Preguntas frecuentes sobre pantallas de contención de agua subterránea

Figura 1. Cuchara para excavar pantalla. https://www.geo-solutions.com/resource-category/slurry-walls-equipment/

1. ¿Qué son las pantallas impermeables de bentonita-cemento y cuándo se utilizan?

Las pantallas impermeables de bentonita-cemento, también denominadas pantallas blandas, plásticas o de lodo autoendurecible, son barreras que impiden el paso del agua subterránea. Su construcción es similar a la de los muros pantalla, pero su función principal es impermeabilizante, sin responsabilidad estructural significativa. Su uso se inició en la década de 1960. Son ideales cuando el objetivo es detener el flujo de agua y no se prevé una excavación o un vaciado anexos. Entre sus ventajas destacan su impermeabilidad, la ausencia de juntas, su capacidad de adaptación a grandes deformaciones por cambios en el nivel freático y su bajo coste, debido al bajo consumo de materiales y a la simplificación de la construcción.

2. ¿Cómo se construye una pantalla de bentonita-cemento y qué materiales se utilizan?

La construcción de una pantalla de este tipo implica la excavación de una zanja con herramientas como cucharas bivalvas, retroexcavadoras con brazos largos (eficaces hasta 15 o 20 metros, o hasta 25 o 30 metros con brazos especiales) o zanjadoras de brazo inclinable. La mezcla utilizada consiste en bentonita, cemento, agua y, opcionalmente, aditivos. Las dosificaciones típicas por metro cúbico de mezcla varían: entre 100 y 950 litros de agua, entre 20 y 80 kg de bentonita, entre 100 y 400 kg de cemento y hasta 5 kg de aditivos. La bentonita se añade para evitar la decantación del cemento antes del fraguado. La mezcla se elabora en una planta y se envía a la obra. Es crucial asegurar la continuidad entre paneles para evitar juntas, lo que se logra mediante la perforación inmediata de paneles contiguos o mordiendo el extremo de un panel aún pastoso para la adhesión del nuevo lodo.

3. ¿Qué son las pantallas de suelo-bentonita y en qué se diferencian de las pantallas de bentonita-cemento?

Las pantallas de suelo-bentonita son barreras que se utilizan para detener el paso del agua o aislar residuos o zonas contaminadas de agua subterránea. A diferencia de las pantallas de bentonita-cemento, que son más comunes en Europa, las pantallas de suelo-bentonita se originaron en Estados Unidos en 1945 y son más habituales en este país. La principal diferencia radica en el material de relleno: mientras que las pantallas de bentonita-cemento utilizan una mezcla específica de estos componentes, las pantallas de suelo-bentonita emplean una mezcla de suelo excavado y bentonita. Esto último hace que sean la tipología de barrera más económica, ya que permite utilizar gran parte del material de la propia zanja. Sin embargo, las pantallas de suelo-bentonita pueden ser más susceptibles al deterioro por ciclos de humedad/sequedad o congelación/descongelación, y su permeabilidad puede verse afectada por contaminantes.

Figura 2. Construcción de zanja de lodo con suelo-bentonita como material de relleno. Adaptado de Cashman y Preene (2012)

4. ¿Cómo se realiza la excavación y el relleno de las pantallas de suelo-bentonita?

Durante la excavación de las zanjas para las pantallas de suelo-bentonita, se utiliza bentonita (a veces con aditivos) para estabilizar las paredes y mantener un nivel constante de lechada cerca de la parte superior. Las zanjas suelen tener una anchura de entre 0,6 y 1,5 metros. Una vez alcanzada la profundidad deseada, se introduce la mezcla final de suelo y bentonita. Esta mezcla debe tener un peso específico mayor que el del lodo de la zanja para desplazarlo eficazmente. La preparación de la mezcla puede realizarse en tanques de homogeneización para garantizar una mayor calidad o de forma más rudimentaria en superficie con un buldócer. Es fundamental garantizar que la pantalla se extienda de manera continua por todo el estrato permeable y succionar los sedimentos del fondo de la zanja, sobre todo si se trata de arenas y gravas limpias. La colocación del relleno y la excavación deben realizarse de forma simultánea.

5. ¿Qué es la técnica de pantalla de suelo-cemento con hidrofresa (cutter soil mixing)?

La pantalla de suelo-cemento con hidrofresa, también conocida como cutter soil mixing, es una técnica de mejora de suelos que se utiliza para crear pantallas impermeabilizantes verticales. Consiste en excavar el terreno en paneles verticales con una hidrofresa, que es un cabezal cortador provisto de elementos giratorios con dientes. La hidrofresa no solo excava, sino que también inyecta una mezcla de bentonita y cemento en la parte central de las ruedas cortantes. El movimiento giratorio de los dientes y unas paletas mezclan esta inyección con los detritos del terreno, formando un nuevo material que, tras el fraguado del cemento, crea una pantalla impermeable. Una ventaja clave de este método es que utiliza el propio material del terreno, por lo que se generan muy pocos residuos.

Figura 3. Hidrofresa. http://www.malcolmdrilling.com/cutter_soil_mixing/

6. ¿Cómo funciona el proceso de construcción con hidrofresa para pantallas de suelo-cemento?

El procedimiento constructivo con hidrofresa consta de varias fases. En primer lugar, se prepara una zanja guía para recoger el exceso de lodo. A continuación, se posiciona la hidrofresa en el eje de la pared y se introduce en el suelo a una velocidad continua (normalmente entre 20 y 60 cm/min). Las ruedas de corte rompen el suelo y, simultáneamente, se bombea un fluido (bentonita-cemento) a las boquillas para mezclarlo con la tierra suelta. Una corriente de aire comprimido puede mejorar la mezcla. Al alcanzar la profundidad de diseño, se extrae lentamente la hidrofresa mientras se sigue añadiendo la lechada de cemento para garantizar la homogeneización mediante la rotación de las ruedas. Finalmente, se puede introducir armadura, como perfiles de acero, en la pantalla terminada para mejorar su resistencia. Para ello, se utilizan vibradores, si es necesario, para profundidades mayores. En el caso de muros continuos, se excavan paneles primarios y secundarios que se solapan para garantizar la estanqueidad.

7. ¿Qué son las pantallas de lodo autoendurecible armado y cuál es su función?

Las pantallas de lodo autoendurecible armado, también denominadas pantallas de lechada armada o «reinforced slurry wall», son pantallas compuestas con carácter estructural. Combinan elementos portantes resistentes a la flexión, como tablestacas o perfiles metálicos en «I», con un relleno intermedio de bentonita-cemento que los une y transfiere las cargas a los elementos estructurales. Este sistema funciona como elemento de contención de agua y, al mismo tiempo, como soporte estructural. Una variante es la pared de mezcla suelo-cemento reforzada, que utiliza una mezcla de suelo y cemento en lugar de lechada. Esta técnica se sitúa a medio camino entre un muro berlinés y un muro pantalla, ya que ofrece contención de agua y resistencia estructural.

8. ¿Cómo se construye una pantalla de lodo autoendurecible armada?

El procedimiento constructivo de una pantalla de lodo autoendurecible armada utiliza herramientas de excavación similares a las empleadas en los muros pantalla, como la cuchara bivalva. Durante la excavación, la lechada de bentonita y cemento no solo sirve como material de relleno intermedio, sino que también estabiliza las paredes de la zanja. Una vez colocada la lechada, se insertan perfiles verticales (tablestacas o perfiles en «I») en ella. El lodo endurecido transmite el empuje activo de las tierras y el agua hacia estos perfiles por efecto bóveda, y estos resisten la flexión gracias a anclajes, arriostramientos y el empotramiento bajo el fondo de la excavación. Si se emplean tablestacas, la pantalla opera como un muro continuo convencional, combinando las propiedades impermeabilizantes del lodo con la resistencia estructural de los elementos armados.

Os dejo un audio sobre este tema que, espero, os sea interesante.

Glosario de términos clave

  • Pantallas plásticas (blandas/lodo autoendurecible): Barreras impermeables construidas con mezclas fluidas que fraguan o se autoendurecen, utilizadas para contener el agua subterránea.
  • Bentonita-cemento: Mezcla de bentonita, cemento, agua y aditivos que fragua lentamente y forma una barrera impermeable.
  • Función impermeabilizante: La capacidad de una pantalla para impedir o reducir significativamente el paso del agua.
  • Responsabilidad estructural: La capacidad de un elemento para soportar cargas y esfuerzos (como flexión) sin deformaciones excesivas o fallos. Las pantallas blandas tienen poca responsabilidad estructural.
  • Decantación: El proceso por el cual las partículas sólidas de una suspensión se asientan en el fondo de un líquido debido a la gravedad. La bentonita ayuda a evitar la decantación del cemento.
  • Fraguado: El proceso de endurecimiento de una mezcla cementicia debido a reacciones químicas.
  • Cuchara bivalva: Herramienta de excavación con dos “cucharas” articuladas que se cierran para recoger el material, utilizada en la ejecución de pantallas.
  • Retroexcavadora con brazos largos: Maquinaria de excavación modificada con brazos extendidos para alcanzar mayores profundidades en la construcción de zanjas y pantallas.
  • Zanjadora de brazo inclinable: Maquinaria especializada para excavar zanjas, con un brazo que puede inclinarse.
  • Rendimiento: La cantidad de trabajo realizado en un período determinado (ej., m²/día de pantalla construida).
  • Nivel freático: La superficie superior del agua subterránea, donde la presión del agua es igual a la presión atmosférica.
  • Tablestacas: Elementos prefabricados, generalmente metálicos o de hormigón, que se hincan o se colocan en el terreno para formar muros de contención.
  • Suelo-bentonita: Mezcla de suelo excavado y lechada de bentonita que se utiliza como material de relleno para formar pantallas impermeables.
  • Gradiente hidráulico: La tasa de cambio de la carga hidráulica por unidad de distancia en la dirección del flujo.
  • Peso específico: El peso por unidad de volumen de una sustancia. Es crucial que el relleno de suelo-bentonita tenga un peso específico mayor que el lodo de la zanja.
  • Tanques de homogeneización: Recipientes donde se mezcla y agita el suelo y la bentonita para lograr una consistencia uniforme antes de su colocación.
  • Segregación: La separación de los componentes de una mezcla debido a diferencias en tamaño, forma o densidad.
  • Permeabilidad: La capacidad de un material para permitir el paso de fluidos a través de él. Una baja permeabilidad es deseable en pantallas impermeables.
  • Hidrofresa (cutter soil mixing – CSM): Maquinaria equipada con cabezas cortadoras giratorias y un inyector, utilizada para excavar y mezclar el terreno in-situ con una lechada (bentonita-cemento) para formar pantallas.
  • Detritos: Fragmentos de roca y suelo resultantes de la excavación o trituración del terreno.
  • Zanja guía: Pequeña excavación superficial que se realiza al inicio para alinear la maquinaria y recoger el excedente de lodo.
  • Paneles primarios y secundarios: En la construcción de muros continuos, los paneles primarios se excavan primero, y luego los secundarios se excavan solapándose con los primarios para asegurar la continuidad.
  • Armadura: Elementos de refuerzo (como perfiles de acero) que se insertan en la pantalla para proporcionarle resistencia estructural adicional.
  • Pantalla de lodo autoendurecible armado (reinforced slurry wall): Una pantalla compuesta que incorpora elementos portantes estructurales (como perfiles en “I” o tablestacas) dentro de un relleno de lodo autoendurecible (bentonita-cemento o suelo-cemento).
  • Efecto bóveda: Fenómeno por el cual los empujes del terreno se distribuyen y descargan hacia elementos de mayor rigidez o resistencia, como los perfiles en una pantalla armada.
  • Empotramiento: La condición en la que un elemento estructural está fijado rígidamente en otro (ej., un perfil anclado en el fondo de excavación) impidiendo su rotación y traslación.
  • Muro berlinés: Sistema de contención que consiste en perfiles metálicos hincados en el terreno, entre los cuales se colocan elementos de contención (tablones de madera, prelosas de hormigón, etc.) a medida que se excava.
  • Muro pantalla: Muro de contención de hormigón o similar, ejecutado en el terreno por paneles, utilizando lodo bentonítico para estabilizar la excavación antes del vertido del hormigón.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, n.º 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and applications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rotopalas: maquinaria de excavación continua para grandes producciones

Figura 1. Rotopala. Cortesía SKW.

Las rotopalas, conocidas en inglés como Bucket Wheel Excavators (BWE), son máquinas de producción continua que integran las funciones de arranque, carga y transporte del material sin interrupciones. Están especialmente diseñadas para excavar materiales de fácil manipulación, como arenas, gravas, margas, arcillas o lignito. Su funcionamiento continuo las hace ideales para explotaciones mineras a cielo abierto, donde se requiere una alta eficiencia operativa en procesos prolongados y repetitivos.

El origen de estas imponentes máquinas se remonta a 1881, en Estados Unidos, cuando se construyó el primer equipo accionado por vapor. Sin embargo, no fue hasta 1916 en Alemania cuando se produjo su verdadero desarrollo industrial, al aplicarse en la explotación de lignito pardo. A partir de la década de 1950, las rotopalas experimentaron una notable evolución técnica, con modelos de mayor capacidad que respondían a las crecientes necesidades de producción. En la actualidad, estas máquinas pueden mover volúmenes superiores a los 254 000 m³ de material, lo que da una idea de su gran capacidad. En comparación, los Bucket Chain Excavators (BCE), aunque útiles en ciertas aplicaciones, apenas superan los 14 000 m³ y se emplean principalmente para retirar recubrimientos.

El diseño de las rotopalas se clasifica según la relación entre la longitud del brazo del rodete (L) y el diámetro del rodete (D). De este modo, se distinguen los modelos compactos (L/D = 2), semicompactos (L/D = 3) y convencionales (L/D = 4). Las compactas presentan varias ventajas significativas: una inversión inicial un 20 % inferior a la de las convencionales, menor peso, mayor estabilidad y tiempos de entrega más reducidos. Sin embargo, su diseño, limitado a dos orugas, restringe su tamaño máximo a 1600 toneladas, lo que implica una capacidad máxima de producción de 7500 m³/h y un brazo más corto que reduce su alcance operativo. Esta clasificación está normalizada por la norma DIN 22266, que define un sistema de denominación mediante letras que representan distintas características del equipo, como, por ejemplo, el tipo de tren de rodaje o la capacidad de los cangilones.

Figura 2. Rotopala semicompacta. Cortesía SKW

Una rotopala está formada por múltiples sistemas clave que permiten su funcionamiento. El tren de rodaje puede montarse sobre vías o, lo que es más habitual en minería a cielo abierto, sobre orugas. La configuración de estas últimas (dos, tres, cuatro, tres dobles o seis dobles) depende del peso de la máquina y de la capacidad portante del terreno. Cada oruga incorpora un bastidor, una rueda motriz o guía elevada, rodillos de sustentación y zapatas. La corona de giro permite orientar el brazo del rodete, cuya longitud influye directamente en la altura máxima de excavación, la anchura del bloque que se va a extraer y la selectividad del corte. El rodete es el elemento encargado de arrancar el material y su diseño depende de las propiedades geomecánicas del macizo rocoso, la resistencia del material y la producción horaria deseada. Su diámetro oscila entre 2,5 y 22 metros, y su capacidad productiva está entre 200 y 19 000 m³/h. Además, cada tonelada adicional en el peso del rodete implica una carga extra de 400 toneladas sobre la estructura de la máquina.

Existen varios tipos de rodete. El tipo celular, muy habitual en los parques de homogeneización, emplea una placa de caída con forma de arco que crea una célula para conducir el material hacia la cinta lateral. El tipo no celular se caracteriza por tener cangilones insertados en un espacio anular, con un cierre radial que permite aumentar la capacidad del cangilón en un 50 %. Por último, el tipo semicircular tiene un cierre inferior con planos inclinados llamados semicelulares y una vertedera fija. Los cangilones pueden tener un respaldo cerrado, que es ideal para materiales adhesivos como las arcillas duras (tipo «caparazón de tortuga»), o un respaldo de cadenas, que es más adecuado para materiales blandos, húmedos o pegajosos. Los elementos de corte, como dientes, cuchillas u orejetas angulares, son determinantes para la eficiencia de la excavación y deben ser fácilmente sustituibles, resistentes a la abrasión y al impacto. En materiales duros, pueden incorporarse precortadores que fragmentan previamente el material, aunque esto puede generar sobrecargas y vibraciones no deseadas.

Figura 3. Bucket Wheel Excavator. Cortesía FAM-BEUMER GROUP.

El sistema de izado permite posicionar el rodete a la altura de operación deseada y realizar descensos o ascensos rápidos mediante cilindros hidráulicos o cables de acero. Por otro lado, la descarga del material excavado se realiza mediante sistemas como puentes de conexión, brazos de descarga o cintas transportadoras, lo que otorga gran flexibilidad al sistema.

El dimensionamiento de una rotopala debe tener en cuenta múltiples factores técnicos. El diámetro del rodete se selecciona en función de la capacidad nominal requerida y de las propiedades del material, procurando elegir el diámetro más pequeño posible que cumpla los objetivos de producción, ya que un rodete de mayor tamaño incrementa el peso y complica la estática de la máquina. La capacidad nominal (Q) distingue entre la producción teórica o de diseño (Qt) y la producción real, que se ve afectada por factores como el grado de llenado de los cangilones y las paradas por mantenimiento o averías. La producción teórica se calcula mediante la fórmula Qt = Qa / (F · horas/día · días/año), donde F es un factor de campo que incluye la eficiencia y las constantes operativas. La producción de material suelto se determina aplicando el esponjamiento del material, que normalmente se sitúa entre 1,3 y 1,6, o mediante la fórmula Qts = I * s * 60, donde I es la capacidad del cazo y s el número de descargas por minuto.

El tipo de material que se va a excavar influye en la velocidad de corte, el número de cangilones, el diámetro del rodete y la inclinación del brazo. La velocidad de corte (Vc) se calcula como Vc = ω · D / 2 y suele estar entre 2 y 3,5 m/s, debiendo mantenerse por encima de la velocidad crítica (Vcri = 2,22 · D). El número de cangilones (Z) depende del material: las rocas blandas requieren pocos cangilones grandes, mientras que las rocas duras exigen muchos cangilones pequeños. Como estimación, se puede considerar Z = 4D. La frecuencia de descarga (s) se obtiene mediante la fórmula s = (Vc · Z) / (π · D) · 60, y la capacidad de los cangilones (V) mediante V = (Qts · 60) / (s · 1,25). Las potencias necesarias para la excavación, la aceleración, la elevación y el sistema completo deben calcularse en función de la producción deseada, el tipo de material y el diseño mecánico del equipo.

Durante la operación, el rodete gira mientras el brazo se mueve y el corte más eficiente se produce cuando el brazo está perpendicular al frente de trabajo (ángulo α = 0°). El avance puede realizarse en terrazas, donde el rodete desciende escalonadamente tras cada pasada, o en cortes descendentes, bajando con cada inversión del giro del brazo. Existen diversas variantes operativas, como la excavación en bloque lleno, la más común en la actualidad gracias a la movilidad sobre orugas, la excavación en frente largo, en la que la máquina avanza en paralelo al frente, y la excavación en bloque lateral, que es una adaptación del sistema anterior. También es posible excavar por debajo del nivel de las orugas, lo que permite trabajar con bancos de mayor altura con respecto a la posición del tren de rodaje.

Figura 4. Variantes de excavación de la rotopala. Fuente: Manual de arranque, carga y transporte en minería a cielo abierto (1995)

Entre las múltiples ventajas de las rotopalas, destacan su capacidad de excavación continua, su bajo consumo energético (hasta un 70 % menos que los sistemas de cables), la ausencia de impactos durante la carga, su gran radio de vertido y la posibilidad de operar tanto por encima como por debajo del nivel del terreno. Además, pueden trabajar en bancos de distintas alturas, generar taludes estables, entregar material fácilmente transportable por cinta y permitir una gran selectividad en la excavación. También pueden diseñarse para ejercer una baja presión sobre el terreno, lo que resulta clave en zonas con baja capacidad portante.

Sin embargo, no todo son ventajas. Las rotopalas requieren un mantenimiento complejo y frecuente, no son flexibles ante cambios en la geometría o tectónica del yacimiento y no sirven para excavar materiales compactos o muy abrasivos. Además, su rendimiento global depende de la disponibilidad de todos los elementos en serie que componen el sistema, lo que introduce una fuerte interdependencia operativa. Por último, su adquisición e instalación suponen una inversión inicial muy elevada, lo que limita su adopción a proyectos a gran escala y a largo plazo.

En resumen, las rotopalas son una solución de ingeniería impresionante para grandes operaciones mineras, ya que combinan eficiencia, potencia y continuidad operativa. No obstante, no son la herramienta adecuada para todos los contextos y, en las condiciones apropiadas, su rendimiento y productividad son difíciles de igualar.

Os dejo algunos vídeos que espero os interesen:

Referencias:

GÓMEZ DE LAS HERAS, J.; MANGLANO, S.; TOLEDO, J.; LÓPEZ-JIMENO, C.; LÓPEZ-JIMENO, E. (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Instituto Geológico y Minero de España, Madrid, 604 pp.

MARTÍNEZ-PAGÁN, P. (2025). Rotopalas. Apuntes 4º curso GIRME. Universidad Politécnica de Cartagena.

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre el agua en medio poroso y sus problemas en excavaciones.

1. ¿Qué es un acuífero y cómo se clasifica?

Un acuífero es una formación geológica subterránea que contiene y transmite agua. Se clasifican principalmente en:

  • Acuífero libre: El agua está en contacto con la atmósfera a través de los poros o las fisuras de la zona no saturada. El límite superior es el nivel freático, donde la presión del agua es atmosférica.
  • Acuífero confinado: El acuífero está cubierto por una capa impermeable (acuicludo o acuitardo) y el agua se encuentra a una presión superior a la atmosférica. Si se perfora un pozo en un acuífero confinado y el agua sube por encima de la superficie del terreno, se dice que existen existen «condiciones artesianas».
Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Además, existen otras formaciones relevantes:

  • Acuicludo: Una formación geológica que, aunque contiene agua, no la transmite de manera efectiva, por lo que no es apta para su explotación (por ejemplo, terrenos arcillosos).
  • Acuitardo: Transmite el agua muy lentamente, por lo que no es apto para su captación, pero puede permitir la recarga vertical de otros acuíferos en condiciones especiales (por ejemplo, arcillas limosas o arenosas).

2. ¿Qué es la carga hidráulica total y por qué es importante la Ley de Darcy en el estudio del flujo de agua en medios porosos?

La carga hidráulica total (H), también conocida como potencial, representa la energía por unidad de peso de un fluido en movimiento, expresada como una altura. Incluye la altura geométrica (z), la altura de presión (u/γw) y la altura de velocidad (v²/2g). En el contexto del flujo en medios porosos, la velocidad suele ser despreciable, por lo que la carga total se simplifica a la altura piezométrica.

La Ley de Darcy es fundamental porque describe la velocidad del flujo de agua en un medio poroso. Establece que la velocidad (v) es directamente proporcional al gradiente hidráulico (i) y al coeficiente de permeabilidad (k), es decir, v = k · i. El coeficiente de permeabilidad mide la facilidad con la que el agua circula a través del suelo y depende tanto de las características del acuífero (porosidad, tamaño de los poros interconectados) como del fluido (viscosidad, peso específico). Esta ley es crucial para comprender cómo se mueve el agua a través del suelo y para calcular caudales en diversas aplicaciones geotécnicas.

Figura 2. Esquema de la ley de Darcy

3. ¿Qué son las tensiones efectivas y por qué son tan importantes en geotecnia según el postulado de Terzaghi?

Las tensiones efectivas (σ‘) son un concepto fundamental en geotecnia, postulado por Karl von Terzaghi en 1923. Se definen como el exceso de tensión sobre la presión intersticial (o presión neutra) del agua (u) presente en el suelo. Es decir, son las tensiones que actúan exclusivamente sobre la fase sólida del suelo, transmitiéndose grano a grano.

Su importancia radica en el postulado de Terzaghi, que establece lo siguiente: «Cualquier efecto medible debido a un cambio de tensiones, como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, se debe exclusivamente a cambios en las tensiones efectivas». Esto significa que la deformación y la resistencia del suelo dependen directamente de las tensiones efectivas y no de las tensiones totales. Por ejemplo, si el volumen o la distorsión de un suelo saturado no cambian, es porque sus tensiones efectivas no han cambiado. Si se permite el drenaje del agua (es decir, si se disipa la presión intersticial), las tensiones efectivas aumentan, lo que provoca la deformación del suelo y la modificación de su resistencia al corte, un fenómeno conocido como consolidación.

4. ¿Cuáles son los principales problemas geotécnicos relacionados con el agua en las excavaciones?

El agua subterránea y superficial puede causar diversos problemas geotécnicos significativos en las excavaciones:

  • Subsidencia: Un descenso del nivel freático (por bombeo o excavación) aumenta las tensiones efectivas, provocando asentamientos en el terreno circundante. Un aumento del freático también puede causar asentamientos en suelos arcillosos o reducir la capacidad portante en arenas.
  • Deslizamiento de taludes: El flujo de agua en los taludes de una excavación incrementa su peso y reduce su resistencia al corte, llevando a la inestabilidad. Esto se agrava si la excavación corta dos estratos, donde el flujo entre capas puede causar erosión.
  • Erosión superficial: El afloramiento de agua en los taludes provoca cárcavas y arrastre de terreno, lo que compromete la estabilidad y debilita las bermas.
  • Erosión interna o tubificación (piping): El agua arrastra partículas finas a través de los huecos del suelo, formando túneles internos. Esto es propenso en suelos dispersables y puede ocurrir en presas o por flujos anómalos en pozos de drenaje o anclajes defectuosos.
  • Inestabilidad del fondo o sifonamiento: Ocurre cuando un flujo ascendente de agua en un terreno granular no consolidado anula la presión efectiva, por lo que el suelo se comporta como un fluido (arenas movedizas). Esto sucede cuando las fuerzas de filtración superan el peso sumergido del suelo.
  • Levantamiento del fondo o taponazo (uplift): El fondo de la excavación se vuelve inestable cuando el empuje del agua subterránea —típico en un acuífero confinado bajo un estrato de baja permeabilidad— supera el peso del terreno que lo soporta.

5. ¿Qué es el sifonamiento o “efecto Renard” y cuándo ocurre?

El sifonamiento, también conocido como licuefacción o «efecto Renard», se produce cuando existe un flujo ascendente de agua en el terreno y la presión del agua es tan alta que anula las tensiones efectivas del suelo. En suelos granulares sin cohesión, como la arena, el terreno pierde completamente su resistencia al corte y comienza a comportarse como un fluido en ebullición, similar a las arenas movedizas.

Este fenómeno sucede cuando se alcanza un “gradiente crítico”, que es la relación entre el peso específico sumergido del suelo y el peso específico del agua. Si se sitúa un objeto con un peso específico superior al de la mezcla fluida de terreno y agua sobre un terreno con licuefacción, se hundirá. Supone un grave riesgo en las excavaciones, especialmente por debajo del nivel freático, ya que puede provocar el desprendimiento de cimentaciones y maquinaria.

6. ¿Cómo se relaciona el coeficiente de permeabilidad con la permeabilidad equivalente en estratos de suelo?

El coeficiente de permeabilidad (k) mide la facilidad con la que el agua fluye a través de un suelo concreto. Sin embargo, en la práctica, el suelo suele estar compuesto por múltiples estratos con diferentes permeabilidades y espesores. En estos casos, se calcula una permeabilidad equivalente, que puede ser horizontal o vertical:

  • Permeabilidad equivalente horizontal: Se aplica cuando el flujo de agua atraviesa horizontalmente un conjunto de estratos. El caudal total es la suma de los caudales en cada estrato.
  • Permeabilidad equivalente vertical: Se usa cuando el flujo de agua atraviesa verticalmente los estratos. En este caso, el caudal es constante a lo largo de los estratos, pero cada estrato tiene un gradiente hidráulico diferente.

Estos cálculos son esenciales para modelar con precisión el flujo de agua en suelos estratificados.

7. ¿Qué es una red de flujo y para qué se utiliza en geotecnia?

Una red de flujo es una representación gráfica del flujo de agua subterránea en un medio poroso. Está formada por dos familias de curvas ortogonales entre sí.

  • Líneas equipotenciales (Ψ): Son líneas que conectan puntos donde la altura piezométrica (carga hidráulica) es constante.
  • Líneas de corriente (Φ): Son las trayectorias que siguen las partículas de fluido a medida que se mueven a través del suelo.

La red de flujo se construye de manera que las fronteras impermeables actúan como líneas de corriente y las fronteras permeables (como una lámina de agua) son líneas equipotenciales. Al intersectarse, ambas familias de líneas deben formar «cuadrados curvilíneos».

Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)

Las principales aplicaciones de las redes de flujo en geotecnia son:

  • Calcular las presiones del agua subterránea: Permiten determinar las presiones en diferentes puntos o superficies.
  • Estimar los caudales del agua subterránea: Todos los canales de flujo (espacio entre dos líneas de corriente adyacentes) transportan el mismo caudal.
  • Calcular los gradientes hidráulicos: La pérdida de carga total se distribuye uniformemente entre las equipotenciales. Esto es crucial para evaluar la estabilidad de taludes y el riesgo de sifonamiento.

8. ¿Cómo se puede prevenir el sifonamiento en una excavación y qué factores influyen en las medidas de prevención?

Para prevenir el sifonamiento en una excavación, especialmente por debajo del nivel freático, una de las medidas principales es utilizar tablestacas o ataguías con una longitud de empotramiento suficiente. Esta longitud adicional por debajo del nivel de excavación aumenta el recorrido más corto que puede seguir el agua, lo que reduce el gradiente hidráulico y, en consecuencia, las fuerzas de filtración.

La profundidad de empotramiento necesaria depende de varios factores:

  • Profundidad de la excavación bajo el nivel freático: A mayor profundidad de excavación, mayor empotramiento se requiere.
  • Porosidad del suelo: Cuanto mayor es la porosidad del terreno (es decir, más vacíos hay en el suelo), mayor empotramiento es necesario para evitar el sifonamiento.
  • Peso específico de las partículas sólidas y del agua: Estos valores influyen en el peso específico sumergido del suelo y, por ende, en el gradiente crítico.
  • Coeficiente de seguridad (η): Se aplica un coeficiente de seguridad para garantizar que el empotramiento sea suficiente para resistir el sifonamiento. Por ejemplo, el Código Técnico de la Edificación (CTE) en España recomienda un coeficiente de seguridad de η = 2 para pantallas.
Figura 4. Sifonamiento en la base de una tablestaca o pantalla.

Es fundamental realizar cálculos geotécnicos y estructurales detallados para determinar el empotramiento necesario, que debe corresponder al mayor valor entre el requerido para evitar el sifonamiento y el necesario para soportar los esfuerzos de empuje. Además, la experiencia y el sentido común son fundamentales a la hora de implementar estas medidas.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre los apeos y apuntalamientos en la construcción

¿Qué son los apeos y apuntalamientos en la construcción y cuál es su propósito principal?

Los apeos y apuntalamientos son estructuras auxiliares temporales que se utilizan en la construcción, tanto en obras nuevas como en obras ya existentes, para garantizar la estabilidad y resistencia de una estructura o terreno. Su función principal es evitar el colapso, el hundimiento o el derrumbamiento, y garantizar la seguridad de las personas, así como permitir la realización de trabajos como rescates, reparaciones, reformas, demoliciones o la ejecución de nuevos elementos constructivos. Se instalan para ayudar o complementar los elementos constructivos o en situaciones de emergencia.

Figura 1. Apuntalamiento. http://www.ite-arquitectos.com

¿Cuál es la diferencia fundamental entre «apeo» y «apuntalamiento»?

Aunque los términos «apeo» y «apuntalamiento» son similares y a menudo se usan indistintamente, la diferencia clave radica en la urgencia y la planificación.

  • Apuntalamiento: Presenta un mayor carácter de urgencia. Se utiliza de forma provisional para evitar hundimientos o colapsos inminentes, a menudo en situaciones de emergencia (terremotos, explosiones, incendios, etc.). Los bomberos, por ejemplo, realizan «apuntalamientos de emergencia». Los apuntalamientos suelen transmitir cargas verticalmente a través de elementos como puntales.
  • Apeo: Forma parte de procedimientos constructivos programados y planificados con antelación, como reparaciones, reformas, excavaciones o demoliciones. Su ejecución requiere un mayor esfuerzo y tiempo. Los apeos suelen transmitir cargas mediante elementos inclinados, como jabalcones o tornapuntas.

Ambos son temporales y buscan estabilizar una estructura durante el tiempo necesario para llevar a cabo un rescate o una reparación definitiva.

¿Qué tipos de apuntalamientos existen y cuál es su función específica?

Existen varios tipos de apuntalamientos, cada uno diseñado para un propósito particular:

  • Apuntalamientos de descarga: Se emplean para reparar la cabeza de las viguetas de los forjados de madera y aliviar la carga sobre ellas.
  • Apuntalamientos de seguridad: Son necesarios para sostener todos los forjados de un edificio antes de su demolición, con el fin de garantizar la estabilidad durante el proceso.
  • Apuntalamientos de refuerzo: Se emplean en forjados con una flecha excesiva para corregir su deformación.
  • Apuntalamientos de estabilización: Se utilizan para respaldar un muro resistente de fachada que debe mantenerse en pie hasta que se construyan los forjados que lo arriostrarán, contrarrestando momentos de vuelco.

¿Cómo se clasifican los apeos o apuntalamientos según su disposición y cuáles son sus componentes básicos?

Los apeos y apuntalamientos se clasifican según su disposición en:

  • Verticales: Recogen cargas horizontales y las transmiten a una base resistente.
  • Horizontales: Contrarrestan momentos de vuelco en elementos verticales.
  • Inclinados: Los más complejos, ya que pueden gestionar cargas distribuidas y momentos de vuelco. No obstante, tienden a desplazarse de su punto de instalación.

La estructura básica de un apeo incluye:

  • Un elemento horizontal (o sopanda): Para cargar o recibir la carga.
  • Una pieza vertical u horizontal (pie derecho): Para transmitir la carga axial.
  • Un durmiente: Convierte la carga puntual del pie derecho en una carga repartida hacia el soporte resistente.
Figura 2. Componentes de un apeo/apuntalamiento. https://fotos.habitissimo.es/foto/apeo-de-estructura-con-madera-3m_1554253

¿Qué materiales se utilizan comúnmente en apeos y apuntalamientos, y en qué situaciones se prefiere cada uno?

Los materiales seleccionados dependen de la resistencia, durabilidad y economía requeridas:

  • Madera: Ideal para situaciones de urgencia, menor envergadura o altura. Requiere piezas de buena calidad, secas y regulares. Se presenta en diversas formas como rollizo, tabla, tabloncillo o tablón.
  • Acero: Adecuado para cargas elevadas y apeos a gran altura. Puede ser en perfiles laminados con uniones soldadas o atornilladas.
  • Ladrillos resistentes (macizos o perforados con mortero de cemento): Muy estables y resistentes a las condiciones climáticas. Se utilizan principalmente para cerrar huecos en la fachada. Requieren un tiempo de fraguado del mortero para adquirir resistencia. Ocasionalmente, se emplean ladrillos huecos para cargas menores.

¿Qué son los estabilizadores de fachada y por qué son importantes en la protección del patrimonio arquitectónico?

Los estabilizadores de fachada son un tipo específico de apeo diseñado para mantener la seguridad y estabilidad de la fachada de un edificio mientras se demuele y reconstruye el resto de la estructura. Son fundamentales para la protección del patrimonio arquitectónico, ya que las normativas urbanísticas a menudo exigen preservar la imagen exterior de las fachadas debido a su valor estético y a su contribución al espacio público. Este tipo de intervención es cada vez más habitual y su diseño y ejecución deben ser tan exhaustivos como los de una estructura permanente, puesto que se trata de un elemento tan relevante que a menudo está afectado por daños previos.

¿Cuáles son las fases principales en el proceso de apeo de una fachada?

El proceso de apeo de una fachada involucra varias fases críticas:

  1. Conocimiento previo: Implica un estudio detallado de las características constructivas de la fachada y su relación con el edificio, su estado de conservación y posibles daños, y un análisis profundo del suelo y subsuelo donde se asentará el apeo.
  2. Diseño del apeo: Se define el sistema de apeo y las medidas de seguridad necesarias, considerando las particularidades de la fachada, las lesiones presentes y factores como excentricidades de carga, pandeo, fuerzas del viento y sismicidad.
  3. Ejecución de las obras: Incluye medidas preliminares como el calado de forjados y tabiques, la implementación de apuntalamientos y consolidaciones específicas. Posteriormente, se construye la estructura de sustentación de la fachada, se procede a la demolición del interior del edificio y, finalmente, se vincula el nuevo edificio de forma segura a la antigua fachada.

¿Qué consideraciones son fundamentales al ejecutar un apeo de urgencia?

Al realizar un apeo de urgencia, la prioridad es evitar un colapso repentino y garantizar la seguridad del personal, a menudo con limitaciones de tiempo para llevar a cabo un estudio detallado. Entre las consideraciones clave se incluyen:

  • Materiales: Utilizar elementos ligeros, de rápida entrada en carga y fáciles de ensamblar, como apeos telescópicos metálicos o apeos ligeros de madera o metal.
  • Proceso: Realizar el apuntalamiento siempre de abajo hacia arriba, consolidando primero las partes inferiores.
  • Precaución en el ajuste: Al usar cuñas, ajustarlas lentamente para aplicar la carga gradualmente y evitar levantar excesivamente la estructura, lo que podría causar daños más graves. Un buen apeo de urgencia debe ser “neutro”.
  • Aplomado: En el caso de puntales metálicos, asegurarse de que estén correctamente aplomados para una transmisión de cargas adecuada.
  • Control: Una vez finalizado el apeo, se recomienda colocar testigos de yeso para monitorear cualquier avance de la lesión y realizar revisiones periódicas.
  • Compatibilidad: Aunque difícil debido a la urgencia, es deseable diseñar el apuntalamiento de urgencia para que sea compatible con futuros trabajos de reparación o sustitución.
  • Seguridad del personal: A veces, los apeos de urgencia son ejecutados por cuerpos de emergencia, priorizando la protección de las personas, incluso arriesgando su propia integridad.
  • Acciones posteriores: Planificar que los apeos iniciales no obstaculicen la instalación de apeos posteriores o la ejecución de otras operaciones.

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre cimentaciones superficiales

¿Qué son las cimentaciones superficiales y por qué son las más utilizadas en edificación?

Las cimentaciones superficiales son elementos estructurales que transmiten los esfuerzos (verticales, horizontales y momentos) de una estructura al terreno a través de su base de contacto. Son las más utilizadas en edificación debido a que son más baratas por carga soportada y más fáciles de ejecutar que otros tipos de cimentaciones. Es fundamental no exceder la capacidad portante del terreno y que las deformaciones producidas sean admisibles para la estructura.

Figura 1. Zapata aislada centrada. Imagen cortesía de CYPE, Biblioteca de detalles constructivos

¿Cómo influye la presencia de agua y las características del suelo en la construcción de cimentaciones superficiales?

La presencia de agua es un factor crítico en la construcción de cimentaciones. Un drenaje puede incrementar significativamente los costes y los plazos, e incluso hacer inviable una cimentación superficial. Sin embargo, el nivel freático no afectará a la capacidad portante del terreno si se encuentra a una profundidad superior a 1,5 veces el ancho de la zapata por debajo de la superficie del cimiento. En cuanto al suelo, ciertos tipos pueden alterar su estructura. Por ejemplo, en limos o arenas finas, un bombeo inadecuado puede causar sifonamiento o descenso de la superficie del terreno y afectar a las estructuras cercanas. En suelos arcillosos, el contacto con agua de lluvia o la compactación por pisadas puede ablandarlos, por lo que es necesario verter el hormigón de limpieza sin demora o excavar los últimos centímetros justo antes del hormigonado.

¿Cuáles son los tipos principales de zapatas aisladas y cómo se clasifican estructuralmente?

Las zapatas aisladas son cimentaciones puntuales diseñadas para soportar elementos individuales, como pilares o muros. Se emplean en terrenos firmes y competentes, transmiten tensiones medias a altas y generan pequeños asentamientos. Son la opción más económica en roca o suelos con tensiones admisibles superiores a 0,15 N/mm². Se clasifican según su forma:

  • Rectas: De canto constante.
  • Escalonadas: Con variaciones en el canto.
  • Piramidales: Con canto variable. A veces no necesitan encofrado si el ángulo es menor de 30°, pero dificultan el vibrado.
  • Nervadas o aligeradas: Con nervios para reducir material. El Código Estructural las clasifica como rígidas o flexibles, independientemente de la rigidez del terreno. Una zapata se considera rígida si su canto (h) en el encuentro con el pilar es mayor o igual a un coeficiente (α) multiplicado por su vuelo (v), donde α depende de los módulos de elasticidad del terreno y de la zapata. Las zapatas flexibles suelen ser más económicas por requerir menor volumen de hormigón y acero.
Figura 2. Tipología de zapatas atendiendo a su forma

¿Qué problemas pueden surgir con las zapatas de medianería y de esquina, y cómo se resuelven?

Las zapatas de medianería y de esquina se utilizan cuando los pilares se ubican cerca de los límites de la propiedad. El problema principal de estas zapatas es la excentricidad de la carga, que puede provocar un momento de vuelco y levantar la cimentación. Para contrarrestar este efecto, se pueden emplear varias soluciones:

  • Atar la cimentación al forjado o a la viga superior.
  • Utilizar un tirante que conecte la zapata con otro elemento estructural.
  • Implementar una viga centradora que una las zapatas de medianería o de esquina para redistribuir las cargas y presiones sobre el terreno de manera más uniforme.

¿Cuáles son las fases de ejecución de una zapata aislada?

La construcción de una zapata aislada sigue una serie de fases secuenciales:

  1. Limpieza y desbroce del solar.
  2. Comprobación de medidas y niveles.
  3. Replanteo del movimiento de tierras.
  4. Excavación hasta la cota superior del cimiento y luego la excavación de las zapatas y riostras.
  5. Vaciado de hormigón de limpieza (aproximadamente 10 cm).
  6. Encofrado de zapatas y riostras.
  7. Colocación de la armadura inferior con separadores.
  8. Disposición de la armadura de espera de pilares («enanos»).
  9. Armado de las riostras.
  10. Vertido, vibrado y curado del hormigón. Durante este proceso, se deben cumplir disposiciones como mantener la excavación por debajo de la rasante (0,5 a 0,8 m), evitar la caída libre del hormigón, y no circular sobre el hormigón fresco.

¿Qué son las zapatas combinadas, continuas bajo pilares y continuas bajo muro, y cuándo se utilizan?

  • Zapata combinada: Apoya dos o más columnas cuando las cargas no son excesivas. Se usa si las zapatas aisladas estarían muy cerca (complicando la excavación) o si se buscan asentamientos uniformes, actuando de forma rígida. Se busca que el centro de gravedad de la superficie coincida con el de las acciones.
  • Zapata continua bajo pilares (vigas de cimentación): Son zapatas corridas que soportan tres o más pilares. Tienen una gran longitud en comparación con su sección transversal. Son menos susceptibles a asentamientos diferenciales o vacíos en el terreno que las zapatas aisladas.
  • Zapata continua bajo muro (zapata corrida bajo muro): Caracterizadas por una gran longitud en relación con otras dimensiones, se utilizan como base para muros portantes o cimentación de elementos lineales. Su objetivo es lograr homogeneidad en los asentamientos y reducir las tensiones en el terreno en comparación con las zapatas aisladas, además de ofrecer mayor facilidad constructiva.

¿Cuál es la función de las riostras en las cimentaciones y cómo influye la sismicidad en su disposición?

Las riostras son vigas de hormigón armado que conectan las zapatas. Su función principal es evitar los movimientos relativos entre las zapatas (corrimientos) y absorber cargas horizontales, por lo que son fundamentales para la resistencia a los sismos. Es necesario realizar un atado perimetral de las zapatas. La densidad y la disposición de estas vigas de atado dependen directamente de la aceleración sísmica esperada en la zona.

  • Si la aceleración sísmica está entre 0,06 g y 0,16 g, el atado puede ser unidireccional.
  • Si la aceleración sísmica es igual o superior a 0,16 g, se requiere un atado bidireccional, lo que indica una mayor densidad de riostras para lograr una mayor estabilidad.

¿Cuándo se utilizan los emparrillados y las losas de cimentación, y cuáles son sus ventajas y consideraciones clave?

  • Los emparrillados de cimentación recogen múltiples pilares en una única cimentación formada por zapatas corridas que se entrecruzan en una malla (generalmente ortogonal), lo que proporciona gran rigidez. Se utilizan cuando la presión admisible del terreno es baja, hay una elevada deformabilidad o se esperan importantes asentamientos diferenciales. Son menos sensibles a las heterogeneidades o defectos locales del terreno.
  • Las losas de cimentación (o placas de cimentación) se usan cuando la superficie de las zapatas individuales superaría el 50 % de la superficie del edificio. Son ideales para sótanos estancos por debajo del nivel freático y para reducir los asentamientos diferenciales. Son útiles en terrenos con escasa capacidad portante y en construcciones con poca superficie en relación con su volumen (por ejemplo, rascacielos o silos). Aunque pueden triplicar el coste de las zapatas, ofrecen ventajas como una mayor rigidez y la posibilidad de realizar cimentaciones «compensadas», en las que el peso de la tierra excavada equilibra el peso del edificio y se reducen los asentamientos. Las losas postesadas ofrecen rapidez, menor excavación, mayor capacidad de carga y durabilidad. Una consideración importante es el riesgo de levantamiento del fondo de la excavación en losas grandes, por lo que se requieren pantallas laterales con suficiente empotramiento.
Figura 3. Algunos tipos de cimentaciones superficiales. Imagen elaborada a partir de: http://www.generadordeprecios.info/

 

 

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre pavimentos de hormigón en carreteras

¿Cuáles son las propiedades clave que distinguen al hormigón para pavimentos de carreteras del hormigón estructural?

El hormigón destinado a pavimentos de carreteras debe ser capaz de soportar tanto el impacto del tráfico como las condiciones climáticas. A diferencia del hormigón estructural, que se centra principalmente en resistir la compresión, los pavimentos de hormigón requieren una alta resistencia a la flexotracción. Esto se debe a que están sometidos a cargas repetidas y a la restricción de contracción de su base, lo que provoca la aparición de fisuras. Por lo tanto, se deben realizar ensayos específicos de flexotracción para controlar su resistencia y la calidad del hormigón para carreteras debe ser superior a la del hormigón de edificación.

¿Qué requisitos de resistencia a la flexotracción y compresión se esperan generalmente para el hormigón de pavimentos?

Para pavimentar carreteras se utilizan hormigones con una resistencia característica a la flexotracción que generalmente se sitúa entre 3,5 y 4,5 MPa a los 28 días. Según la normativa española (PG-3), estos hormigones se designan como HF-3,5, HF-4,0 y HF-4,5. Estas designaciones corresponden aproximadamente a resistencias a la compresión de 25, 30 y 35 MPa a los 28 días, aunque la relación exacta varía en función de los materiales y la dosificación.

¿Qué tipo de cemento se utiliza típicamente en pavimentos de hormigón y qué consideraciones hay sobre su uso?

Generalmente, no se requieren cementos «especiales» para pavimentos de hormigón. Por lo general, se emplean cementos con una resistencia a la compresión de entre 30 y 40 MPa a los 28 días y una dosificación de entre 300 y 350 kg/m³. Se pueden utilizar cementos Portland o cementos con adiciones (como escorias, puzolanas o cenizas volantes), que suelen tener un fraguado más lento, un menor contenido energético y una menor calor de hidratación, por lo que resultan más económicos. Se recomienda utilizar cementos de la clase resistente más baja posible, preferiblemente de 32,5 con resistencia inicial normal (N) y con un alto porcentaje de adiciones activas. No obstante, si se requiere una apertura rápida al tráfico, se pueden utilizar cementos de mayor categoría (42,5 o 52,5) y con alta resistencia inicial (R). Es crucial controlar el uso de grandes volúmenes de adiciones y limitar su contenido al 20 % del cemento, sobre todo en climas fríos.

¿Cuáles son las principales recomendaciones para prevenir fisuras en el hormigón de pavimentos?

Para prevenir la aparición de fisuras en los pavimentos de hormigón, es fundamental tener en cuenta las siguientes recomendaciones:

  • Evitar relaciones agua/cemento inferiores a 0,40.
  • Impedir el intercambio de humedad con la base y el ambiente mediante una saturación temprana de la base y un curado adecuado.
  • Evitar condiciones de restricción elevadas con la base.
  • Usar áridos limpios, libres de polvo y saturados.
  • Diseñar las mezclas para asegurar una ganancia de resistencia temprana apropiada y una exudación adecuada.

¿Cuáles son los componentes principales de un pavimento rígido de hormigón y cuál es la función de cada uno?

Un pavimento rígido de hormigón se compone de varias capas esenciales:

  • Calzada de hormigón: Es la capa superior, que proporciona las características funcionales (drenaje, fricción y regularidad) y gran parte de la capacidad estructural. Actúa como barrera impermeable y su espesor varía en función del tránsito pesado.
  • Base: Ubicada debajo de la calzada, proporciona un apoyo continuo, uniforme y estable, que es crucial para la distribución de cargas y para prevenir la erosión en la interfaz losa-apoyo. Es obligatoria en vías con tráfico pesado.
  • Subbase: Situada debajo de la base, en la explanada, y su función principal es proporcionar una base uniforme para la colocación de la capa base y constituir una plataforma de construcción. Debe tener capacidad drenante y, por lo general, es necesaria como capa de transición.
  • Explanada (subrasante): Es la superficie sobre la que se asienta toda la superestructura del pavimento. Debe tener la resistencia y la regularidad geométrica adecuadas y debe compactarse para soportar la carga de diseño del tránsito.
  • Subdrenaje (opcional): Consiste en estructuras destinadas a eliminar rápidamente el agua que se filtra por juntas y fisuras para evitar efectos perjudiciales en la estructura del pavimento.

    Figura 1. Estructura tipo de un pavimento rígido

¿Qué papel juegan las juntas en los pavimentos de hormigón y cómo se gestiona la transferencia de carga entre las losas?

Las juntas son esenciales para determinar las dimensiones de las losas del pavimento y controlar la aparición de fisuras en las etapas iniciales y durante su uso. Existen juntas de contracción, que debilitan la sección, y juntas de construcción, que se moldean. El aserrado es el método más común para crearlas y debe realizarse antes de que aparezcan las fisuras, pero no demasiado pronto para evitar daños. Se recomienda sellarlas.

La transferencia de carga, es decir, la capacidad de una junta para transmitir una parte de la carga aplicada de una losa a la adyacente, se logra principalmente de dos maneras:

  • Trabazón de áridos: Se produce entre las caras de la fisura que se desarrolla debajo de la junta.
  • Pasadores: Son barras de acero lisas que se colocan en las juntas transversales. Ayudan a disminuir tensiones y deflexiones, reducen el escalonamiento, el bombeo y la rotura de esquinas sin restringir el movimiento horizontal.

En algunos casos, es posible utilizar ambas técnicas conjuntamente para lograr una transferencia óptima.

Figura 2. Pasadores en una junta de construcción de un pavimento rígido

¿Por qué es importante el uso de inclusores de aire en el hormigón para pavimentos en ciertas zonas?

En zonas donde se producen nevadas o heladas, es obligatorio añadir un inclusor de aire al hormigón. Estos aditivos crean poros microscópicos que actúan como «cámaras de expansión». De este modo, el agua del hormigón puede congelarse y aumentar de volumen sin causar desconchados ni daños durante las heladas. Además de proteger contra el daño por hielo, los aditivos aireantes también tienen un efecto plastificante y mejoran la tixotropía del hormigón fresco, lo que ayuda a evitar el desgaste de los bordes del pavimento durante su construcción con encofrados deslizantes. Es crucial controlar el nivel de aire ocluido, que debe situarse entre el 4,5 % y el 6 % en volumen, para evitar pérdidas de resistencia.

¿Qué importancia tienen los arcenes en la estructura de un pavimento de hormigón y qué otras alternativas existen para mejorar el soporte en los bordes?

Aunque no forman parte de la estructura principal de la calzada, los arcenes son fundamentales para el soporte de los bordes de los pavimentos de hormigón. Si el arcén está pavimentado con hormigón, la calzada puede transferir parte de las cargas a su estructura, lo que reduce las tensiones y deflexiones del pavimento principal. Además, minimizan la infiltración de agua desde la superficie. Otras alternativas estructurales que también contribuyen significativamente a mejorar el soporte en los bordes son la incorporación de bordillos (especialmente en pavimentos urbanos) y la ejecución de sobreanchos de calzada.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas preguntas sobre la gestión y el mantenimiento de la maquinaria empleada en la construcción

¿Cuáles son los objetivos principales del mantenimiento de la maquinaria y cómo se clasifica?

El mantenimiento de la maquinaria de construcción tiene como objetivos fundamentales maximizar su disponibilidad al mínimo coste, optimizar su rendimiento y garantizar unas condiciones óptimas de operatividad y seguridad. Esto se traduce en la reducción de costes debidos a paradas accidentales, minimizando las pérdidas de producción y los gastos propios del mantenimiento, así como en la limitación del deterioro de la maquinaria para evitar la disminución de la calidad del producto.

Las tareas de mantenimiento se clasifican en niveles según la importancia de la obra y sus misiones específicas. Por ejemplo, en una empresa constructora típica, el primer escalón (conductoras y conductores) se encarga del mantenimiento diario, semanal o quincenal (limpieza, repostaje, engrase y reparaciones de urgencia). El segundo escalón (equipos de obra) se encarga del mantenimiento mensual, trimestral o semestral, que incluye revisiones, ajustes ligeros y localización de averías. Los escalones superiores (el tercero y el cuarto, talleres móviles y fijos) se dedican a reparaciones más complejas, a la sustitución de piezas y a grandes reconstrucciones.

¿Qué tipos de políticas de mantenimiento existen y cuál es el más beneficioso a largo plazo?

No existe una clasificación rígida de los sistemas de mantenimiento y cada empresa debe elegir el más adecuado para cada máquina. Sin embargo, pueden clasificarse principalmente en:

  • Corrección por avería: Se permite que los equipos funcionen hasta que fallen, y luego se reparan lo antes posible. Aunque a corto plazo puede parecer económico, a medio y largo plazo puede generar costes elevados debido a la imposibilidad de programar las paradas y al riesgo de fallos graves, lo que disminuye la eficiencia del servicio. Solo se justifica en contadas ocasiones o cuando se trata de muchas máquinas iguales y hay capacidad de sobra.
  • Mantenimiento rutinario: Se establecen instrucciones generales para el mantenimiento de grupos homogéneos de máquinas, basado en la experiencia, para prevenir fallos. Es de bajo costo y puede resolver muchas averías antes de que ocurran.
  • Mantenimiento preventivo planificado: Se establecen ciclos de revisiones y sustituciones de componentes importantes según las instrucciones del fabricante y el uso de la máquina. Esto permite registrar averías y prever la vida útil de los elementos. Aunque es más costoso a corto plazo, resulta más ventajoso a medio y largo plazo, ya que permite programar los tiempos de inactividad y evitar fallos catastróficos, lo que aumenta la eficacia general. El objetivo es reparar antes de que se produzca una avería importante, lo que resulta más rápido y económico.

En resumen, el mantenimiento preventivo planificado es el más ventajoso a medio y largo plazo, ya que permite anticiparse a los problemas, reducir los costes y los tiempos de reparación, y aumentar la eficacia del servicio.

¿Cómo se distribuye el tiempo de permanencia de una máquina en obra y qué implicaciones tiene para los costos?

El tiempo que una máquina permanece en obra se divide en varias categorías, lo que afecta directamente el costo horario y la producción.

  • Tiempo de calendario laborable (fondo horario bruto): Horas reconocidas por la legislación laboral y la organización para trabajar.
  • Tiempo laborable real (fondo horario operacional): Horas de presencia efectiva de la máquina en obra, descontando circunstancias fortuitas como fenómenos atmosféricos, huelgas o catástrofes. Incluye horas extraordinarias.
  • Tiempo de máquina en disposición (fondo horario de explotación): Horas en las que la máquina está operativa y lista para trabajar, excluyendo paradas menores a 15 minutos.
  • Tiempo fuera de disposición: Horas en las que la máquina no está operativa, divididas en:
  • Mantenimiento: Tareas previsibles.
  • Averías: Reparaciones imprevisibles.
  • Parada por organización de obra: Tiempo de inactividad por causas ajenas a la máquina (falta de tajo, suministros, averías de otras máquinas, etc.).
  • Tiempo de trabajo útil: Horas netas donde la máquina produce, incluyendo trabajo productivo y trabajo no productivo o complementario.

Esta distribución temporal implica que el coste horario de una máquina varía en función de la referencia. Para el propietario, el coste se evalúa en relación con la hora de utilización, mientras que, en el caso de un alquiler, se refiere a la hora laborable real. Ampliar la jornada laboral para aumentar las horas útiles puede disminuir el coste horario fijo y acortar los plazos, pero hay que sopesarlo con inconvenientes como el aumento de costes por horas extra del operario, su fatiga y la dilución de responsabilidades si hay varios conductores, lo que puede incrementar las averías.

¿Cómo se calcula la fiabilidad de un equipo de construcción y cuáles son las fases de su vida útil según la “curva de la bañera”?

La fiabilidad se define como la probabilidad de que una unidad funcione correctamente en un intervalo de tiempo determinado sin interrupciones debidas a fallos de sus componentes, en condiciones establecidas. Está relacionada con el tiempo medio entre fallos (TMEF), que es la relación entre las horas de funcionamiento y el número de averías sufridas en ese período.

La «curva de la bañera» describe la evolución de la tasa de fallos de una máquina a lo largo del tiempo y se divide en tres fases:

  1. Período de mortalidad infantil o fallos prematuros: Caracterizado por una alta tasa de fallos que disminuye rápidamente. Las causas suelen ser errores de diseño, fabricación o uso. Estos fallos ocurren en la fase de rodaje y, una vez resueltos, no suelen repetirse.
  2. Período de tasa de fallos constante o vida útil: Los fallos aparecen de forma aleatoria y accidental, debidos a limitaciones de diseño, percances por uso o mal mantenimiento. Es el período ideal de utilización de la máquina.
  3. Período de desgaste: La tasa de fallos aumenta con el tiempo debido a la vejez y el fin de la vida útil. En esta fase, se recomienda el reemplazo preventivo de componentes o incluso la renovación completa del equipo para evitar incidentes catastróficos.
Figura 2. Curva de fiabilidad de una máquina

Para alargar su vida útil, se puede aplicar el envejecimiento preventivo (funcionamiento preliminar para detectar fallos prematuros) y la sustitución preventiva (reemplazo de unidades al finalizar su vida útil para evitar fallos).

¿Cómo se modela la fiabilidad de una máquina y qué técnicas de prevención de fallos se utilizan en el diseño?

La fiabilidad de una máquina puede modelarse mediante la distribución exponencial cuando la tasa de fallos es constante durante el período de vida útil. Esto implica que la ocurrencia de un fallo es imprevisible e independiente de la vida útil del equipo. Una generalización de este modelo es la función de Weibull, que se utiliza cuando la tasa de fallos es variable y permite tener en cuenta las fases de fallos precoces y de envejecimiento.

En lo que respecta a las técnicas de prevención de fallos en el diseño de equipos, las empresas se centran en maximizar la fiabilidad del producto. Algunas metodologías clave son:

  • Despliegue de la Función de Calidad (QFD): Permite traducir los requisitos de calidad del cliente en características técnicas del producto, utilizando matrices para analizar necesidades, competencia y nichos de mercado.
  • Análisis Modal de Fallos y Efectos (AMFE): Una metodología estructurada para identificar y prevenir modos de fallo potenciales y sus causas en un producto o sistema.
  • Análisis del valor: Busca reducir el coste del producto sin eliminar las características esenciales demandadas por los clientes, identificando cambios que aumenten el valor sin un incremento desproporcionado del coste.

¿Cómo influyen las condiciones climáticas y otros imprevistos en la planificación del tiempo de trabajo en una obra de construcción?

Las condiciones climáticas y otros imprevistos son factores cruciales que influyen en el plazo de ejecución de una obra. La planificación del tiempo de trabajo disponible se basa en datos históricos del clima y en el calendario laboral.

El método de la Dirección General de Carreteras, por ejemplo, utiliza coeficientes de reducción aplicados al número de días laborables de cada mes para estimar los días efectivamente trabajados. Estos coeficientes tienen en cuenta:

  • Temperatura límite: Por debajo de la cual no se pueden ejecutar ciertas unidades de obra (ej., 10 ºC para riegos bituminosos, 5 ºC para mezclas bituminosas, 0 ºC para manipulación de materiales húmedos).
  • Precipitación límite diaria: Se definen valores como 1 mm/día para trabajos sensibles a lluvia ligera y 10 mm/día para la mayoría de los trabajos, donde una protección especial sería necesaria.

Los días utilizables netos de cada mes se calculan multiplicando los días laborables por los coeficientes reductores por climatología adversa y por los días no laborables, que dependen de festivos y convenios laborales. La reducción de días representa la probabilidad de que un día del mes sea favorable desde el punto de vista climático y laborable. Estos cálculos permiten elaborar un plan de obra lo más ajustado posible, minimizando las desviaciones de plazo, aunque la evolución del tiempo atmosférico es impredecible en la práctica.

¿Qué se entiende por “disponibilidad” de una máquina en obra y cómo se calcula?

La disponibilidad de una máquina se refiere a su estado operativo, es decir, al tiempo en el que se encuentra disponible. Se pueden distinguir dos tipos principales de disponibilidad:

  • Disponibilidad en obra o factor de disponibilidad: Se define como el cociente entre el tiempo en que una máquina se encuentra en estado operativo y el tiempo laborable real. En otras palabras, es la relación entre las horas brutas de disponibilidad y las horas que la máquina ha estado presente en la obra. Valores bajos de este factor pueden indicar una mala conservación, reparaciones lentas o falta de repuestos.
  • Disponibilidad intrínseca: Se define como el cociente entre el tiempo de utilización y el tiempo laborable real, sin tener en cuenta las paradas ajenas a la máquina por tiempo disponible no utilizado (mala organización de la obra, etc.). Estadísticamente, se define como la probabilidad de que una máquina funcione correctamente en un momento determinado o de que no presente averías irreparables en un tiempo máximo.

Las máquinas se clasifican en «principales» (se requiere alta disponibilidad, ya que su fallo paraliza la producción de un conjunto de máquinas) y «secundarias» o «de producción trabajando solas».

¿Cómo se calcula la disponibilidad de un conjunto de máquinas trabajando en cadena y en paralelo?

La disponibilidad de un sistema de máquinas varía significativamente en función de si trabajan en serie o en paralelo.

  • Máquinas trabajando en cadena (serie): Si n máquinas trabajan en cadena, y el fallo de una paraliza a las demás, la disponibilidad intrínseca del conjunto es el producto de las disponibilidades individuales. Esto significa que la disponibilidad general disminuye rápidamente al aumentar el número de máquinas en serie. Si se admiten acopios intermedios suficientemente grandes, la disponibilidad del equipo sería el mínimo de las disponibilidades individuales, lo que amplía la disponibilidad respecto a no tener acopios.
  • Máquinas trabajando en paralelo: Si n máquinas iguales trabajan en paralelo y la inoperatividad de una no detiene completamente el proceso (ya que otras pueden seguir trabajando), la probabilidad de que x máquinas se encuentren en disposición sigue una distribución binomial. En este caso, la disponibilidad del conjunto aumenta al tener más unidades en paralelo, ya que el sistema puede continuar operando incluso si algunas máquinas fallan.

En un caso general de máquinas principales en paralelo y auxiliares en paralelo que luego trabajan en serie, la disponibilidad del conjunto se calcula combinando las fórmulas de disponibilidad en serie y en paralelo.

 

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas preguntas sobre el curado del hormigón

¿Qué es el curado del hormigón y por qué es imprescindible?

El curado del hormigón consiste en adoptar medidas para facilitar la hidratación del cemento, lo que implica evitar la pérdida de humedad por evaporación y, si es necesario, aportar humedad adicional. También se busca mantener una temperatura favorable durante el fraguado y los primeros días de endurecimiento. Es relevante porque, si el hormigón se seca al aire, su resistencia puede disminuir hasta en un 40 %, aumenta su porosidad y se incrementa la probabilidad de que se produzcan fisuras por retracción. Un curado adecuado garantiza el desarrollo óptimo de la resistencia y la durabilidad, ya que la impermeabilidad de las capas exteriores del hormigón depende en gran medida de un proceso de curado eficaz, lo que, a su vez, prolonga la vida útil de la estructura al proteger el recubrimiento de las armaduras.

¿Cuál es la importancia del agua en el proceso de hidratación del cemento y el curado?

El agua es imprescindible para la hidratación del cemento, que solo se produce en un entorno casi saturado. Para la hidratación completa del cemento Portland se requiere una cantidad de agua equivalente a 0,45 veces la masa del cemento hidratado, que se divide en agua químicamente combinada (0,25 veces la masa del cemento) y agua adsorbida en la estructura del gel (0,20 veces la masa del cemento). Durante el proceso de curado, es necesario añadir agua adicional para mantener los poros capilares saturados y permitir que el cemento continúe hidratándose. La proporción adecuada de agua y un curado húmedo son fundamentales para que los productos de la hidratación rellenen los poros existentes entre las partículas de cemento, lo que aumenta la resistencia y durabilidad del hormigón. Si la relación agua/cemento es baja (igual o inferior a 0,45), puede producirse autodesecación, por lo que se requiere un curado húmedo continuo, aunque la baja permeabilidad puede limitar la penetración de agua externa en la superficie.

¿Cuáles son las fases del curado del hormigón según la norma ACI 308 R?

El curado del hormigón se divide en tres fases principales que abarcan desde su colocación hasta que la estructura adquiere sus propiedades de diseño:

  • Curado inicial: cuando la superficie del hormigón empieza a secarse, incluso antes de que se complete el acabado. Su objetivo es evitar la pérdida de humedad superficial y prevenir la fisuración por retracción plástica. Es especialmente importante en hormigones con baja exudación o en entornos con alta evaporación, y se puede conseguir mediante nebulización, aditivos reductores de evaporación o modificando el entorno.
  • Curado intermedio: Es necesario cuando el acabado de la superficie se completa antes de que el hormigón haya fraguado por completo. Se pueden continuar las medidas del curado inicial o emplear métodos que no dañen la superficie aún blanda, como la aplicación suave de agua o compuestos de curado.
  • Curado final: Se aplican procedimientos una vez que el hormigón ha fraguado y comenzado a desarrollar resistencia, después del acabado. Es fundamental iniciarlo sin demora para evitar una pérdida significativa de agua por evaporación, sobre todo en acabados con gran superficie expuesta. Puede incluir aspersión, el uso de arpilleras húmedas o el riego con manguera, entre otros métodos.

¿Cómo influyen las condiciones ambientales y el tipo de hormigón en la duración e intensidad del curado?

La duración y la intensidad del curado dependen de varios factores:

  • Temperatura y humedad ambiental: A medida que las condiciones sean más adversas (por ejemplo, calor intenso o baja humedad), se requerirá un período de curado más prolongado.
  • Acción del viento y exposición directa al sol: Estos factores aumentan la velocidad de evaporación, exigiendo medidas de curado más rigurosas.
  • Tipo y cantidad de cemento: Diferentes cementos tienen distintas velocidades de hidratación, lo que influye en los requisitos de curado.
  • Relación agua/cemento (a/c): Una baja relación a/c puede llevar a la autodesecación, requiriendo un curado húmedo más intensivo.
  • Condiciones de exposición de la estructura en servicio: Las estructuras expuestas a ambientes más agresivos necesitan un curado más prolongado y efectivo para asegurar su durabilidad.

¿Qué problemas específicos presenta el curado de losas de hormigón sobre tierra y cómo se abordan?

Las losas de hormigón sobre tierra, ya sean pavimentos o cimentaciones, tienen una alta relación entre área superficial y volumen, por lo que son susceptibles a una evaporación rápida y significativa. Los principales problemas son:

  • Formación de gradientes de humedad: La pérdida de humedad en la cara superior provoca la curvatura de la losa, mientras que una base de tierra seca puede absorber agua del hormigón y generar una curvatura opuesta. Para evitarlo, hay que humedecer previamente la base y garantizar unas condiciones de humedad uniformes en ambas caras mediante un curado inicial, intermedio y final. Si se utiliza una lámina impermeable, la cara superior debe mantenerse húmeda para evitar la curvatura.
  • Riesgo de fisuración por retracción plástica: La rápida pérdida de humedad superficial aumenta este riesgo. Es crucial aplicar el curado inmediatamente después del acabado.

Entre los métodos recomendados se incluyen los reductores de evaporación, la nebulización, los compuestos de curado (preferiblemente pigmentados en blanco si la temperatura ambiente supera los 25 °C) y la protección con techado y cortavientos. El uso de agua por aspersión o inmersión es el más efectivo, ya que también ayuda a enfriar el hormigón y a reducir la fisuración térmica.

¿Qué es el curado al vapor y cuáles son sus aplicaciones principales?

El curado al vapor es un método muy eficaz para curar el hormigón, que se emplea casi exclusivamente en la prefabricación y acelera considerablemente su endurecimiento. Este proceso implica la aplicación de calor húmedo y se basa en el concepto de «maduración» del hormigón, en el que diferentes combinaciones de temperaturas y tiempos pueden producir resultados similares en cuanto a endurecimiento.

Se puede realizar de dos formas:

  • Curado a presión atmosférica: Se utiliza en estructuras encerradas construidas in situ o en grandes unidades prefabricadas.
  • Curado con vapor a alta presión: Se lleva a cabo en autoclaves y se aplica a pequeñas unidades prefabricadas.

El proceso consiste en elevar gradualmente la temperatura tras el prefraguado, mantenerla dentro de un rango establecido (entre 55 °C y 75 °C, sin superar los 80 °C) y, a continuación, reducirla de manera continua hasta alcanzar la temperatura ambiente, evitando cambios térmicos bruscos.

¿Cuáles son las ventajas del curado al vapor en comparación con los métodos convencionales?

El curado al vapor ofrece varias ventajas significativas:

  • Endurecimiento rápido: Facilita el proceso constructivo en climas fríos y permite una alta resistencia inicial, especialmente útil en la fabricación de unidades prefabricadas y pretensadas.
  • Aceleración de la construcción: Incrementa la velocidad de obra, lo que se traduce en mayor eficiencia y productividad.
  • Rapidez: Acorta los tiempos de construcción y permite una mayor rotación de proyectos en comparación con otros métodos de curado convencionales.
  • Control de la hidratación: Permite un control meticuloso para asegurar que el recinto de curado permanezca saturado de humedad, aunque requiere precaución para evitar cambios de volumen excesivos.

¿Cuáles son las desventajas del curado al vapor?

A pesar de sus beneficios, el curado al vapor presenta ciertas limitaciones:

  • Limitaciones en superficies extensas: No es adecuado para curar grandes áreas in situ, lo que puede requerir métodos alternativos.
  • Necesidad de personal capacitado: Requiere personal experimentado para garantizar resultados óptimos y prevenir problemas como cambios volumétricos excesivos, que pueden afectar la resistencia inicial del hormigón.
  • Coste inicial elevado: El equipo y los materiales necesarios para el curado al vapor suelen implicar un costo inicial más alto en comparación con los métodos de curado convencionales.

 

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cuáles son las características de una buena estimación de costes?

En la ingeniería o la arquitectura, la estimación de costes no constituye únicamente una labor técnica, sino que representa un componente esencial en la planificación, gestión y toma de decisiones de todo proyecto. Ya sea para la construcción de una presa, una carretera o una infraestructura ferroviaria, es fundamental contar con una estimación precisa, bien fundamentada y comunicada adecuadamente, ya que esto puede marcar la diferencia entre el éxito y el fracaso de una iniciativa. En el presente artículo, se aborda la evaluación de las competencias que constituyen una estimación de costes sólida y conforme a las normas profesionales y las prácticas óptimas del sector.

Una estimación de costes sólida y confiable debe cumplir con cuatro características relevantes: exhaustividad, razonabilidad, credibilidad y solidez analítica. Estos principios aseguran que el análisis sea riguroso desde el punto de vista técnico, así como útil y comprensible para quienes toman decisiones.

En primer lugar, toda estimación sólida debe basarse en el rendimiento histórico de programas anteriores. Por lo tanto, es necesario utilizar datos de proyectos análogos como referencia, ya sean similares en alcance, naturaleza o contexto, para respaldar el análisis. Estas experiencias previas deben estar claramente identificadas como fuentes de datos, aportando así transparencia y reforzando la confianza en los resultados.

Sin embargo, si bien los datos históricos constituyen el punto de partida, es imperativo considerar las posibles mejoras en diseño, materiales y procesos constructivos que puedan incorporarse en el nuevo proyecto. A pesar de la ausencia de datos empíricos que respalden estos avances, es necesario evaluar su impacto de manera rigurosa y fundamentada. En tales circunstancias, se acude al juicio profesional o conocimiento experto (también denominado subject matter expertise), cuya aplicación debe estar debidamente documentada y justificada.

Otro aspecto clave es la claridad en la comunicación. Una estimación sólida debe ser comprensible, especialmente para los responsables de programas y directivos que, si bien toman decisiones estratégicas, pueden carecer del tiempo o del perfil técnico necesario para profundizar en los detalles metodológicos. Por ello, se recomienda optar por enfoques sencillos, evitando complejidades innecesarias, para que la estimación pueda ser fácilmente interpretada por sus destinatarios.

Asimismo, es preciso identificar las reglas de base y los supuestos. Como se suele decir en el ámbito del análisis: «Permítame realizar las suposiciones, y usted podrá realizar los cálculos». Esta frase resume la enorme influencia que tienen las hipótesis en cualquier estimación. Si bien es difícil que todos los agentes implicados compartan exactamente los mismos supuestos, la mejor estrategia consiste en incorporar análisis de sensibilidad. Estos instrumentos permiten evaluar la variación de la estimación ante diferentes escenarios y contribuyen a una gestión más eficiente de la incertidumbre.

Precisamente, una buena estimación debe abordar de forma explícita los riesgos y las incertidumbres inherentes al proyecto. Si bien el resultado final se manifiesta a través de una cifra concreta —conocida como «punto estimado»—, es importante destacar que dicha cifra es el resultado de una serie de supuestos. Por lo tanto, es posible que esta haya variado si los supuestos hubiesen sido distintos. Por tanto, es esencial señalar las sensibilidades del modelo y mostrar cómo afectan al resultado final, para ofrecer una visión más completa y realista del coste previsto.

Desde una perspectiva técnica, existen otras cualidades que refuerzan la validez y utilidad de la estimación. Una de las características esenciales que debe cumplir es que esté impulsada por los requisitos del proyecto. Resulta improcedente solicitar una estimación del coste de rehabilitar una cocina sin definir previamente el alcance de dicha rehabilitación. En el ámbito de los proyectos civiles de gran envergadura, resulta imperativo que los requisitos funcionales y técnicos se encuentren debidamente documentados, ya sea a través de especificaciones técnicas, documentos de alcance, solicitudes de propuesta (RFP) o, en el caso de proyectos públicos, mediante instrumentos normalizados como el «Cost Analysis Requirements Description» (CARD).

Otra condición esencial es que el proyecto esté suficientemente definido desde el punto de vista técnico y que se hayan identificado las áreas de mayor riesgo. De este modo, se garantizará una selección meticulosa de la metodología de estimación más apropiada y una aplicación precisa de las herramientas de análisis.

En proyectos de gran envergadura, especialmente en el ámbito público, se recomienda disponer de una estimación independiente. Esta función de validación externa contribuye a reforzar la credibilidad del análisis. De igual manera, es importante contar con estimaciones independientes que respalden los presupuestos en los grandes proyectos.

Finalmente, una estimación de calidad debe ser trazable y auditable. Por lo tanto, es imperativo que sea posible reconstruirla a partir de los datos, supuestos y fuentes utilizadas. Existe un consenso tácito entre los profesionales de la estimación, según el cual cualquier individuo con conocimientos básicos de análisis cuantitativo debería estar en condiciones de seguir los pasos del cálculo, aplicar los datos y reproducir el resultado. La transparencia, por tanto, no es solo un valor añadido, sino un requisito indispensable para asegurar la fiabilidad del proceso.

En el ámbito de la ingeniería civil, donde los proyectos conllevan frecuentemente inversiones significativas y pueden afectar a miles de personas, la estimación de costes deja de ser una tarea secundaria para convertirse en una herramienta estratégica esencial. El cálculo de cifras por sí solo no es suficiente; es imperativo comprender el proyecto en su totalidad, anticipar escenarios, comunicar con claridad y tomar decisiones con fundamento.

Invito a todas las personas —ya sean profesionales con experiencia o estudiantes en proceso de formación— a considerar la estimación de costes no como un mero trámite técnico, sino como una disciplina que integra ciencia, experiencia y criterio. Reflexionar sobre el proceso de construcción de nuestras estimaciones, los supuestos que las sustentan y la manera en que las comunicamos, puede resultar fundamental para mejorar la eficiencia, la transparencia y la sostenibilidad de nuestras infraestructuras.

Glosario de términos clave

  • Estimación de costes: Proceso de predecir el coste monetario de un proyecto o iniciativa, basándose en datos disponibles, supuestos y metodologías de análisis.
  • Exhaustividad: Característica de una estimación que implica considerar todos los elementos relevantes del proyecto y sus posibles costes asociados.
  • Razonabilidad: Característica que indica que la estimación está lógicamente estructurada y los valores utilizados tienen sentido dentro del contexto del proyecto y la experiencia previa.
  • Credibilidad: Característica que denota la confianza en la estimación, basada en la solidez de la metodología, la transparencia en los datos y supuestos, y la validación (interna o externa).
  • Solidez analítica: Característica que se refiere a que la estimación se basa en métodos de análisis cuantitativos rigurosos y bien aplicados.
  • Rendimiento histórico: Datos de coste y ejecución de proyectos anteriores similares que se utilizan como base empírica para una nueva estimación.
  • Juicio profesional (o conocimiento experto): Aplicación de la experiencia y conocimiento de expertos en la materia para realizar estimaciones o tomar decisiones cuando los datos empíricos son limitados.
  • Reglas de base y supuestos: Las hipótesis fundamentales y las condiciones iniciales que subyacen a una estimación y sobre las cuales se realizan los cálculos.
  • Análisis de sensibilidad: Técnica que evalúa cómo varía el resultado de una estimación cuando se modifican los supuestos o parámetros clave, ayudando a entender el impacto de la incertidumbre.
  • Punto estimado: La cifra única que representa el resultado más probable o esperado de la estimación de costes.
  • Requisitos del proyecto: Las especificaciones funcionales, técnicas y de rendimiento que definen el alcance y los objetivos de un proyecto, y que deben impulsar la estimación de costes.
  • Cost Analysis Requirements Description (CARD): Instrumento normalizado, especialmente en proyectos públicos, que documenta los requisitos necesarios para realizar un análisis de costes.
  • Estimación independiente: Una estimación de costes realizada por un equipo o entidad separada del equipo principal del proyecto, con el fin de validar o contrastar la estimación principal.
  • Trazabilidad: La capacidad de seguir y documentar el proceso de estimación, desde los datos y supuestos iniciales hasta el resultado final.
  • Auditabilidad: La capacidad de verificar la exactitud y fiabilidad de una estimación, examinando los datos, métodos y supuestos utilizados, de modo que otro analista pueda reproducirla.

Referencias:

Mislick, G. K., & Nussbaum, D. A. (2015). Cost estimation: Methods and tools. John Wiley & Sons.

Yepes, V. (2022). Gestión de costes y producción de maquinaria de construcción. Universidad Politécnica de Valencia.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Cimentaciones en suelos blandos: análisis integral de mecanismos de fallo

Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo ofrece una contribución significativa al estudio de los mecanismos de fallo en fosos de cimentación profunda, especialmente en entornos geotécnicos desfavorables caracterizados por suelos blandos limosos. A diferencia de los enfoques previos, que tratan los problemas de estabilidad desde una perspectiva parcial, esta investigación desarrolla un modelo integral que combina simulaciones numéricas en tres dimensiones, pruebas de campo a escala real y un enfoque de acoplamiento microestructural para analizar el comportamiento del terreno y los elementos estructurales en condiciones reales de obra.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Hunan University of Science and Engineering (China).

Uno de los principales logros del estudio radica en la aplicación de un modelo multidisciplinar acoplado que tiene en cuenta factores como la consolidación del terreno, la deformabilidad del sistema de contención, la presión del agua subterránea y la calidad de la ejecución del piloteado. Este modelo no solo permite diagnosticar fallos con alta precisión, sino también anticipar comportamientos críticos antes de que se manifiesten de forma visible. Esta capacidad predictiva supone un avance significativo en el campo del control de calidad y la seguridad estructural en cimentaciones profundas.

Además, el trabajo plantea una metodología replicable basada en el uso combinado de tecnologías de ensayo estático, pruebas de onda de baja deformación y modelado por elementos finitos. La gran cantidad de datos empíricos obtenidos, junto con su correlación con los resultados simulados, constituye una base sólida para el desarrollo de futuras normativas de control y supervisión de obras en suelos con baja capacidad portante.

La investigación se ha estructurado en torno a tres ejes metodológicos principales: pruebas de campo, ensayos de laboratorio y modelado numérico. En primer lugar, se llevaron a cabo ensayos in situ que incluyeron pruebas de penetración estándar, ensayos de penetración dinámica, pruebas de velocidad de onda de corte y muestreo mediante perforación mecánica. Estos ensayos se llevaron a cabo en el entorno del proyecto XSS-10D, una obra de gran escala con un foso de cimentación profunda sometido a condiciones geotécnicas complejas.

En segundo lugar, se realizaron ensayos geotécnicos de laboratorio sobre más de 140 muestras de suelo para determinar propiedades como la densidad seca y húmeda, el contenido de humedad, el límite líquido, la cohesión y el ángulo de fricción interna. Estos datos fueron fundamentales para definir los parámetros de entrada de los modelos numéricos.

Finalmente, se construyó un modelo tridimensional por elementos finitos utilizando el programa informático Abaqus CAE. Dicho modelo incorporó las características del suelo, las estructuras de contención, los pilotes y la acción de cargas externas, teniendo en cuenta tanto el comportamiento estático como las deformaciones diferidas. Además, se emplearon modelos viscoelásticos, como el de Kelvin, y se aplicó el criterio de rotura de Mohr-Coulomb para simular el comportamiento plástico del suelo.

Los resultados obtenidos a partir del estudio del proyecto XSS-10D confirman la eficacia del modelo acoplado para detectar defectos estructurales en cimentaciones profundas. En particular, se identificó que el pilote ZH2-194 presentaba una serie de análisis anómalos en los ensayos de baja deformación, los cuales se corroboraron mediante pruebas de carga estática y muestreo con extracción de testigos.

Las pruebas de carga estática evidenciaron desplazamientos superiores a los límites de servicio, mientras que el análisis del testigo reveló defectos de fabricación como oquedades, segregación de hormigón y contaminación con materiales finos. Estas deficiencias se atribuyeron a problemas en el proceso de hormigonado, como la intrusión de lodo en el interior de la perforación, la pérdida de trabajabilidad del hormigón y la falta de compactación adecuada.

El modelo numérico reprodujo con exactitud la distribución de esfuerzos y desplazamientos en la zona afectada y localizó los puntos de mayor concentración de tensiones en las inmediaciones del pilote defectuoso. Se observó un fenómeno de desplazamiento lateral y una redistribución de esfuerzos en el sistema de contención, lo que refuerza la necesidad de tener en cuenta la interacción entre el suelo y la estructura en su conjunto.

Los resultados también mostraron la importancia de factores como la presión del agua subterránea, la consolidación secundaria del suelo y la heterogeneidad estratigráfica en la evolución de los mecanismos de fallo. En particular, la capa de limos blandos localizada en el estrato 3 resultó ser un elemento clave en la pérdida de capacidad portante y el desarrollo de deformaciones excesivas.

A partir de los resultados del presente estudio, se abren diversas posibilidades para profundizar en el análisis de cimentaciones en entornos complejos. Una dirección prometedora consiste en incorporar técnicas de inteligencia artificial para detectar automáticamente los defectos mediante el procesamiento de datos de sensores de deformación y pruebas dinámicas. Esta integración permitiría establecer sistemas de supervisión continua con capacidad de aprendizaje adaptativo.

También es pertinente investigar nuevos materiales con propiedades reológicas adaptadas a entornos saturados o con baja resistencia al corte, como morteros tixotrópicos o mezclas de hormigón autocompactante con aditivos antifisuración.

Otra línea de investigación interesante es el estudio del comportamiento de los sistemas de contención bajo acciones cíclicas o sísmicas, ya que los modelos actuales tienden a centrarse en condiciones estáticas. La incorporación de elementos de análisis dinámico permitiría mejorar la resistencia global del sistema ante eventos extremos.

Por último, se propone la estandarización de protocolos para la inspección microestructural de pilotes defectuosos, en los que se establecen umbrales de aceptabilidad y criterios objetivos de intervención.

En conclusión, el estudio realizado constituye una aportación relevante y detallada al conocimiento sobre los mecanismos de fallo en cimentaciones profundas en suelos blandos. Su enfoque integral, que combina simulaciones numéricas, ensayos geotécnicos y análisis microestructurales, ofrece herramientas eficaces para detectar patologías estructurales de manera temprana. Además, sentará las bases para mejorar los procesos constructivos y desarrollar nuevas metodologías de control de calidad adaptadas a entornos complejos. La replicabilidad del modelo y su aplicabilidad en casos reales lo convierten en una referencia útil para estudiantes y profesionales de la ingeniería civil.

Referencia:

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

Como el artículo es en abierto, os lo dejo para su descarga:

Descargar (PDF, 20.44MB)