Pantallas delgadas de lodo ejecutadas mediante vibración de perfiles

Figura 1. Ejecución de una pantalla delgada de lodos. https://spezialtiefbau.implenia.com/

Las pantallas delgadas de lodo (thin slurry walls) actúan como barreras verticales para contener el flujo horizontal del agua subterránea. A diferencia de los muros pantalla, donde se sustituye el terreno por bentonita, las pantallas delgadas desplazan los suelos vibrando un perfil de acero (vibrated beam slurry walls).

Se trata de un sistema que se ha utilizado con éxito y de forma económica como pantallas de contención de filtraciones en presas, como medio para controlar las aguas subterráneas durante la ejecución de obras o como elemento de contención de residuos tóxicos. Se consiguen permeabilidades en el rango de k = 10-8 cm/s. Además, como se requiere poca excavación de material, se reduce el transporte de material a vertedero, aspecto realmente importante cuando se trata de suelos contaminados.

Mientras se vibra el perfil también se inyecta una lechada autoendurecible para ayudar como lubricante. Posteriormente se extrae el perfil, creando un espacio de 10-15 cm que se rellena con dicha lechada. Este método es adecuado para arenas y gravas. El grosor de la pared de lechada depende de la forma del perfil de acero utilizado y de las condiciones del terreno. El espesor varía entre 5 cm en arenas y 20 cm en gravas. Si se combina con una inyección de alta presión (jet grouting), se pueden alcanzar espesores de pantalla de 30 cm. Las profundidades máximas habituales se encuentran entre 15-30 m.

Figura 2. Detalle del perfil de acero introducido por vibración. https://spezialtiefbau.implenia.com/

Se forma una pantalla continua superponiendo elementos individuales, instalados uno tras otro mediante la vibración del perfil de acero. Una guía fijada al ala del perfil en el panel anterior asegura el solapamiento correcto con el panel en ejecución (Figura 3).

Figura 3. Esquema de ejecución de la pantalla delgada de lodo ejecutada mediante vibración de perfiles de acero. https://spezialtiefbau.implenia.com/

Os dejo un vídeo sobre este tipo de pantalla.

Dejo un artículo sobre este procedimiento de contención.

Descargar (PDF, 645KB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención de agua mediante pantallas de suelo-bentonita

Figura 1. Construcción de una pantalla de suelo-bentonita.  https://www.geo-solutions.com/services/slurry-walls/soil-cement-bentonite/

Las pantallas de suelo-bentonita son barreras muy utilizadas para impedir el paso del agua o para aislar un residuo o zona contaminada del agua subterránea. La construcción de estas trincheras o zanjas de lodo, que usan el suelo-bentonita como material de relleno, se empezaron a utilizar en Estados Unidos en 1945, siendo una técnica mucho más utilizada que en Europa, donde predomina la bentonita-cemento.

Durante la excavación se utiliza bentonita para contener las paredes de la excavación, aunque a veces también se utilizan aditivos. La bentonita se agrega para mantener un nivel constate de lechada cerca de la parte superior de la zanja y asegurar su estabilidad. La zanja presenta una anchura que oscila entre 0,6 y 1,5 m, anchura que se calcula para que el gradiente hidráulico no sea excesivo, normalmente entre 10 y 30. Una vez se alcanza la profundidad deseada, se introduce la mezcla final de suelo y bentonita. El peso específico de la mezcla, entre 12,6 y 13,1 kN/m3, debe ser mayor que el del lodo de la zanja, para poder desplazarla. La experiencia indica que el desplazamiento ocurrirá si el lodo tiene un peso específico 2,4 kN/m3 menor que el del material de relleno.

Si se quiere una mezcla suelo-bentonita de calidad, ésta se debe elaborar en unos tanques de homogeneización, en un estado semifluido, de forma que se tenga la suficiente fluidez para desplazar al lodo de la zanja. Las pendientes de la zanja por las que fluye la mezcla varían entre 1:5 a 1:10 (Figura 2). Estos tanques requieren de un espacio suficiente para su instalación. No obstante, también es posible realizar la mezcla de una forma más grosera con un buldócer en superficie. En este último caso, el material de relleno se prepara regando el suelo con lodo y mezclando y batiendo hasta que la mezcla sea homogénea y alcance la consistencia adecuada. Este material se empuja en la zanja donde el relleno ya colocado aparece en la superficie de la zanja; de esta forma se evita la segregación causada por la caída libre a través del lodo. Se deben tomar medidas cuidadosas en la parte superior del relleno y en la parte inferior de la zanja para asegurar que el frente del relleno no invada la excavación o para que el material excavado no se mezcle con el relleno y como consecuencia queden bolsas sin mezclar.

Figura 2. Construcción de zanja de lodo con suelo-bentonita como material de relleno. Adaptado de Cashman y Preene (2012)

Este procedimiento requiere que el terreno sea relativamente estable para evitar cortes de la pantalla. La ventaja es que se puede trabajar incluso con un nivel freático alto, si bien la bentonita debe permanecer entre 1 y 2 m por encima de dicho nivel para garantizar la estabilidad de la excavación. En casos de que el freático se encuentre más superficial, deberá realizarse una plataforma de trabajo.

Con retroexcavadoras convencionales, se podría llegar a una profundidad de 10 m, pero con brazos largos pueden llegar fácilmente a 25 m, aunque para profundidades mayores se utilizan cucharas bivalvas, hasta profundidades económicas de unos 30 m. En ocasiones también se han utilizado las dragalinas hasta los 25 m. Algo menos habitual es el uso de zanjadoras de brazo inclinado, útiles hasta unos 8 m de profundidad (Figura 3).

Figura 3. Zanjadora en la ejecución de una pantalla de suelo-bentonita. http://www.dewindonepasstrenching.com/slurry-walls-and-cement-bentonite-walls

El método de excavación no tiene tanta importancia como tener la seguridad de que la pantalla se extienda por todo el estrato permeable de forma continua. Por tanto, es importante succionar el sedimento del fondo de la zanja, especialmente si los sedimentos son arena y gravas limpias. Es una buena práctica tratar que la colocación del relleno y la excavación estén lo más cercanas posibles.

Entre las ventajas de las pantallas de suelo-bentonita cabe destacar que es la tipología de barrera más económica, pues en la mayoría de los casos se permite el uso de todo o gran parte del material excavado de la zanja; además, se trata de un procedimiento constructivo bien conocido y utilizado, con altos rendimientos. La permeabilidad de la pantalla suele ser del orden de 10-7 cm/s, pero puede bajar incluso a 5 x 10-9 cm/s. Sin embargo, hay que tener presente que el procedimiento necesita un área para la mezcla y puede generar material que debe llevarse a vertedero; además, la pantalla puede deteriorarse frente a ciclos prolongados de humedad/sequedad o de congelación/descongelación. Son barreras que solo se pueden utilizar en su configuración vertical y a veces resulta complicado conseguir la absoluta impermeabilidad. Por otra parte, la mezcla de suelo-bentonita se puede degradar por contaminantes o por la presencia de ácidos orgánicos e inorgánicos, aumentando la porosidad de la barrera. Además, las sales inorgánicas y algunos compuestos orgánicos pueden provocar la contracción de las partículas de la bentonita.

Os paso un par de vídeos para que podáis ver cómo se realiza este tipo de pantalla impermeable.

Os paso también un artículo donde se explica la construcción de una pantalla de suelo-bentonita de gran profundidad.

Descargar (PDF, 1.18MB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.