que la convierte en un elemento obligatorio en las vías con tránsito pesado.

Además de esta función principal, la incorporación de la base en la estructura del pavimento ofrece varios beneficios, tales como mejorar la distribución de cargas, reducir las tensiones en las capas inferiores de la estructura, contribuir al drenaje subsuperficial del agua de infiltración, proteger los suelos de la explanada de la acción de las heladas, garantizar un soporte uniforme para la calzada de hormigón y proporcionar una plataforma de trabajo adecuada que no sea susceptible a las condiciones climáticas y sea apta para la circulación de vehículos de obra.

Una de las causas que puede provocar la falta de uniformidad en la base es lo que se conoce como bombeo de finos (pumping, en inglés): si hay agua debajo de la losa, la base contiene una proporción significativa de finos y la intensidad del tráfico pesado es relativamente alta, la circulación de estos vehículos y el paso de una losa a otra contigua puede provocar el bombeo de la mezcla de agua y finos en la zona de juntas o bordes del pavimento, lo que conduce a la erosión de la base y al descalce de las losas.

En el caso de tráficos medios y ligeros, se suelen utilizar las bases granulares tradicionales, como el macadam o la zahorra artificial (que consisten en gravas y arenas trituradas). No obstante, cuando se trata de tráficos pesados, es necesario emplear materiales granulares tratados con un ligante o conglomerante, como las bases de gravacemento.

Subbase

La subbase es una capa de firme que se ubica debajo de la base en la explanada, también conocida como subrasante. En algunos casos, esta capa puede no ser necesaria si la explanada ya cuenta con una elevada capacidad de soporte granular. Su principal función es proporcionar una base uniforme para la colocación y compactación de la capa de base, además de constituir una plataforma adecuada para su construcción. Es importante que esta capa tenga una función drenante, para lo cual es necesario que los materiales empleados no contengan finos. En cualquier caso, esta capa es generalmente necesaria como capa de transición. Las subbases granulares se componen de gravas y arenas naturales o trituradas, suelos estabilizados con cemento, gravaescoria, entre otros materiales.

Explanada

La subrasante o explanada es la superficie sobre la que se asienta la superestructura del pavimento. Es crucial que esta superficie tenga la resistencia y la regularidad geométrica adecuadas, pues es el soporte directo del pavimento. Además, la explanada puede estar compuesta por la capa superior del terraplén o el fondo de las excavaciones en terreno natural, y es responsable de soportar la estructura del pavimento. Para asegurar la estabilidad y el óptimo estado de la explanada, se seleccionan suelos con características aceptables y se compactan en capas para crear un cuerpo estable capaz de resistir la carga de diseño del tránsito.

Subdrenaje

En ciertas situaciones, es posible mejorar el sistema de drenaje de una estructura, incluyendo estructuras de subdrenaje. Esto permite eliminar rápidamente el agua que se filtra inevitablemente por las juntas y fisuras, evitando los efectos perjudiciales que podría causar su acumulación en la estructura del pavimento. Los subdrenes se componen de una red colectora de tuberías perforadas o ranuradas que se alojan en zanjas para recolectar el agua subterránea. El objetivo es controlar y retirar el agua, minimizando su efecto negativo en las capas estructurales del pavimento.

Juntas

Las juntas son cruciales para determinar las dimensiones de las losas del pavimento y controlar la formación de fisuras tanto en la etapa temprana como en servicio. Existen dos tipos de juntas: las de contracción, que implican debilitar la sección de hormigón, y las de construcción, que se moldean. La opción más común es utilizar el aserrado para crear las juntas, aunque también pueden formarse en fresco con la creación de surcos en el hormigón. En este último caso, puede haber manipulaciones posteriores que afecten la regularidad superficial, lo que limita su uso en juntas transversales en carreteras con tráfico intenso. El serrado de las juntas debe realizarse antes de que se formen las fisuras, pero no demasiado pronto, pues los bordes podrían dañarse. El momento adecuado depende del tipo de cemento y las condiciones de humedad y temperatura. Según el PG-3, se debe hacer el serrado de las juntas transversales dentro de las primeras 24 horas después de la puesta en obra del hormigón, mientras que para las longitudinales, el serrado debe hacerse entre 24 y 72 horas después. La profundidad mínima del corte debe ser de un tercio o un cuarto del espesor de la losa para las juntas longitudinales y transversales, respectivamente. Es recomendable sellar las juntas, especialmente en áreas con mucha lluvia, y para ello se utilizan productos de sellado, preferiblemente perfiles preformados de materiales elastoméricos que se introducen a presión.

Transferencia de carga

La transferencia de carga se refiere a la capacidad de una junta para transmitir una parte de la carga aplicada en una losa a la losa adyacente. Esta transferencia se puede lograr mediante la trabazón de áridos, que se produce entre las caras de la fisura que se desarrolla por debajo de la junta, o mediante el uso de pasadores. En algunos casos, se pueden emplear ambas técnicas en conjunto para lograr una transferencia de carga óptima.

Pasadores

Los pasadores son barras de acero lisas que se colocan en las juntas transversales para transferir cargas sin restringir el movimiento horizontal de las losas. Además de colaborar en la disminución de las tensiones y deflexiones en el hormigón, reducen el potencial de escalonamiento, bombeo y rotura de esquinas en las losas.

Figura 2. Canastilla de pasadores (Calo et al., 2015)

Barras de unión

Los pasadores son barras de acero lisas que se colocan en las juntas transversales para transferir cargas sin restringir el movimiento horizontal de las losas. Su función principal es disminuir las tensiones y deflexiones en el hormigón, al mismo tiempo que reducen el riesgo de escalonamiento, bombeo y rotura de esquinas en las losas.

Figura 3. Barras de unión (Calo et al., 2015)

Arcenes

Aunque no forma parte de la estructura, la condición de soporte en los bordes de la calzada es fundamental en los pavimentos de hormigón. Si el arcén está pavimentado con una estructura de hormigón, la calzada puede transferir una parte de las cargas aplicadas a su estructura, lo que reduce las tensiones y deflexiones debidas a las cargas. Además, minimiza la infiltración de agua desde la superficie del pavimento. Además de los arcenes, existen otras alternativas estructurales, como la incorporación de bordillos (en pavimentos urbanos) o la ejecución de sobreanchos de calzada, que también contribuyen significativamente a mejorar la condición de soporte en los bordes.

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimento de hormigón armado con fibras para carreteras

Figura 1. https://blog.laminasyaceros.com/blog/hormigon-armado

El hormigón reforzado con fibras es aquel hormigón en el que se han incluido fibras en una proporción adecuada para mejorar alguna de sus propiedades respecto al hormigón convencional. Aunque el costo de este tipo de hormigón es alto, se compensa por sus características, como el aumento de la resistencia a la tracción y a la fatiga, el mejor comportamiento a flexotracción, la ductilidad, la resistencia al impacto y la durabilidad, así como disminuir y controlar la fisuración. La transmisión de esfuerzos fibra-matriz se produce por adherencia, superponiendo acciones que involucran fenómenos de adhesión, fricción y entrecruzamiento mecánico. Para asegurar una correcta utilización de fibras en el hormigón, es necesario seleccionar materiales con módulos de elasticidad comparables o superiores a los del hormigón.

La utilización de hormigón con fibras en pavimentos no es algo reciente. Durante la década de 1980, se popularizó su uso al reducir el espesor del pavimento, aumentar la distancia entre las juntas y aumentar su vida útil de cinco a ocho veces en comparación con los pavimentos tradicionales. Desafortunadamente, esta tendencia no se mantuvo y el hormigón con fibras desapareció silenciosamente de la escena de la construcción de pavimentos. A pesar de esto, la investigación en la construcción de soleras industriales continuó especialmente con el empleo de fibras de acero. En España, se han construido miles de metros cuadrados de pavimentos en naves industriales, talleres de mantenimiento de helicópteros, parques de contenedores, suelos de talleres de fábricas de automóviles, entre otros.

El uso de hormigones reforzados con fibras en pavimentos de autopistas y carreteras se ha incrementado debido a su mayor resistencia a la flexotracción, control de fisuración, resistencia a la fatiga dinámica y la posibilidad de hacer juntas cada 15 m o incluso no hacerlas. Además, pueden ser utilizados en la totalidad del espesor del pavimento o en forma de recrecidos sobre pavimentos rígidos o flexibles deteriorados. La ventaja adicional es que estos pavimentos solo requieren un espesor de 7 a 10 cm y se pueden colocar con cualquier extendedora tradicional o simplemente con reglas vibrantes. Sin embargo, su coste es más elevado y solo encuentran justificación en aplicaciones como refuerzos adheridos a pavimentos existentes, pavimentos de puentes y pavimentos que soportan cargas muy pesadas, tales como las que se dan en puertos, aeropuertos y zonas industriales.

Para que las fibras cumplan su función correctamente, es necesario que estén uniformemente distribuidas en la masa del hormigón. Por lo tanto, se recomienda aumentar la proporción de finos hasta llegar a proporciones de pasta del orden del 40%, lo que supone un aumento del 10% en comparación con las dosificaciones normales. También es importante limitar el tamaño máximo de árido a 20 mm. En el caso de los hormigones de pavimentos con áridos de 20 mm, el tamaño máximo debe ser inferior a 100 y la proporción en volumen de fibras debe ser de aproximadamente el 2% de la pasta o el 1% del volumen total. Es posible alcanzar resistencias a compresión de hasta 15 MPa con densidades de 2 t/m³. Sin embargo, es relevante saber que las fibras reducen la docilidad y la trabajabilidad al aumentar la proporción de fibras. Por lo tanto, es necesario incrementar la relación de cemento hasta 0,5-0,6, con dosificaciones entre 350 y 450 kg/m³, o bien emplear un plastificante.

Las fibras pueden ser de distintos materiales, desde microfibras plásticas de muy pequeño diámetro a fibras de acero, que es lo más habitual en pavimentos. Según su naturaleza se consigue controlar el proceso de formación de fisuras o mejorar su comportamiento estructural o la resistencia a la fatiga. La dosificación de microfibras oscila entre 0,6 kg/m³ y 1,0 kg/m³ y la de fibras de acero suele ser superior a los 30 kg/m³. Entre las características más importantes de las fibras metálicas se encuentran la forma de la fibra, que permite un buen anclaje en el hormigón, y la relación entre la longitud y el diámetro equivalente de la fibra. Esta relación es un factor clave que distingue a las fibras metálicas, ya que un valor mayor generalmente proporciona un mejor comportamiento, pero también dificulta la mezcla, el vaciado y el acabado del hormigón. Las fibras de acero mejoran las propiedades de ductilidad, dureza, resistencia al impacto y resistencia al desgaste, según el tipo de fibra y su dosificación. Estas propiedades dependen de la longitud de las fibras, su diámetro, densidad, resistencia a la flexión y módulo de elasticidad. Por lo general, se utiliza acero de bajo contenido en carbono en forma de agujas o pequeños flejes arqueados en los extremos. Las dimensiones comunes son diámetros de 0,15 a 0,75 mm para agujas y anchuras de 0,25 a 0,90 mm con espesores de 0,15 a 0,40 mm para flejes. Las longitudes oscilan entre 6 y 70 mm, con dosificaciones entre 20 y 80 kg/m³.

A continuación os dejo algún vídeo explicativo de este tipo de material.

Os dejo un artículo explicativo que, espero, os sea de interés.

Descargar (PDF, 375KB)

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón pretensado en carreteras y aeropuertos

Figura 1. Pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

Con objeto de evitar fisuras en el pavimento, las losas de hormigón se tesan para contrarrestar la tracción provocada por el tráfico, la retracción y los gradientes térmicos. El principio de diseño de un pavimento de hormigón pretensado consiste en comprimir el pavimento a través del tesado de cables de acero insertos en la losa de hormigón. El tesado puede ser unidireccional o bidireccional, siendo este último aconsejable para pavimentos industriales, en cuyo caso, se recomienda que el nivel de tensión sea similar en ambas direcciones.

De esta manera, el hormigón comprimido permite espesores de losa menores que los pavimentos de hormigón en masa o armado. Además, es posible diseñar grandes áreas sin juntas o con juntas que pasan desapercibidas debido a la compresión que recibe el hormigón. De esta manera, se pueden distanciar las juntas de hasta 150 m y se reduce el espesor de la losa en un 50 %, debido a la disminució de tensiones. Para ello, se han ensayado diversos sistemas de pretensado, tanto internos con cables o alambres (postesado), como externos con gatos planos hidráulicos y juntas neumáticas. Las juntas utilizadas están especialmente diseñadas para adaptarse a cambios máximos de apertura, pero en algunos sistemas los estribos están dispuestos para resistir el empuje horizontal.

Los pavimentos pretensados evitan las grietas de retracción y flexión, eliminando las juntas de contracción y su mantenimiento, minimizando el alabeo de las losas, ofreciendo un comportamiento elástico cuando se sobrecargan, reduciendo espesores y mejorando la planeidad en el largo plazo. Sin embargo, su construcción es más cuidadosa y con personal más especializado, una mayor supervisión para garantizar la adecuada colocación y tesado de los cables, puede presentarse corrosión en cables y anclajes, si falla una zona, hay que sustituir toda el área construida unitariamente, y resulta poco rentable en superficies pequeñas. La rentabilidad de los pavimentos pretensados requiere una longitud de pavimento superior a los 100 m o cuando los suelos son de características mediocres. Se pueden conseguir pavimentos de 10.000 m² sin juntas.

Los requisitos de la plataforma de apoyo o superficie de subrasante son similares a los de los pavimentos de hormigón convencionales. Sin embargo, como los pavimentos postesados son más delgados, el sistema es más flexible y se generan mayores esfuerzos verticales en la base. Por lo tanto, la calidad y resistencia de la fundación es aún más importante en este tipo de pavimentos que en los convencionales. Por esta razón, normalmente se especifica que el módulo de reacción de la base o la constante de balasto no sea inferior a 54 MPa/m.

Generalmente, los cables se postesan y anclan después de que el hormigón ha alcanzado una resistencia suficiente para soportar la fuerza en el anclaje. El postesado puede ser adherido o no adherido. A pesar de lo anterior, el diseño de este tipo de pavimentos presenta algunas dificultades relacionadas con la reparación en caso de fallas. Además, el diseño de las juntas entre las áreas donde se realiza el postesado no es un asunto trivial. Normalmente, se recomienda que el espaciamiento entre los cables longitudinales sea de entre 2 y 4 veces el espesor de la losa y de entre 3 y 6 veces el espesor de la losa para los cables transversales.

Figura 2. Sección de un pavimento de hormigón pretensado

Durante los años 60, varios países europeos desarrollaron técnicas de construcción mediante el pretensado en carreteras. Sin embargo, la geometría de las carreteras provoca más dificultades que ventajas, sobre todo por la dificultad de introducir el pretensado. En España se experimentó en 1963 en el tramo de pruebas de la N-II, pero no se continuó con el uso de esta técnica. Después de unos años de intenso tráfico, se dejó descomprimir y se reforzó con mezclas bituminosas.

Figura 3. Hormigonado de un pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

El empleo de la tecnología del hormigón pretensado se utiliza en mayor medida en pistas de aeropuertos y zonas industriales, donde se pueden encontrar grandes superficies continuas y casi horizontales, sin curvas en planta ni en alzado, como las carreteras. Esto permite un menor espesor de la losa y una diferente organización de la conservación. La primera aplicación en un pavimento aeroportuario tuvo lugar en Francia, en la pista de Orly. Sin embargo, esta pista falló después de seis años en servicio debido a la rotura de los aceros pretensados por oxidación. Por otro lado, en el aeropuerto de Schiphol en Amsterdam, se construyeron más de 700.000 m² de pavimento pretensado a lo largo de 15 años con excelentes resultados.

Una alternativa viable es la construcción de pavimentos empleando losas prefabricadas pretensadas. En algunos países, especialmente en regiones con condiciones ambientales adversas como el norte de la antigua Unión Soviética, se ha adoptado el método de losas prefabricadas para evitar la complejidad de la colada “in situ” y los posibles errores asociados. De este modo, se logra industrializar el proceso, asegurar la calidad y reducir los plazos de obra. Además, esta técnica permite trabajar en cualquier época del año, incluso en condiciones de bajas temperaturas, donde no es posible utilizar hormigón o mezcla bituminosa debido a su enfriamiento instantáneo.

Figura 4. Losas prefabricadas pretensadas para pavimentos. https://www.concrete.org/portals/0/files/pdf/webinars/ws_2021_Snyder_Precast.pdf

Existen dos tipos de losas prefabricadas, las que tienen un pretensado longitudinal y transversal, y las que solo tienen un pretensado longitudinal. Las dimensiones de las primeras pueden llegar hasta 3,50 m x 6,00 o 7,00 m. Para el pretensado se emplea acero de 3 a 5 mm, en dos capas cercanas a cada cara. Los cantos resultantes varían de 14 a 22 cm y se requieren entre 2 y 3 MPa de tensión inicial. La dimensión está limitada por el peso para el posterior traslado y colocación. Por otro lado, las losas pretensadas axialmente son más sencillas y tienen menores dimensiones, de 1,75 o 2,00 m x 6,00 o 7,00 m. En este caso, se opta por un acero de diámetro mayor (14 a 16 mm) y un refuerzo transversal con armadura de barras de 5 a 7 mm. Además, los bordes llevan un armado suplementario.

En las losas se dejan abrazaderas para unirlas mediante soldadura “in situ”. Las juntas se rellenan en dos terceras partes con un mortero pobre de arena y se sellan con un mástico anticarburante. Cada dos o tres juntas se dejan libres para permitir la dilatación, lo cual depende de la gama de temperaturas ambiente. Las bases en este tipo de pavimento son las tradicionales en pavimentos rígidos, aunque es recomendable que sean tratadas con cemento. A veces, se extiende una capa de 3 a 6 cm de arena y cemento para asegurar una mejor superficie de apoyo, dependiendo del tipo de base empleado.

Os dejo un artículo sobre pavimentos prefabricados de hormigón.

Descargar (PDF, 538KB)

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid

KRAEMER, C.; PARDILLO, J.M.; ROCCI, S.; ROMANA, M.G.; SÁNCHEZ, V.; DEL VAL, M.A. (2010). Ingeniería de carreteras II. McGraw-Hill, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón compactado con rodillo para carreteras

Figura 1. Pavimento de hormigón compactado con rodillo (HCR). https://www.youtube.com/watch?v=tMCJGh0FLr0

Los pavimentos de hormigón en masa incluyen los pavimentos de hormigón compactado con rodillo (HCR), que se caracterizan por una consistencia muy seca (una relación agua/cemento de 0,35 – 0,40) y requerir una compactación intensa mediante rodillos vibratorios y neumáticos, similar a la técnica utilizada para la gravacemento. A pesar de esto, el contenido de cemento es comparable al de un hormigón para pavimentos (no inferior a 300 kg/m³) y se emplean cementos especiales con alto contenido de cenizas volantes (superior al 35%). En el caso de caminos y vías rurales resulta una solución económica, durable y de fácil ejecución.

El HCR puede producirse en una planta mezcladora tipo suelo-cemento o mezcla granular, así como en una planta hormigonera con paletas móviles. Las primeras dosifican por volumen, mientras que las segundas lo hacen por pesado. Se ha demostrado que la dosificación por peso es más eficiente, pues garantiza una mezcla uniforme de áridos, cemento y agua. Por otro lado, se ha comprobado que la dosificación por volumen puede producir variaciones importantes en la mezcla.

La extensión la ejecuta una extendedora de mezcla bituminosa o una motoniveladora, que son las máquinas más empleadas en la construcción de carreteras. Después de compactar la superficie y aplicar un riego para protegerla (que puede ser el mismo utilizado para el curado), el hormigón compactado puede abrirse al tráfico en un tiempo relativamente corto. Por lo tanto, este método resulta útil para refuerzos de carreteras con tráfico constante.

Figura 2. Pavimento de hormigón compactado con rodillo (HCR). https://docplayer.es/81543537-Concreto-compactado-con-rodillos-aplicacion-en-pavimentos-1.html

El HCR puede compactarse en una sola capa mediante equipos similares a los empleados en el aglomerado asfáltico. Estos equipos incluyen un rodillo liso vibrante y un rodillo neumático. El primero es el encargado de compactar, lo que permite una pronta capacidad portante al tráfico y una excelente resistencia mecánica a la tracción en la fase de endurecimiento. Este rodillo debe tener una carga estática igual o mayor a 30 kg/cm de generatriz y tracción en el rodillo vibrante. Por otro lado, el rodillo neumático se emplea para el “amasado y terminación superficial” que el rodillo liso vibratorio no puede lograr. Se utiliza con una carga de 3000 kg por rueda y una presión de inflado mayor o igual a 8 kg/cm².

El proceso de compactación comienza con el rodillo estático y luego se vibra con el número de pasadas necesarias para lograr un peso específico, que debe ser igual o mayor al 97% del máximo obtenido para la mezcla. No hay un número fijo de pasadas de rodillo liso ni del rodillo neumático, pues todo depende de las características de la base, del material y del equipo disponible, del espesor y del clima. Finalmente, se emplea el rodillo neumático (10 a 12 pasadas) para mejorar la terminación superficial, borrando las pequeñas deficiencias que puedan quedar luego del paso del rodillo liso y corregir las fisuras superficiales. En esta etapa es esencial contar con un equipo de riego por aspersión, en caso de ser necesario, para mantener la humedad óptima y asegurar que la superficie permanezca húmeda sin formar charcos, especialmente en días calurosos y ventosos.

La compactación de los bordes es un aspecto crítico. En los laterales, se recomienda la utilización de bordillos (en el caso de pavimentos urbanos) para lograr una mejor compactación. Si no hay bordillos disponibles, se puede extender el material del arcén y realizar una primera pasada con el rodillo a lo largo del borde antes de la compactación. Posteriormente, se ejecuta una segunda pasada sobre el borde antes de continuar con la compactación normal. Es importante disponer de una contención lateral para evitar la descompactación del borde. Si se trabaja por carriles, se debe dejar una tira longitudinal central sin compactar, de alrededor de 40 cm de ancho, que actúe como contención. Luego, se compactará esta tira junto con el segundo carril. El mismo procedimiento se seguirá para la contención lateral, compactando la tira junto con el material de los arcenes.

Para el curado se recomienda aplicar emulsión asfáltica aniónica tras la compactación para prevenir la pérdida de humedad y permitir que el conglomerante reaccione y fragüe adecuadamente (hidratación del cemento). Se sugiere emplear un camión regador para la distribución de la emulsión asfáltica sin transitar por la capa recién compactada. Si se requiere la circulación de vehículos, se debe aplicar una capa de arena de aproximadamente 2 a 6 mm de espesor con una proporción de 4 a 7 litros por metro cuadrado, después de que la emulsión se haya secado para evitar que las ruedas levanten el asfalto. Si no hay tráfico, se pueden utilizar productos de curado basados en polímeros que evitan la evaporación del agua y crean una superficie más resistente al reaccionar con la capa superficial de unos pocos milímetros del material puesto en obra.

Si se cubre el pavimento de HCR con una capa asfáltica, no se marcarán juntas a menos que se requiera una transversal de construcción al final de la jornada o por interrupciones prolongadas. La junta transversal de construcción se cortará verticalmente, a una profundidad de 1/5 del espesor. En primer lugar, se extiende una cuña de hormigón seco para facilitar la salida de los equipos de compactación al final del día. Luego, se corta un poco de este hormigón seco con una motoniveladora y se rellena el espacio adyacente con grava. Las motoniveladoras dejan los bordes verticales, compactan, y al día siguiente, antes de iniciar los trabajos, retiran la grava sin tratar y la cuña de hormigón seco.

Si no se va a cubrir el pavimento de HCR, se pueden cortar juntas transversales de contracción con separaciones de entre 12 y 15 m utilizando sistemas tradicionales, o permitir que se produzcan libremente sin corte previo. Si se trabaja por carriles, para evitar la formación de juntas longitudinales en la unión de dos carriles contiguos, se dejará sin compactar un cordón longitudinal central en el primer carril con un ancho de unos 40 cm. Este cordón se compactará al ejecutar el segundo carril.

El comportamiento del HCR es similar al de los pavimentos tradicionales de hormigón vibrado. Sin embargo, cuando se compacta con rodillo, la regularidad superficial que se logra a menudo no es suficiente para soportar altas velocidades de circulación. Por esta razón, en las autopistas se suele colocar una o varias capas de mezcla bituminosa. No obstante, en la actualidad, se están construyendo algunos pavimentos HCR con extendedoras, lo que permite prescindir de la capa de rodadura bituminosa en algunos casos.

En las carreteras secundarias, se deja que el hormigón se fisure libremente por retracción, aunque a menudo se crean juntas mediante serrado. En cambio, en las carreteras principales, es aconsejable ejecutar juntas transversales cercanas en el momento del vertido, a una distancia de unos 3 m, para que no se abran demasiado y no se reflejen en la posible capa de pavimento bituminoso.

El proceso constructivo del pavimento HCR sigue, en esencia, los mismos pasos que un pavimento ordinario. Estos son:

  1. Preparación de la mezcla de hormigón en el lugar o cerca de él. En algunos casos, se pueden agregar aditivos para retrasar el endurecimiento.
  2. Transporte de la mezcla en camiones basculantes.
  3. Colocación del hormigón utilizando la máquina de pavimentación habitual de asfalto.
  4. Compactación del hormigón con rodillos, que debe hacerse dentro de los 60 minutos posteriores a la mezcla, cuando el hormigón aún está fresco y maleable.
  5. Aplicación de técnicas de curado para aumentar la resistencia y durabilidad del pavimento, y para eliminar posibles grietas.
  6. Corte con sierra y sellado de juntas.
  7. Rectificaciones, si es necesario, con discos devastadores de diamante.

Os dejo algunos vídeos que espero os aclaren los aspectos constructivos de este pavimento.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimento continuo de hormigón armado para carreteras

Figura 1. Colocación de armadura en un pavimento continuo de hormigón armado.

El Pavimento Continuo de Hormigón Armado (PCHA) no requiere juntas transversales de contracción. Básicamente, se trata de un pavimento de hormigón armado con juntas, pero con armadura suficiente para que la distancia sea infinita. Cuando se ejecuta adecuadamente, este pavimento requiere una conservación mínima. Los PCHA buscan proporcionar superficies cómodas y sin interrupciones. A través del cálculo de cargas, retracción y cambios de temperatura, se puede anticipar la resistencia del pavimento y controlar su tendencia a agrietarse, como en cualquier otra estructura de hormigón armado. Las ventajas de este tipo de pavimento son su seguridad, su costo y su capacidad para ser compatible con pavimentos existentes de mezcla bituminosa o con superficies de hormigón en mal estado, pues no requieren su eliminación previa.

La eliminación de juntas transversales se realiza a costa de aumentar la cuantía de la armadura longitudinal de acero de alto límite elástico a valores superiores a 10 kg/m². La eliminación de las juntas transversales permite reducir el espesor de la capa de hormigón y amplía su campo de aplicación, aunque su costo inicial elevado los hace más apropiados para su uso en firmes que soporten altos niveles de tráfico pesado, especialmente en autopistas y carreteras principales.

Inicialmente, estos pavimentos se utilizaban principalmente en firmes de nueva construcción. Sin embargo, en los últimos años también se han empleado como refuerzo de firmes ya existentes, tanto rígidos como flexibles, y en la reconstrucción de carriles para vehículos pesados en autopistas. Los pavimentos de hormigón armado continuo también se emplean en pistas de aterrizaje y despegue de aeropuertos, como en el aeropuerto de Narita (Tokio) y en la base francesa de Lorient-Lann-Bihoué. Además, se usan en glorietas, túneles, plataformas industriales y en carreteras donde se espera un asentamiento diferencial, ya que la corta distancia entre las grietas del pavimento permite que se divida en pseudolosas de pequeña longitud, lo que facilita su adaptación a los movimientos del terreno de base.

Figura 2. Sección de un Pavimento Continuo de Hormigón Armado (PCHA)

La utilización del PCHA comenzó en Estados Unidos en 1938, en autopistas con tráfico pesado, pero pasó más de una década hasta que se empezó a experimentar su uso en Europa. Bélgica fue el primer país en aplicarlo en tramos experimentales y en utilizarlo comúnmente en autopistas y carreteras importantes. En 1963, se realizaron pruebas experimentales en la N-II, cerca de Madrid, y se construyeron 43 km en la autopista Oviedo-Gijón-Avilés en 1975. A partir de 1990, se construyeron algunos tramos en la autopista del Cantábrico. Aunque su empleo en España es limitado, se dispone de una técnica madura y fiable para su desarrollo.

Debido a la alta cantidad de armadura principal que poseen en dirección longitudinal (entre 0,6% y 0,7%), los PCHA tienden a desarrollar fisuras transversales de manera natural en intervalos aleatorios pequeños (generalmente de 0,8 a 2,0 m). La función principal de la armadura es limitar la fisuración por retracción y temperatura, y la secundaria es absorber las tracciones estructurales. La armadura transversal, que representa del 0,05% al 0,10%, actúa como soporte para las barras longitudinales y puede ser prescindible. Según el PG-3, los solapes deberían ser menores del 20% del total.

Generalmente, se deja una distancia de aproximadamente 15 cm entre las barras longitudinales para facilitar el vertido del hormigón entre ellas. Por su parte, las armaduras transversales se ubican como soporte de las barras longitudinales y para mantener su posición relativa. No obstante, en los últimos años se ha popularizado el uso de equipos con guías para colocar las barras longitudinales en su posición final durante el vertido del hormigón, lo que permite prescindir de las armaduras transversales.

La cantidad de armadura longitudinal necesaria en un PCHA depende de varios factores, incluyendo el límite elástico del acero y la resistencia característica a flexo-tracción del hormigón. En el caso de hormigones HP-4,5 (4,5 MPa), esta cantidad suele estar en valores entre el 0,65 % y 0,7 %. Generalmente, se suelen emplear barras corrugadas de alto límite elástico (510-620 MPa) como armadura en este tipo de pavimentaciones.

La distancia entre las fisuras y su apertura son inversamente proporcionales a la cantidad de acero dispuesta. Según datos empíricos, la distancia deseable entre fisuras está entre 1 y 3 m, siendo lo óptimo entre 1,5 y 2 m. La apertura de las fisuras debe ser inferior a 0,5 mm. Además, es importante que la distribución de las fisuras sea homogénea para asegurar la transferencia de cargas a través de ellas sin desniveles ni degradación bajo el tráfico. Las fisuras deben estabilizarse a los 4 o 5 años. Para lograr lo anterior, es necesario seguir las indicaciones previas en cuanto a la cantidad de acero, la separación óptima de las barras, el porcentaje de solapes, entre otros factores.

En la historia temprana del uso del acero en PCHA, se solía colocar la armadura en el tercio superior de la losa para mantener cerradas las fisuras en esa zona y para que la armadura actuara como “armadura de piel” y resistiera los desprendimientos del hormigón debidos al tráfico. Sin embargo, con la evolución de la técnica, se ha descubierto que es preferible colocar la armadura a mitad del espesor. Esto no solo reduce el riesgo de corrosión, sino que también mejora la regularidad superficial del pavimento al evitar las ligeras ondulaciones causadas por la “reflexión” de la armadura en la superficie.

Figura 3. Esquema de un Pavimento Continuo de Hormigón Armado (PCHA)

La técnica resulta poco competitiva debido al elevado costo del acero, pero es posible reducir su cuantía a casi la mitad mediante la sustitución de las barras por bandas corrugadas de acero de muy alto límite elástico. Estas bandas tienen una sección transversal de 2 x 40 mm², por ejemplo, y se suministran en bobinas desenrollables. Aunque su costo de construcción es más elevado que el de los pavimentos de hormigón simple con juntas, los PCHA presentan la ventaja de requerir poco mantenimiento y tener una vida útil más larga que otros tipos de pavimentos si se ejecutan correctamente. No obstante, debido a su elevado costo, no suele utilizarse este tipo de pavimento, salvo casos muy especiales de tráfico muy pesado, especialmente si se trata de refuerzos.

Os dejo una presentación de IECA sobre este tipo de pavimentos.

Descargar (PDF, 2.21MB)

Algunas organizaciones promotoras del empleo del cemento han editado publicaciones explicando las ventajas. Os dejo un vídeo explicativo de IECA donde se explica cómo se construye este pavimento. Espero que os guste.

Otro vídeo sobre el mismo tema es el siguiente:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón armado con juntas para carreteras

Figura 1. Pasadores en una junta de construcción de un pavimento rígido

En su momento, los pavimentos de hormigón armado con juntas se popularizaron debido a su capacidad para reducir la cantidad de uniones, lo que resultó en una separación de varias decenas de metros, llegando incluso a los 30 m. El diseño buscó solucionar el problema de conservación que representaban estas juntas, consideradas como la zona más débil, mediante la reducción de su número mediante el aumento de la longitud de las losas. Si bien estos pavimentos solían ser utilizados para el tráfico pesado, en la actualidad son poco comunes en las carreteras, aunque se utilizan en pavimentos industriales y otras aplicaciones. No obstante, han quedado en desuso debido a su elevado costo, pues no se considera que su calidad sea proporcional al precio.

Los pavimentos de hormigón armado con juntas (Figura 2) se dividen en losas, las cuales tienen una longitud mayor y la armadura no se dispone de forma continua. En cambio, se interrumpe en la zona de las juntas, donde se instalan pasadores para mejorar las condiciones de transferencia de carga.

Figura 2. Esquema de un pavimento de hormigón armado con juntas

Es importante destacar que la mayor separación entre juntas puede provocar un mayor movimiento en la losa, debido a los cambios en la temperatura y la humedad, lo que puede afectar la transferencia de carga y aumentar la demanda en los sellos de las juntas. Por lo tanto, en este tipo de pavimentos, se exige la incorporación de pasadores en todas las juntas transversales, como medida obligatoria para garantizar la estabilidad del pavimento a largo plazo.

Figura 3
Figura 3. Sección de un pavimento de hormigón armado con juntas

Las armaduras se ubican en el tercio superior de la losa, no con una función estructural, sino para evitar las fisuras transversales que puedan formarse entre las juntas. Esto garantiza la transmisión de cargas en las fisuras, impide la penetración de agua y otros materiales finos y evita la formación de grietas en forma de “V” bajo la acción del tráfico. La distancia entre juntas longitudinales se mantiene en torno a los 4-6 m, como en el caso del hormigón en masa, aunque en la actualidad se recomienda no superar los 9 m de separación entre juntas.

Figura 4. Pavimento de hormigón armado con juntas

La cuantía geométrica de armadura suele estar entre el 0,07% y el 0,10% del área de la sección transversal, y es frecuente el uso de mallas electrosoldadas, como la de tipo ME 15 x 15 A ø 6-6 B 500 T. En el sentido transversal, se utilizan tanto barras de unión como armadura distribuida, aunque con una cuantía inferior a la utilizada en el sentido longitudinal.

Veamos en esta animación cómo funcionan los pasadores ante el paso del tráfico:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón para pavimentos de hormigón en carreteras

Figura 1. Pavimento de hormigón. https://www.fcc.es/-/el-pavimento-de-hormigon-regresa-a-las-carreteras-espanolas

Para que el hormigón de pavimento sea efectivo, debe resistir tanto el impacto del tráfico como las condiciones climáticas. A diferencia del hormigón estructural, que se somete principalmente a la compresión, los pavimentos necesitan resistir la flexotracción. Las fisuras aparecen siempre donde la resistencia a tracción es menor que en el resto del material o en una zona donde se presenta una mayor concentración de tensiones.

Los pavimentos presentan una geometría que los hace propensos a las fisuras, pues su gran superficie inferior en contacto con la base restringe la contracción, mientras que su cara superior está expuesta a la evaporación. Para prevenir esta situación, es importante tener en cuenta las siguientes recomendaciones:

  • Evitar el uso de relaciones agua/cemento inferiores a 0,40.
  • Impedir el intercambio de humedad con la base y el ambiente mediante la saturación temprana de la base y el curado.
  • Evitar condiciones de restricción elevadas con la base.
  • Usar áridos limpios, libres de polvo y saturados.
  • Diseñar las mezclas de hormigón para obtener un adecuado nivel de ganancia de resistencia temprana y asegurar una apropiada exudación.

La normativa técnica exige ensayos específicos de flexotracción en probetas prismáticas para controlar su resistencia. La calidad del hormigón para carreteras debe ser superior a la de un hormigón para edificación, debido a las solicitudes repetidas del tráfico y los efectos climáticos. Debe ser homogéneo, compacto y presentar características mecánicas adecuadas para la categoría de la carretera y las condiciones climáticas. La resistencia característica a flexotracción se sitúa entre 3,5 y 4,5 MPa a 28 días, de manera general.

Para pavimentar carreteras, se requiere el uso de hormigones con una resistencia mínima a la flexotracción de 3,5-4,0 o 4,5 MPa a los 28 días. Estos hormigones se conocen como HF-3,5, HF-4,0 y HF-4,5, según el artículo 550 “Pavimentos de hormigón vibrado” del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes PG-3 del Ministerio de Fomento de España. Estas designaciones corresponden aproximadamente a resistencias a la compresión de 25, 30 y 35 MPa a los 28 días. Sin embargo, la relación entre las resistencias a la compresión y a la flexotracción varía según las materias primas y la dosificación utilizadas.

En general, para los pavimentos de hormigón, no es necesario emplear cementos “especiales”. Se suelen utilizar cementos con una resistencia a la compresión de 30 a 40 MPa a los 28 días y una dosificación entre 300 y 350 kg/m³, según la categoría de la carretera, las condiciones de ejecución y las propiedades requeridas. Es posible emplear tanto cementos Portland como cementos con adiciones (como escorias, puzolanas, cenizas volantes, etc.). Estos últimos, en general, tienen una velocidad de fraguado más lenta, un menor contenido energético y un menor calor de hidratación que los Portland, lo que los hace más económicos. No obstante, se debe controlar el empleo de elevados volúmenes de adiciones, sobre todo en épocas de tiempo frío, limitándose el contenido de adiciones incluidas en el cemento al 20 %.

La dosificación mínima de cemento en el hormigón fresco será de 300 kg/m³ y la relación ponderal entre agua y cemento no deberá ser mayor a 0,46 para garantizar la resistencia y la durabilidad. En el caso de pavimentos bicapa con eliminación del mortero superficial, el contenido de cemento en la capa superior de hormigón fresco no debe ser inferior a 450 kg/m³. La consistencia más adecuada para estos hormigones es seco-plástica, con una medida de asentamiento en cono de Abrams que oscile entre 2 y 6 cm. Además, el árido grueso debe tener un coeficiente de Los Ángeles inferior a 35.

Dependiendo del tipo de textura que se desee conseguir en el pavimento, se requerirá un árido fino o grueso con ciertas características específicas de desgaste y naturaleza. Si se busca una textura de árido visto en la que los vehículos estén en contacto directo con el árido grueso, se exigirá que este tenga un coeficiente de pulimento acelerado (CPA) no inferior a 0,50. Si se incrusta gravilla en la superficie del hormigón fresco, el coeficiente Los Ángeles no debe ser superior a 20. Para texturas obtenidas mediante cepillado o estriado, en las que el mortero del hormigón entra en contacto con el tráfico, se requerirá que el porcentaje de arena silícea sea superior al 35% (30% en el caso de categorías de tráfico T2 o inferiores) para garantizar su durabilidad.

Se recomienda utilizar el tipo de cemento de la menor clase resistente posible, preferiblemente 32,5, que tenga una resistencia inicial normal (N). Es aconsejable emplear cementos con alto porcentaje de adiciones activas para pavimentos. Sin embargo, si se requiere una apertura rápida al tráfico, se pueden emplear cementos con mayor categoría resistente (42,5 o 52,5) y alta resistencia inicial (R).

Es recomendable usar aditivos plastificantes para facilitar la puesta en obra del hormigón, aunque hay que tener presente que puede demorar el tiempo de fraguado. En zonas donde se presenten nevadas o heladas, es obligatorio incluir un inclusor de aire para crear poros que actúan como “cámaras de expansión”. De esta manera, el agua puede aumentar de volumen al congelarse sin causar desconchamientos durante las heladas. Además, los aditivos aireantes tienen un efecto plastificante y mejoran la tixotropía del hormigón fresco, evitando la caída de los bordes del pavimento al salir del equipo de encofrados deslizantes. La norma UNE-EN 12350-7 establece que la proporción de aire ocluido en el hormigón fresco vertido en obra no debe ser superior al 6% en volumen. En este caso, la proporción de aire ocluido en el hormigón fresco no debe ser inferior al 4,5% en volumen. Es crucial controlar el nivel de incorporación de este tipo de aditivos, pues puede provocar pérdidas de resistencia.

La homogeneidad en las características del hormigón, como su consistencia y resistencia, es fundamental para obtener buenos resultados, especialmente cuando se emplea un proceso de puesta en obra mecanizado. La norma UNE-EN 12350-2 establece que la consistencia del hormigón debe estar entre 1 y 6 cm de asentamiento. El valor y los límites admisibles de los resultados deben ser indicados por el Pliego de Prescripciones Técnicas Particulares o, en su defecto, por el Director de las Obras. Además, pueden especificarse otros procedimientos alternativos para su determinación.

Por otro lado, la masa unitaria de las partículas cernidas por el tamiz 0,125 mm (según la norma UNE-EN 933-2), incluyendo el cemento, no debe superar los 450 kg/m³. Sin embargo, en las capas superiores de pavimentos bicapa, este valor puede aumentarse en 50 kg/m³. Es importante destacar que estos pavimentos deben cumplir las limitaciones establecidas en la Tabla 550.4.

TABLA 550.4 Limitación del contenido máximo de finos en pavimentos bicapa (PG-3)

CAPA DEL PAVIMENTO PORCENTAJE DE PARTÍCULAS CERNIDAS POR EL TAMIZ 0,063 mm (NORMA UNE-EN 933-2)
ÁRIDO GRUESO ÁRIDO FINO
CAPA SUPERIOR < 0,5 % < 10 %
CAPA INFERIOR < 1,5 % < 10 %

 

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.