Control de la ejecución de la inyección en el Código Estructural

Inyección lechada en vaina. https://www.youtube.com/watch?v=nR56Qlnr2xw

Continuamos analizando las novedades del Código Estructural respecto a la derogada Instrucción de Hormigón Estructural EHE-08. En este caso se trata del control de la ejecución de la inyección en las operaciones de pretensado, que recoge el  Artículo 67.2. En la EHE-08 este mismo apartado se trataba en el Artículo 96.2. Existen pocas modificaciones en la nueva redacción de este artículo, pero alguna de gran trascendencia. Vamos a comentarlas a continuación.

  • Se ha sustituido “frecuencia diaria” por “cada jornada“. La Real Academia Española indica que jornada es “el tiempo de duración del trabajo diario“, por lo que parece que no existe un motivo de fondo para este cambio.
  • Se aclara en la nueva redacción que es el constructor, y no otro, el que cada diez jornadas en que se efectúen operaciones de inyección y no menos de una vez, deberá realizar los ensayos de resistencia de la lechada o mortero y los de exudación y reducción de volumen.
  • Se verificará si el constructor ha realizado los ensayos mediante el “control de contraste“. La verdad es que el Código es poco claro al respecto. La primera vez que aparece este término, sin definir, es el el Artículo 67.1. Hay que esperar al Artículo 101.1 para entender que el control de contraste lo realiza, en su caso, la dirección facultativa. Por tanto, sin una definición explícita al respecto, supondremos que el control de contraste es un control que realiza, si así lo fuera, la dirección facultativa, sobre los controles que realiza el constructor. Nada hubiese costado ser más claro en la redacción de esta norma.
  • La novedad más relevante es la que obliga, de forma independiente, a la dirección facultativa y al constructor, a sendas inspecciones visuales de las vainas inyectadas transcurridos 7 días desde el final del curado. Se trata de comprobar que todos los anclajes se encuentran adecuadamente protegidos y que no existe fisuración no controlada en el mortero empleado. Resulta evidente la importancia en este punto, pues el Código impone un control redundante del mismo.

Os dejo a continuación el Artículo 67.2 del Código Estructural para su consulta.

67.2 Control de la ejecución de la inyección.

Las condiciones que habrá de cumplir la ejecución de la operación de inyección serán las indicadas en el apartado 50.4.

Se controlará el plazo de tiempo transcurrido entre la terminación de la primera etapa de tesado y la realización de la inyección.

El constructor hará, cada jornada, los siguientes controles:

– del tiempo de amasado,
– de la relación agua/cemento,
– de la cantidad de aditivo utilizada,
– de la viscosidad, con el cono, en el momento de iniciar la inyección,
– de la viscosidad a la salida de la lechada por el último tubo de purga,
– de que ha salido todo el aire del interior de la vaina antes de cerrar sucesivamente los distintos tubos de purga,
– de la presión de inyección,
– de fugas,
– del registro de temperatura ambiente máxima y mínima las jornadas que se realicen inyecciones y en las dos jornadas sucesivas, especialmente en tiempo frío.

Cada diez jornadas en que se efectúen operaciones de inyección y no menos de una vez, el constructor realizarán los siguientes ensayos:

– de la resistencia de la lechada o mortero mediante la toma de 3 probetas para romper a 28 días,
– de la exudación y reducción de volumen, de acuerdo con el apartado 37.4.2.2.

El control de contraste verificará que el constructor realiza estos controles.

En el caso de sistemas de pretensado en posesión de un distintivo de calidad oficialmente reconocido, la dirección facultativa podrá eximir de cualquier comprobación experimental del control de la inyección.

Una vez inyectadas las vainas, tanto el constructor como la dirección facultativa llevarán a cabo sendas inspecciones visuales, que deben ser independientes, de las protecciones ejecutadas en los anclajes del pretensado. Se efectuarán transcurridos 7 días desde el final del curado para comprobar que todos los anclajes se encuentran adecuadamente protegidos y que no existe fisuración no controlada en el mortero empleado.

También os dejo el comentario que sobre este artículo deja el Código Estructural:

En los cables verticales se tendrá especial cuidado en evitar los peligros de la exudación siguiendo lo indicado en el apartado 50.4.1.4″.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fabricación de viguetas de hormigón pretensado

http://preforsa.es/

 

Os paso a continuación un vídeo donde se muestra la fabricación de viguetas de hormigón pretensado. Espero que os guste.

Os paso también la presentación que hizo ANDECE de los forjados prefabricados de hormigón.

En el apartado 2.1 de la Guía Técnica de Forjados de ANDECE se incluyen específicamente los sistemas de forjado de vigueta y bovedilla. Os lo dejo.

Descargar (PDF, 4.38MB)

Construcción de puentes atirantados con tirantes fabricados “in situ”

Figura 1. Puente de Morandi (Génova). https://commons.wikimedia.org/wiki/File:Genova_ponte_Morandi.jpg#/media/File:Genova_ponte_Morandi.jpg

La tragedia del colapso de un tramo del puente de Morandi en Génova (Italia), el 14 de agosto de 2018, me sugiere escribir esta entrada. Se trata de explicar cómo se construyen los puentes atirantados cuando los tirantes se fabrican “in situ”. Como se puede ver, la técnica usada en los puentes atirantados de Morandi, si bien fue novedosa en su tiempo, en este momento es una técnica que no se utiliza en la construcción de este tipo de estructuras.

Un puente atirantado consiste en un tablero soportado por cables rectos e inclinados, llamados tirantes, que se fijan en los mástiles. Existen multitud de tipos de tirantes, unos formados por barras, otros por hilos paralelos, otros por torones y por último el cable cerrado. Sin embargo, el sistema de tirante de torones es el que se está imponiendo debido a sus ventajas en cuanto a anclaje y protección contra la corrosión. Solo el tirante de cable cerrado, el más antiguo de los sistemas, aún convive con el sistema de torones, si bien están en desuso debido a su menor capacidad de carga y mayor precio.

Los tirantes pueden dividirse en dos grandes grupos atendiendo a su montaje, los fabricados “in situ” y los prefabricados.

Aunque ya no se recurre al sistema de montaje de tirantes “in situ”, vamos a describir aquí las distintas formas de fabricar en obra tirantes compuestos. Así, en el puente japonés de Toyosato-Ohashi los tirantes se montan hilo a hilo, de forma parecida a los cables de los puentes colgantes. También se pueden hacer los tirantes con hormigón pretensado, como los utilizados por Morandi en sus puentes. Otro procedimiento sería enfilar los tirantes torón a torón dentro de una vaina de polietileno para inyectar posteriormente lechada de cemento. El principal problema de este procedimiento es el hormigón, puesto que los cables se montan fácilmente.

Figura 2.Puente de Toyosato-Ohashi (Japón). By Nkns (Nkns took a photograph.) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.1 jp (https://creativecommons.org/licenses/by-sa/2.1/jp/deed.en)], via Wikimedia Commons

Sin embargo, la forma actual de construir tirantes en obra es con vaina inyectada, pues no sólo es más fácil de montar, sino que puede utilizarse cualquier tipo y tamaño de tirante, siendo un procedimiento económico. Las vainas más usadas hoy en día son de polietileno, por su facilidad de montaje, si bien las metálicas permiten la inyección de una sola vez al admitir mayores presiones.

Figura 3. Puente General Urdaneta, sobre el lago Maracaibo (Venezuela). By The Photographer – Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=29236260

Se pueden utilizar dos procedimientos diferentes en el caso de la construcción de tirantes “in situ” con vaina inyectada. Se pueden anclar los cables a la torre y al tablero, o bien se pueden hacer pasar los cables por una silla en la torre. En el primer caso, es fácil enfilar los cables, pero se complica el diseño de la torre por el cruce de vainas y el alojamiento de los anclajes.

Tras situar la vaina, se enfilan los cables en su interior subiendo la bobina del cable por encima del anclaje superior. Mediante una enfiladora se lleva el cable hasta el anclaje inferior. Después se corta el cable a la salida de la bobina y se fija al anclaje superior. Se le da una tensión mínima para garantizar que todos los cables lleven la misma tensión. Tras el enfilado, se tensa el tirante del conjunto de cables o tirando hilo a hilo, siendo más cómodo tesar desde lo alto de la torre. Por último, se inyectan los anclajes mediante resina y a continuación se inyecta la vaina mediante lechada de cemento. En el puente de Sama de Langreo se retesaron los tirantes desde la torre, mientras que en el de Barrios de Luna, se hizo desde el tablero.

Si se pasan los cables por una silla en la torre, formada por un tubo curvo, los cables se empujan desde un anclaje hasta llegar al otro, o bien mediante un cable piloto que tire de uno o varios cables.

Como resumen de lo anterior, se puede comprobar cómo el sistema utilizado por Morandi en la construcción del puente de Génova no se utiliza en la actualidad. Con todo, la tragedia de este puente nos debe hacer reflexionar sobre la necesidad de destinar recursos suficientes al mantenimiento y monitorización de las infraestructuras críticas (puentes, carreteras, presas, edificios, etc.).

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos de construcción de puentes viga de hormigón pretensado

Puente Shibanpo (China). Construcción original: 1980, desdoblamiento: 2005. Foto: 山城崽儿. Fuente: https://commons.wikimedia.org/wiki/File:Shibanpo_Bridge_in_Chongqing.jpg

Uno de los ingenieros que más contribuyó al desarrollo del hormigón armado, y que tuvo una actuación más destacada en el origen y desarrollo del hormigón pretensado fue el francés Freyssinet. Sin embargo, no fue hasta después de la Segunda Guerra Mundial cuando los puentes viga de hormigón pretensado adquirieron toda su potencia y desarrollo. El hormigón pretensado ha demostrado sus ventajas económicas y técnicas tanto para puentes de luces medias (vigas prefabricadas, por ejemplo), como en grandes luces (puentes empujados y atirantados, entre otros). El récord de luz mundial para un puente cajón de hormigón pretensado es de 330 m en Shibanpo (China), terminado en 2005.

Tal es la importancia de que el proceso constructivo de un puente sea sencillo y económico, que los puentes viga se clasifican en función de dichos procedimientos. En general se pueden construir los puentes “in situ”, con piezas prefabricadas, o de una forma mixta. Además, salvo que el puente sea muy pequeño, los puentes viga se construyen por partes, o bien en subdivisiones longitudinales (vigas independientes que se unen mediante una losa, por ejemplo) o en subdivisiones transversales (dovelas de sección completa, que dan lugar a una gran variedad de métodos constructivos).

Los procedimientos constructivos de los puentes viga de hormigón pretensado pueden clasificarse en: (a) construcción sobre cimbra, (b) construcción por voladizos sucesivos, y (c) construcción por traslación horizontal o vertical.

Os dejo a continuación un pequeño vídeo explicativo al respecto.

 

 

 

 

Ejecución de una losa postesada en edificación

http://www.edingaps.com

Los forjados de losa postesa o forjados postensados son forjados que han sido elaborados mediante la técnica de tesar cables de acero (armadura activa), después del fraguado del hormigón y cuando éste ha alcanzado una resistencia suficiente para soportar las tensiones provocadas por dicho tesado. Se requieren hormigones y aceros de alta resistencia. Como consecuencia del trazado curvo de los tendones también aparecen fuerzas de desviación que pueden llegar a equilibrar el peso propio de la estructura, las cargas muertas e incluso parte de las sobrecargas. Existen dos variantes de la técnica: armadura postesa adherente y armadura postesa no adherente. Para forjados de edificación se suelen emplear armadura no adherente, por lo estricto de los cantos y por la facilidad de montaje. Este tipo de losas se utilizan en estructuras de edificios en altura, estructuras por debajo de la cota de rasante, cimentaciones por losa, parkings, puentes, depósitos, estructuras de edificaciones industriales, etc.

http://www.edingaps.com

Algunas de las ventajas del uso de estos sistemas son las siguientes:

  • Reducción de los materiales de construcción ( hasta un 40% de hormigón y un 75% de acero).
  • La reducción de peso de la estructura permite reducir el espesor y el armado de la losa de cimentación.
  • Aumento de altura libre entre plantas al reducir a la mitad el canto de la losa comparado con un forjado tradicional.
  • Continuidad estructural que permite un menor número de juntas de hormigonado y dilatación, asi como una mayor integridad estructural.
  • Reducción considerable del número de pilares y aumento de los vanos.
  • Evita la aparición de fisuras y es impermeable al estar el hormigón comprimido.

 

A continuación os dejo un vídeo donde se explica la ejecución de una losa postesada en un edificio de viviendas en Madrid. El proyecto de la estructura se debe a la empresa CALTER INGENIERÍA.

Bancadas de tesado en las plantas de prefabricados

Bancada de tesado 1
Vista del extremo de bancada de tesado. Cortesía: ANDECE.

Los elementos de hormigón pretensado son productos habituales de las plantas de prefabricados. Para poder realizar el tesado de las armaduras activas, se utilizan bancadas de tesado. Estos elementos permiten anclar los cables en los extremos de la pista, donde se encuentra una solera de hormigón que servirá de base al molde. Estas bancadas suelen ser largas, de 100 a 150 m, pues a mayor distancia entre los elementos de anclaje, mayor economía, siempre y cuando no se contrarreste el momento flector a que se le somete.

Las bancadas son estructuras metálicas realizadas con chapas de resistencia suficiente para soportar la tracción de las armaduras. Además, presentan unas cimentaciones muy grandes capaces de estabilizar las fuerzas de pretensado que se apliquen. En otras ocasiones, el propio molde presenta los elementos de anclaje en sus extremos, sirviendo la bancada como fondo de molde. En este caso el molde es autorresistente y se puede mover a otro lugar de la planta.

Extremo de la bancada de tesado. Cortesía: ANDECE.
Extremo de la bancada de tesado. Cortesía: ANDECE.

Se pueden fabricar distintos tipos de piezas en una misma bancada, siempre que no se sobrepase el límite de la fuerza de pretensado capaz de soportar la bancada. La cantidad de cables colocados definirá la magnitud de la fuerza de pretensado aplicada.

Para comprobar que la relación fuerza de pretensado/altura de actuación de los cables se mantiene dentro de los márgenes de seguridad exigibles, las bancadas disponen de una placa visible con un gráfico donde se establecer los valores máximos. A mayor altura de la resultante de la acción de los cables, menor será la fuerza total admisible.

Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com
Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com

Los moldes se comercializan y las bancadas se dimensionan para una fuerza máxima nominal determinada. Esto se corresponde con la fuerza y excentricidad de cables correspondientes al canto máximo que se pueda fabricar. Si la excentricidad es menor, se podría aplicar una fuerza de pretensado superior a la nominal.

A continuación os dejo algunos vídeos donde podemos ver cómo son algunas instalaciones de prefabricados. En este primer vídeo podemos ver cómo se fabrican viguetas pretensadas Tensyland (Prensoland).

Aquí vemos el mismo proceso de fabricación de viguetas, en este caso de la empresa VELOSA.

En este otro vídeo también vemos el proceso de fabricación de viguetas de hormigón pretensado.

Puente de hormigón pretensado en Oelde, pionero en hormigón pretensado “in situ”

Puente de hormigón pretensado en Oelde. 1938
Puente de hormigón pretensado en Oelde. 1938

La empresa alemana Weyss und Freitag adquirió en 1935 la licencia del sistema Freyssinet y ya en 1938 construyó en Alemania el primer puente viga de hormigón armado pretensado “in situ”, siendo un paso superior sobre la autopista en Oelde, Westfalia. Se trata de cuatro vigas de hormigón pretensado de sección en “I” con 31 m de luz, espaciadas a 1,40 m, con cuatro diafragmas intermedios y dos de apoyo, así como tablero de hormigón armado. Con una altura de vigas de 1,60 m, la esbeltez conseguida con este puente, de 1/20, fue la mayor conseguida hasta ese momento en puentes viga. Las vigas se fabricaron en una bancada de pretensado situada junto a la obra, siendo posteriormente desplazadas sobre el andamiaje hasta su posición definitiva. Se usó como pretensado acero al manganeso de alta resistencia, con diámetros de 40 mm en el cordón inferior y 10 mm en el superior, con una resistencia de 960 MPa, de los que sólo el 55% de la carga de rotura se usaron para el pretensado. Tal y como indica Manterola (1984), este puente fue pretensado en el más estricto sentido de la palabra, utilizando el molde metálico de las vigas como soporte de la puesta en carga de los alambres, lo cual produjo críticas por lo caro del procedimiento.

Imagen actual del puente
Imagen actual del puente

Referencias:

Manterola, J. (1984). Evolución de los puentes en la historia reciente. Informes de la Construcción, 36 (359-360):5-36.

Sistema “lift-slab”, precursor de los forjados postesados

Técnica “lift-slab”. www.joostdevree.nl

Las losas de hormigón postesado en edificación pueden encontrarse ya en el año 1955 en los Estados Unidos cuando apareció un sistema de construcción denominado “lift-slab”, patentado por Tom Slick, que consistía en hormigonar las losas en la planta baja de forma que sirvieran de encofrado para las otras, y elevarlas hasta su posición definitiva tras sucesivas operaciones de izado. En pocos años, entre los años 50 y 60, los constructores emplearon este método constructivo, que se hizo con una parte muy importante del mercado de la edificación americano.

Inicialmente, las losas eran de hormigón armado, lo que generaba dos problemas básicos:
– Las losas tendían a pegarse las unas con las otras en el momento del izado y se fisuraban debido al peso propio añadido al tratar de despegarlas.
– En vanos de 8,5 a 9 m los espesores de las losas oscilaban entre 20 y 25 cm., por lo que las deformaciones eran un problema importante.

Los ingenieros que trabajaban con este método constructivo tenían conocimiento del pretensado y del modo como podía evitar las deformaciones. En estas primeras realizaciones el postesado empezó a solucionar los problemas del aligeramiento del peso para reducir flechas y la fisuración. La técnica del postesado ya se utilizaba por aquellos años en Europa en puentes y otras tipologías constructivas.

Los sistemas más conocidos de izado de forjados son el Jack Block en el que los gatos están situados en la parte inferior y el Lift-Slab en el que los gatos se colocan sobre los pilares. En el caso del Lift-Slab los forjados se construyen unos sobre otros, eliminándose así todo encofrado, interponiéndose entre dos consecutivos unas láminas de separación. Este procedimiento permite ejecutar los forjados en óptimas condiciones, sobre un plano horizontal sin puntales ni encofrados, a cambio de una elevación cuidadosa de cada una de las placas y la ejecución de las uniones de elementos ya terminados, donde a veces es difícil establecer la continuidad.

Os dejo a continuación un vídeo donde podemos ver los principios básicos de este procedimiento constructivo. Espero que os guste.

Aquí puedes ver una animación al respecto:

El acueducto del Tempul, de Eduardo Torroja

I-ETM-002-02_01
Acueducto de Tempul. Enero 1927. Fuente: http://www.cehopu.cedex.es/

El acueducto del Tempul se construyó para el abastecimiento de agua de Jerez de la Frontera (Cádiz), sobre el río Guadalete. Está formado por 11 tramos de vigas rectas de hormigón armado de 20 m de luz y un tramo central de tipo “Cantilever” de 57 m. Esta obra la diseñó y construyó Eduardo Torroja en 1925 apenas dos años después de terminar la carrera, estando trabajando en la empresa Hidrocivil. La estructura original estaba constituida por 14 tramos de vigas de 30 m de luz biapoyadas en los correspondientes pilares. Dos de estos pilares se apoyaban en el cauce del río, lo que provocaba dudas acerca de su resistencia a la socavación. Por ello Torroja decidió eliminar estas dos pilas, manteniendo el resto de la estructura. Se utilizó esta solución sustituyendo las pilas del cauce por apoyos elásticos con cimentación a 8 m de profundidad debido a la mala calidad del suelo del cauce y a través de unos tirantes continuos que pasan por la cabecera de la pila, se anclan en los extremos de los tramos adyacentes. Así el vano central del acueducto está formado por un tramo central de 17 m apoyando en las ménsulas laterales con 20 m de luz.  Para eliminar estos apoyos sin aumentar excesivamente la luz dispuso unos tirantes con un cordón central de acero dulce que, pasando por encima de las pilas adyacentes a los soportes eliminados, las cuales se elevaron y rediseñaron para los nuevos esfuerzos, se anclaban a uno y otro lado de las mismas, disponiendo, por tanto, de la reacción vertical eliminada.

El principal problema de esta solución era que esa reacción provenía de la componente vertical de la tracción del tirante y, salvo que la pila sobreelevada fuese muy alta, dicha reacción no podía generarse de forma pasiva sino con una gran flecha del tramo volado y, por lo tanto, con una flexión excesiva. Por ello, Torroja empleó cables de alta resistencia y los pretensó mediante un sistema de elevación con gatos hidráulicos insertados entre las propias pilas y las cabezas de las mismas, consiguiendo además introducir una compresión adicional en los tramos de tablero entre los puntos de anclaje.

I-ETM-002-17
Dispositivos de elevación de las cabezas de los pilares. Fuente: http://www.cehopu.cedex.es/
Tempul
Esquema de esfuerzos al elevar los gatos

Según cuenta Torroja, poco después de finalizar el hormigonado del tramo central apoyado en los voladizos atirantados, sobrevino una fuerte riada que comenzó a arrastrar la cimbra. Viendo peligrar la integridad de la estructura, y puesto que el hormigón ya había alcanzado una resistencia que se estimó suficiente, se procedió a accionar los gatos, levantando el cabezal de las pilas unos 25 cm, lo que bastó para elevar el extremo de los tramos colgados unos 5 cm, separando la estructura de las cimbras que fueron finalmente arrastradas por el agua.