La compactación de las mezclas asfálticas

Imagea36

Una de las tareas más delicadas e importantes de la puesta en obra del aglomerado asfáltico es su compactación, pues de ella depende en gran parte la calidad final del firme. Se trata de alcanzar una alta densidad que garantice la durabilidad prevista e impida irregularidades superficiales. La compactación debe llegar a la densificación marcada por el Pliego de Prescripciones Técnicas Particulares, normalmente entre el 95 y 98 % de la densidad Marshall de referencia, todo ello conservando la geometría superficial dada por la extendedora.

La compactación se realizará siempre que la trabajabilidad de la mezcla sea la suficiente. En las mezclas en caliente se debe comenzar a compactar con la temperatura más alta posible (superior a 120ºC), siempre que se pueda soportar la carga del compactador sin arrollamientos ni agrietamientos. En frío debe existir la suficiente presencia de fluidificantes en las mezclas abiertas o de la propia agua de la emulsión en las mezclas densas.

Los factores que influyen en la compactación de un aglomerado asfáltico son, entre otros, los siguientes:

  • Tipo de firme: Cada tipo de mezcla presentará diferente dificultad para ser compactado, por ejemplo, la fracturación, tamaño y forma de los áridos.
  • Acabado superficial: Según la calidad del acabado requerido la compactación deberá realizarse de forma diferente.
  • Contenido de betún: El betún actúa como lubricante entre las partículas, aunque no debería ser excesivo para evitar la inestabilidad de la mezcla.
  • Proporción y tipo de fíller: A mayor contenido de fíller, mayor dificultad de compactación, puesto que actúa como estabilizante del betún.
  • Espesor de capa: Si bien un mayor espesor de capa produce más rendimiento, el espesor suele estar marcado por el proyecto.
  • Temperatura: La temperatura de compactación de la mezcla en caliente siempre es muy superior a la del ambiente, por lo que se enfría rápidamente, impidiendo la compactación posterior. Pero tampoco es acertado pasarse en temperatura, pues provoca la inestabilidad de la mezcla. Se pueden dar los siguientes valores a efectos prácticos:
    • Temperatura a la salida de la planta              135 – 180º
    • Temperatura a la salida de la extendedora    120 – 150º
    • Temperatura durante la compactación          85 – 150º

La primera compactación la realiza la propia extendedora, llegando con su vibración a conseguir un 80% de la densidad teórica Marshall. Aunque esta cifra parece elevada, es lo suficientemente baja como para tener que compactar con maquinaria específica.

Las primeras zonas a compactar son las juntas transversales, las longitudinales y el borde exterior, por este orden. En el caso de las transversales la compactación se realiza perpendicularmente al eje de la calzada. Una vez compactadas juntas y borde, la compactación de la calle se iniciará por la zona más baja progresando hacia la más alta mediante solapes de las sucesivas pasadas. En zonas de difícil acceso, hay que emplear pequeños compactadores mecánicos o incluso pisones manuales.

En cuanto al tipo de compactador necesario, éste dependerá del tipo de mezcla y su espesor. En algunos casos se exige un tramo de prueba que determine las características de los compactadores y el número de pasadas necesario. Lo habitual es el uso de compactadores de neumáticos con alta o media presión y rodillos lisos con o sin vibración.

La compactación se realiza normalmente combinando diferentes equipos. Lo más habitual es combinar un compactador de neumáticos, que cierra la mezcla por efecto de amasado, y un compactador de llanta metálica, que corrige las posibles marcas o roderas del anterior equipo. También es muy útil el uso de rodillos mixtos neumáticos-vibrantes que reúnen las ventajas de ambas máquinas.

logotipo_pavimentacion-y-asfalto_compactadores-neumaticos

Los compactadores de rodillo liso sin vibración sólo se emplean en mezclas de pequeño espesor para dar un buen acabado superficial, siempre que se hayan utilizado previamente compactadores de neumáticos. Deben ser compactadores ligeros y con baja presión lineal. Suelen ser compactadoras vibratorias tándem de 8 a 18 t que trabajan sin vibración.

Con los compactadores de neumáticos se debe trabajar con presiones no muy elevadas al principio para acabar la compactación con mayores presiones. Además, tendrán ruedas lisas, en número, tamaño y disposición que permitan el solape de las ruedas delanteras y trasera, con faldones de lona protectores para evitar el enfriamiento de los neumáticos. La compactación dependerá de la carga total por rueda, de la presión y rigidez del neumático, lo cual provoca la presión de contacto. Existe un efecto de amasado y el efecto compactador en profundidad es mayor que el de rodillos metálicos.

Los compactadores vibratorios se usan ampliamente, excepto para capas delgadas, combinando adecuadamente las amplitudes y frecuencias. Estos compactadores trabajan a frecuencias mayores que los usados en suelos, por encima de las 2000 r.p.m., del orden de 2500 a 3000 r.p.m., pues si son inferiores su eficacia baja mucho; con masas excéntricas más pequeñas para cumplir las exigencias de terminación y compactación. Las primeras pasadas suelen realizarse a frecuencias bajas. Para capas gruesas suelen emplearse amplitudes altas y frecuencias bajas y para las capas delgadas lo contrario.

A continuación os dejo un vídeo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, donde se explica la compactación de las mezclas asfálticas. Espero que os sea de utilidad.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

¿Cómo seleccionar un equipo de compactación?

compactador-monocilindro-41153-4514107¿Por qué es habitual compactar con el primer compactador que tenemos en obra? Grandes errores y pérdidas económicas han sufrido más de una obra de movimiento de tierras por no acertar con el equipo de compactación adecuado. No es un tema fácil, pues requiere conocer con cierto detalle no sólo las características del compactador, sino también el tipo de suelo, sus características de humedad, granulometría, etc., y además, las condiciones de trabajo que vamos a imponer a esta unidad de obra. Vamos, pues, a intentar divulgar algunas ideas en torno a este tema para complementar otros posts anteriores como el que dedicamos a la curva de compactación o al tramo de prueba.

La elección de un equipo compactador, y la forma de usarlo, está condicionada por multitud de circunstancias y factores, de modo que no es biunívoca la solución adoptada para unas condiciones determinadas. Al final, la elección será fundamentalmente un asunto económico, ya que existen amplios solapes entre los distintos tipos de máquinas y sus campos de aplicación. Los casos que se pueden presentar son variados y cada uno requiere procedimientos específicos. No es lo mismo construir un terraplén nuevo, que consolidar un terreno natural o trabajar en un terreno anegado. En las situaciones habituales, donde se forma un terraplén compactando tongadas sucesivas del terreno, va a ser determinante la naturaleza del material empleado. El material empleado definirá la aplicabilidad de los equipos. El siguiente factor a considerar será el estado en que se encuentre (humedad, espesor de la capa, etc.). También decidirá la forma y dimensiones de la zona a compactar.

Por último, se deberá atender al volumen total de material. Se eligen las máquinas de tamaños que proporcionen mayores rendimientos, pero sin llegar a romper los suelos. Suelen emplearse equipos que presenten mayores capacidades de producción que los equipos de excavación y transporte, para no convertirse en “cuellos de botella” de las actividades. Cuando se emplean varios equipos en la compactación, con frecuencia trabaja una máquina de elevadas producciones, y es otra la que termina la superficie. Se seleccionará el equipo de compactación en función de la naturaleza del relleno, considerando tres grandes grupos de materiales, los finos, los de grano grueso y los pedraplenes.

Os paso el siguiente Polimedia para repasar estos conceptos, aunque hay libros e información adicional que podéis consultar fácilmente para ampliar este tema. Espero que os guste.

Referencias

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

Laboratorio virtual: peso específico de un suelo

Suelo

Se entiende por suelo al seudosólido formado por un conjunto de partículas sólidas que forman una estructura en cuyo seno existen huecos ocupados por agua y aire en proporciones variables. El “peso específico de un suelo“, como relación entre el peso y su volumen, es un valor dependiente de la humedad, de los huecos de aire y del peso específico de las partículas sólidas. Para evitar confusiones, las determinaciones de los ensayos de laboratorio facilitan por un lado el “peso específico seco” y por otro la humedad. Fijémonos que este término es diferente de la “densidad del suelo“, que establece una relación entre la masa y el volumen. También suele utilizarse un valor adimensional denominado, “peso especifico relativo”, definido como el cociente entre el peso específico del suelo y el peso específico del agua a una temperatura determinada. Los valores típicos de gravedades específicas para los sólidos del suelo son entre 2.65 y 2.72. En la figura que sigue se observan los componentes de un suelo, con las notaciones sobre sus pesos y volúmenes, lo cual permite definir parámetros que caracterizan el estado físico de dicho suelo.

Estos conceptos son básicos y muy conocidos para el alumno de un curso de geotecnia en un grado de ingeniería civil. Sin embargo, para facilitar el proceso de aprendizaje os facilito a continuación un enlace a un pequeño laboratorio virtual donde el alumno puede comprobar por sí mismo cómo varía el peso específico seco en función de la humedad y del peso específico de las partículas sólidas. Las instrucciones son muy sencillas: se debe seleccionar el rango máximo para la humedad y el contenido de huecos de aire, en tanto por cien, con valores comprendidos entre 0 y 100; además se seleccionará el peso específico de las partículas sólidas en kN/m3. No se admiten valores negativos.

El enlace a dicho laboratorio virtual es: https://laboratoriosvirtuales.upv.es/eslabon/DensidadSuelo/ 

Densidad

 

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los tramos de prueba en la compactación de suelos

La compactación de suelos suele ser uno de los procedimientos constructivos donde las patologías suelen aparecer debido a su mala ejecución. Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra, se aconseja la realización de tramos de prueba, donde se pueden establecer los criterios que, bajo la perspectiva económica, sean óptimos para llegar a la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. A continuación os dejamos un Polimedia donde se recoge una somera explicación a la realización de estos tramos de prueba.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

Compactación dinámica rápida

La compactación dinámica rápida constituye una técnica de mejora del terreno que se logra mediante la densificación provocada por la aplicación repetida, en puntos convenientemente espaciados de la superficie del mismo, de impactos de gran energía.  Se trata de generar golpes mediante un elevador hidráulico con pesos de 7 a 16 toneladas que se dejan caer desde una pequeña altura de 1-2 m. Estos impactos se realizan dejando caer una pesada maza, sobre una zapata en contacto con la superficie del terreno, especialmente diseñada para tal fin.  Se suelen dar entre 40 y 80 golpes por minuto. En condiciones adecuadas se podría compactar un espesor entre 4 y 7 m de profundidad. Normalmente se dan entre 40 y 60 golpes por punto en mallas de 2 a 3 m de lado. Os dejo un vídeo explicativo de unos 3 minutos. Espero que os guste.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia

Compactador por impactos con rodillo de perfil lobular

Últimamente se han desarrollado algunos sistemas de compactación de intensidad mayor a la de los rodillos vibratorios, pero menor a la compactación dinámica. Se trata del sistema denominado HEIC (High Energy Impact Compaction), que es un sistema de compactación con rodillos por impactos de gran energía.

Se trata de unos rodillos de perfil irregular y de pesos del orden de 12 a las 25 t que se arrastran por un tractor a una velocidad entre 10 y 15 km/h. Ello implica de 90 a 130 impactos por minuto.

ctfj0atwcaaen0m-1

Debido a la forma de los rodillos, durante la elevación del eje del rodillo la carga unitaria sobre el suelo va aumentando por la disminución de la zona de contacto con el suelo. Al bajar bruscamente se produce un impacto, lo que facilita el movimiento y evacuación del aire y agua contenidos en el suelo. Las presiones de contacto pueden alcanzar los 300 kPa a 1,2 MPa. Los efectos pueden alcanzar hasta los 4-5 m, en función del suelo tratado y del tamaño del compactador.

La máxima resistencia del suelo se alcanza por debajo de la superficie, puesto que la zona superficial se descompacta por efecto de los impactos. La curva de compactación conseguida se sitúa por encima de la del Proctor modificado, por lo que la humedad óptima es menor que la correspondiente a dicho Proctor.

http://www.landpac.co.za/

Os paso un par de vídeos de un compactador remolcado caracterizado por generar golpes mediante la circulación de un rodillo con perfil triangular. Cada vez que gira, se produce un impacto sobre el terreno. Espero que os gusten.

Ensayo de placa de carga

Ensayo de placa de carga. Vía: Enrique Montalar

El ensayo de placa de carga es uno de los ensayos “in situ” llevados a cabo para realizar un reconocimiento geotécnico. La ejecución de la prueba resulta imprescindible para la comprobación de la capacidad portante de un suelo, en función de su estado natural o como consecuencia de una determinada compactación.

Consiste en aplicar una carga sobre una placa (generalmente rígida), colocada sobre la superficie del terreno, y medir los asientos producidos. Se utilizan con gran profusión para comprobar el módulo de deformación de capas de terraplenes y de firmes.

El método habitualmente utilizado es el estático, con carga aplicada sobre una placa circular mediante un gato hidráulico, utilizando un camión cargado o una máquina pesada como reacción para el gato. La norma NLT-357/98 describe la realización de este ensayo. El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras, especifica valores mínimos de l módulo E2 para diferentes materiales y situaciones (link).

Os dejo varios vídeos sobre cómo se realiza el ensayo. Espero que os gusten:

Placa de carga de una losa:

Compactación dinámica y su control con ensayos de penetración dinámica

Compatación dinámica (fotografía de Menard)

La compactación dinámica es una técnica que mejora la capacidad portante de los suelos, especialmente de aquellos con escasas características geotécnicas, mediante la aplicación de esfuerzos dinámicos en superficie. Se trata de aplicar un elevado esfuerzo dinámico al dejar caer una masa elevada desde cierta altura. Actualmente, es habitual el uso de pesos de maza que oscilan normalmente entre 1 y 100 toneladas, con alturas de caída de hasta 40 m. Este tipo de tratamiento es altamente dependiente de las características del suelo y de la energía empleada. En principio, se puede utilizar en suelos granulares, saturados o no, y ofrece buenos resultados en rellenos artificiales heterogéneos, que difícilmente se pueden mejorar con otros procedimientos. Además, la mejora es significativa incluso a profundidades altas, siendo una solución económica cuando se compara con otras soluciones alternativas como la excavación y sustitución del suelo, la precarga, las inyecciones y otras técnicas de mejora de suelos.

El principio de dejar caer grandes pesos sobre la superficie del suelo para mejorarlo en profundidad se ha empleado desde tiempos muy antiguos. Menard y Broise (1976) hacen referencia a dibujos muy antiguos que sugieren que la técnica se podría haber empleado en China desde hace centurias. Los romanos también la emplearon en sus construcciones. En los Estados Unidos se empleó un antiguo cañón para compactar ya en el año 1871 (Lundwall, 1968). También en la antigua Unión Soviética se empleó este método para compactar loess con buenos resultados, si bien con pesos y alturas de caída mucho menores a las actuales (Faraco, 1980). En los años 40 se empleó este procedimiento constructivo en la construcción de un aeropuerto en China y un área portuaria en Dublín. Sin embargo la técnica actual se puede fechar en 1970, cuando Louis Menard patentó este método en Francia, favorecido sin duda por la aparición de las gigantescas grúas montadas sobre orugas. En Gran Bretaña y en Estados Unidos se empezó a utilizar en los años 1973 y 1975, respectivamente.

La disponibilidad de suelos con suficiente capacidad portante para la construcción ha ido disminuyendo conforme se iban desarrollando las áreas urbanas. De esta forma, fueron quedando parcelas con suelos de pésimas características geotécnicas que había que recuperar de alguna forma para seguir construyendo. Esto favoreció, sin duda, el desarrollo de la compactación dinámica.

La compactación dinámica se desarrolló y se empleó de forma satisfactoria para densificar suelos flojos, saturados y sin cohesión, siendo especialmente eficaces porque queda reducida la potencial licuefacción del suelo. En este sentido, se puede decir que el proceso de densificación es similar al de la vibro-compactación. También se podría emplear la técnica para suelos finos cohesivos, sin embargo el éxito en este caso es más dudoso, requiriendo una especial atención la generación y disipación de las presiones intersticiales. En ocasiones, esta técnica de mejora se emplea de forma conjunta con las columnas de grava para facilitar la disipación de las presiones intersticiales (Bayuk y Walker, 1994).

Información útil sobre las técnicas y maquinaria empleadas, así como la respuesta del terreno a la compactación dinámica se puede encontrar en Mayne et al. (1984), Varaksin (1981), Liausu (1984) y Findlay y Sherwood (1986). Es habitual un espaciamiento entre puntos de impacto entre los 2 y 3 m en las mazas pequeñas y más de 10 m en el caso de mazas pesadas. El tratamiento se da en varias pasadas y la profundidad alcanzada por la densificación se puede relacionar con la energía del golpe mediante la siguiente fórmula empírica: D=k(M·H)^0.5,  donde:

M = masa de la maza (toneladas)

H = altura de caída (metros)

D = profundidad efectiva de la compactación (metros)

k = factor que depende del tipo de suelo y de las características del tratamiento, aunque un valor usual puede ser 0.5 (m/t)1/2.

El procedimiento de cómo se realiza la compactación dinámica está ampliamente descrito en el trabajo de Liausu (1984).

Para comprobar la efectividad de un tratamiento de mejora de suelos, tal y como pudiera ser la compactación dinámica, es necesario comprobar que la mejora conseguida es suficientemente buena como para alcanzar los objetivos marcados por el proyecto correspondiente. Una forma económica y sencilla de ensayar el terreno en profundidad consiste en hincar un varillaje con una punta metálica, de forma que, contabilizando el número de golpes necesarios para hacer avanzar dicha punta una longitud determinada, se pudiese correlacionar dicho valor con las características geotécnicas del terreno. A este tipo de pruebas se les conoce con el nombre de ensayos de penetración dinámica.

El ensayo de penetración estándar o SPT (Standard Penetration Test) es quizás uno de los ensayos más frecuentes que se utiliza cuando se realizan sondeos de reconocimiento. De hecho, representan una importante fuente de datos acerca de la resistencia del terreno. Se trata de medir el número de golpes necesario para que se introduzca una cuchara cilíndrica y hueca muy robusta que, además, permite extraer una muestra alterada de su interior. Tanto la cuchara como la masa y la altura a la que caen están normalizadas. La ventaja del SPT es que se permite visualizar el terreno donde se ha realizado la prueba y permite su identificación, e incluso, si el terreno es cohesivo, obtener su humedad. Se trata de ensayos de bajo coste y de alta representatividad, especialmente para suelos granulares y mixtos. La descripción del ensayo se encuentra recogida en la norma UNE 103-800-92. El valor que se obtiene se denomina resistencia a la penetración estándar N30spt.

Este ensayo nace en 1927 cuando un sondista de la Raymond Concrete Pile propuso a Terzaghi contar el número de golpes necesarios para hincar 1 pie el tomamuestras que se utilizaba para obtener muestras en terrenos no cohesivos. Tras realizar un gran número de ensayos, Terzaghi y Peck (1948) publican sus resultados en su libro “Mecánica de suelos en la ingeniería práctica”. Esta prueba se ha difundido internacionalmente y existen numerosos estudios que permiten relacionar de forma empírica el valor N30SPT con las propiedades geotécnicas del terreno in situ. Sin embargo, gran parte de las correlaciones corresponden a terrenos arenosos, pues la presencia de gravas oscurece la interpretación de los resultados e incluso puede impedir la realización del ensayo. Por tanto, es un ensayo especialmente indicado para terrenos con una amplia fracción arenosa y lo es menos cuando existe una mayor proporción de finos o de gravas.

Uto y Fijuki (1981) recomiendan corregir el valor de la resistencia a penetración estándar cuando se ensaya a más de 20 metros de profundidad. Skempton (1986) propone factores de corrección a dicho valor en función de la profundidad del ensayo y del diámetro del sondeo, aunque estas correcciones se realizan para suelos granulares, puesto que para los cohesivos dicha influencia es despreciable. Otras correcciones independientes del sistema de ensayo se refieren al nivel freático (Terzaghi y Peck, 1948), a la presión de confinamiento (Gibbs y Holz, 1957), siendo objeto de distintos estudios que están resumidos en Liao y Whitman (1985).

En cuanto a las correlaciones de Nspt con los parámetros geotécnicos del terreno, Terzaghi y Peck (1948) publicaron las primeras correlaciones con la densidad relativa de arenas cuarzíticas, siendo modificadas posteriormente por Skempton (1986). Gibbs y Holtz (1957) comprobaron que se debía introducir la presión de confinamiento en dichas relaciones, y luego Meyerhof (1956) ajustó dichas relaciones. Otras correlaciones referidas al ángulo de rozamiento interno, deformabilidad o potencial de licuefacción pueden verse en Devicenzi y Frank (1995). Sin embargo, tal y como se comentó anteriormente, las correlaciones sobre terrenos cohesivos se han considerado meramente orientativas, debido a la dispersión de resultados. Sin embargo, hoy en día este criterio se está cuestionando y se están aceptando estas pruebas en todo tipo de terrenos.

Cuando lo que se quiere es disponer de un registro continuo para caracterizar un suelo en profundidad, se puede emplear la prueba de penetración dinámica superpesada o DPSH (Dynamic Probing Super Heavy). Las características del ensayo son distintas a las del SPT. Aquí se utiliza una punta cónica perpendicular al eje de penetración midiéndose el golpeo necesario para profundizar 20 centímetros. Sin embargo, se ha tratado de establecer una correlación entre ambos ensayos que, en el caso de las arenas, el factor de conversión entre ambos ensayos es próximo a la unidad, siempre que estemos entre los 5 y 30 golpes, y siempre que estemos a un máximo de 10 – 15 m, pues a partir de aquí la dispersión aumenta debido al efecto de rozamiento de las varillas, que empieza a ser importante. En el caso de la correlación entre el ensayo Borros o DSPH y el SPT en arcillas, se puede consultar el trabajo de Dapena et al (2000).

Son muchas las correlaciones que se han encontrado entre los ensayos a penetración dinámica. Las equivalencias entre los ensayos parten de una relación de semejanza entre la energía de hinca. Un resumen de los parámetros geomecánicos obtenidos a partir de estos ensayos aplicado a suelos mixtos cohesivos-granulares puede verse en Parra y Ramos (2006).

Todo ello nos lleva a la siguiente conclusión: no es muy fiable establecer correlaciones entre los distintos ensayos de penetración dinámica, especialmente cuando el suelo empieza a ser cohesivo. El tema se complica mucho más cuando el terreno no es natural, sino que se trata de un relleno antrópico heterogéneo. Ello obliga a realizar un estudio en profundidad para establecer dichas correlaciones, siendo aconsejable efectuar un penetrómetro de contraste al lado de un sondeo con SPT.

Referencias

  • Bayuk, A.A.; Walker, A.D. (1994). “Dynamic Compaction. Two Case Histories Utilizing Innovative Techniques.” In-Situ Deep Soil Improvement, ASCE, Geotechnical Special Publication No.45.
  • Devincenzi, M.; Frank, N. (1995). “Ensayos Geotécnicos in situ”, Igeotest, Figueres, Girona.
  • Faraco, C. (1980). “Mejora del terreno de cimentación”, en Jiménez Salas (coord.) Geotecnia y Cimientos III, primera parte, pp. 489-531.
  • Findlay, J.D.; Sherwood, D.E. (1986).”Improvement of a hydraulic fill site in Bahrain using modified heavy tamping methods” Building on Marginal & Derelict Land., May 7-9.
  • Gibbs, H.J.; Holtz, W.G. (1957). “Research on Determining the Density of Sands by Spoon Penetration Testing”. Proc. 4th Conf. On SMFE, London.
  • Liao, S.; Whitman, R.V. (1986). “Overburden Correction Factors for SPT in Sand”, Journal of Geotechnical Engineering, ASCE, Vol 112, Nº 3.
  • Liausu, P. (1984) Renforcement de Couches de Sol Compressibles par Substitution Dynamique, In-Situ Soil and Rock Reinforcement Conference, Paris.
  • Lundwall, N.B. (1968). The Saint George Temple, in “Temples of the Most High, Bookcraft, Salt Lake City, Chapter 3, p. 78.
  • Mayne, P.W.; Jones, J.S.; Dumas, J.C. (1984). Ground response to dynamic compaction. Journal of Geotechnical Engineering, ASCE, Vol. 110(6), pp. 757-774.
  • Menard, L.; Broise Y. (1976). “Theoretical and practical aspects of dynamic consolidation”, Ground Treatment by deep compaction, Institution of Civil Engineers, LONDON, pp. 3-18.
  • Meyerhof, G.G. (1956). “Penetration Test and Bearing Capacity of Cohesionless Soils”. Journal of Geotechnical Engineering, ASCE, Vol. 91.
  • Parra, F.; Ramos, L.L. (2006). “Obtención de parámetros geomecánicos a partir de ensayos a penetración dinámica continua en suelos mixtos cohesivos-granulares”. Ingeopres: Actualidad técnica de ingeniería civil, minería, geología y medio ambiente, 145: pp. 20-24.
  • Skempton, A.W. (1986). “Standard Penetration Test Procedure and Effects in Sandsof Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation”. Geotechnique, 36, pp. 425-437.
  • Terzaghi, K.; Peck, R.B. (1948). “Soil Mechanics in Engineering Practice”. Ed. John Wiley and Sons, New York.
  • Uto, K.; Fuyuki, M. (1981). “Present and Future Trend on Penetration Testing in Japan”, Japanese Soc. SMFE.
  • Varaksin, S. (1981). “Recent development in soil improvement techniques and their practical applications”. Sol. Soils, Nº 38/39.
  • Dapena, E.; Lacasa, J. García, A. (2000). “Relación entre los resultados de los ensayos de penetración dinámica Borros DPSH y el SPT en un suelo arcilloso”. Actas del Simp. sobre geotecnia de las infraestructuras lineales. Soc. Española de Mec. del Suelo e Ing. Geotécnica.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas resueltos de movimiento de tierras y compactación

En el año 1997 se editó un libro de problemas que se llamó “Equipos de movimiento de tierras y compactación. Problemas resueltos“. Aunque ya han pasado años, me apetecía empezar la semana haciendo algunos comentarios sobre esta publicación.

Uno de los peores defectos que puede tener una escuela de ingeniería es desligarse de la realidad. Si bien es cierto que la investigación debe ocupar una parte de las tareas a las que se debe encomendar la universidad, también es cierto que una escuela de ingenieros debe formar profesionales capaces de abordar problemas reales cotidianos. El movimiento de tierras y las labores de compactación son, probablemente, una de las tareas más habituales de cualquier obra de ingeniería civil. Sin embargo, es habitual que en numerosas escuelas esta faceta se presente con una profundidad más bien teórica, siendo lo práctico secundario.

Este tipo de reflexión me hizo coleccionar datos, casos resueltos y problemas reales que tuve que afrontar en mis primeros años de práctica profesional. Al principio era una colección dispersa cuyo único objetivo era sistematizar mi trabajo habitual en obras lineales, casi todas ellas autovías y carreteras. Sin embargo, cuando empecé mi labor universitaria, me di cuenta que este material podía ser de extraordinaria importancia para nuestros alumnos.

En este libro, que seguro necesita alguna revisión, se abordan aspectos económicos, de producción, mantenimiento, reparación, etc. Además aparecen casos resueltos relacionados con el control de calidad, tramos de prueba, propiedades de los suelos y otros que creo son de interés. Además, aparecen en forma de cuestionario tipo test preguntas que aparecieron en los primeros años de docencia de la asignatura de Procedimientos de Construcción que pueden servir para aclarar algunas ideas y conceptos. Por último, se han incorporado aspectos de otras disciplinas que son de aplicación directa al problema de los equipos de producción de este tipo de unidad de obra: ensayos de fiabilidad, el problema del transporte, el problema de la asignación, caminos mínimos entre nodos, etc. Son un total de 100 problemas resueltos, 166 preguntas tipo test y un apéndice de tablas aplicables a este tipo de problemas. Creo que, en este momento, no existe una publicación similar en español.

Os dejo a continuación algunas direcciones desde donde se puede acceder a esta publicación. Espero que no se haya agotado.

http://books.google.es/books/about/Equipos_de_movimiento_de_tierras_y_compa.html?id=BCDpMloopMcC

http://www.amazon.es/Equipos-Movimiento-Compactaci%C3%B3n-Problemas-Resueltos/dp/8477215510

http://www.casadellibro.com/opiniones-libro/equipos-de-movimiento-de-tierras-y-compactacion-problemas-resuel-tos/9788477215516/946443

Referencia:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

¿Qué es la curva de compactación de un suelo?

Seguimos con este post la divulgación de conceptos básicos relacionados con una de las unidades de obra que más patologías conlleva a largo plazo: la compactación. En otros posts anteriores ya hablamos de los tramos de prueba y de la compactación dinámica. La compactación constituye una unidad de obra donde la interacción entre la naturaleza del suelo, sus condiciones, la maquinaria y el buen hacer de las personas que intervienen en ella son cruciales. Desgraciadamente, en numerosas ocasiones se trata a la compactación como una unidad de obra complementaria o auxiliar. Vamos, por tanto, en 8 minutos, a dar dos pinceladas sobre el concepto de curva de compactación. Espero que os guste.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.