El método inglés de excavación de túneles

metodo-inglesLa excavación de túneles en arcillas y areniscas, terrenos típicos en Inglaterra, ha dado nombre al procedimiento de construcción de túneles a sección completa, en una sola operación. También se llama método de ataque a plena sección. Se aplica a túneles de pequeña sección, de no más de 15 m2, con lo cual se puede corregir cualquier imprevisto que surja durante la excavación. Este procedimiento constructivo se utilizó en el primer túnel bajo el Támesis (1825), que pudo realizarse gracias a un escudo de frente abierto.

El proceso de excavación comienza, en su fase 1, con una galería centras de sección pequeña y fácil de controlar, de unos 3 m2 y una longitud de 3-4 m. La excavación se entiba con puntales y tablones o con placas metálicas. Una vez asegurada la fase 1, se puede ampliar la excavación hacia los laterales, en la fase 2. Este proceso es más rápido al atacar los laterales. Posteriormente se excavan en franjas horizontales, en las fases 3 y 4. Una vez se ha excavado la sección completa del túnel, se procede al revestimiento, comenzando por la solera o contra-bóveda.

Este procedimiento presenta la ventaja de que el hormigonado se realiza de una sola vez, evitando juntas y posibles asientos. Sin embargo, hay que tener en cuenta que no se hormigona la sección hasta el final de la excavación, con lo que en cualquier momento se puede producir un fallo en el sostenimiento. Es por ello que el material requiere de un mínimo de cohesión para poder excavar la destroza y la contra-bóveda en una única fase. También se podría utilizar el método en roca, cuando no hay necesidad de revestimiento.

Os dejo a continuación un vídeo sobre la construcción del metro bajo el Támesis, obra de Sir Marc Isambard Brunel. Espero que os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Esto me suena… El puente Hong Kong-Zhuhai-Macao y el “Ciudadano García”

2016092713594970294Con motivo de la terminación del puente Hong Kong-Zhuhai-Macao, el programa de “Esto me suena”, de Radio Nacional de España, me realizó una pequeña entrevista para explicar algunos de los aspectos de este puente. En este post os dejo la entrevista y una pequeña descripción del mismo, señalando algunas páginas donde podéis ampliar información si os interesa.

 

 

 

 

El puente Hong Kong–Zhuhai–Macao es un proyecto que consiste en una serie de puentes y túneles que conectan Hong Kong, Macao y Zhuhai, las tres ciudades principales del delta del río de las Perlas en China. Este puente tiene una longitud total de 55 km, 6,7 de ellos bajo el agua y 23 sobre el mar, convirtiéndolo en el más largo de su tipo en el mundo. Su desarrollo conforma la red nacional de carreteras del país que une los bancos occidental y oriental del río; y servirá para transportar pasajeros y carga entre la región de Hong Kong, la parte continental de China y la región de Macao.  Este puente reducirá el tiempo que se tarda en ir en coche de Hong Kong a Zhuhai, en la parte continental de China, pasando de 3 horas a solo 30 minutos. 

El puente consta de dos islas que unirá un túnel de 6,7 km, permitiendo el paso del tráfico marítimo. Cada isla está construida por 130 cilindros de acero de 22 m de diámetro, 40/50 m de longitud y 450 t de peso. En el vídeo que os muestro a continuación se puede ver cómo se introducen estos grandes cilindros mediante vibración.

También se puede ver en el siguiente vídeo el proceso constructivo del puente (aunque está en chino, se puede ver bien el proceso):

Para más información, el gobierno de Hong Kong habilitó una página web con todos los datos sobre este proyecto enhzmb.hk.

Páginas de interés sobre el tema:

https://es.wikipedia.org/wiki/Puente_Hong_Kong-Zhuhai-Macao

http://www.mosingenieros.com/2013/01/un-mega-puente-que-unira-hong-kong.html

http://www.fierasdelaingenieria.com/puente-hong-kong-zhuhai-macao-de-china/

http://www.structuralia.com/es/blog/23-carreteras/10002057-el-puente-hong-kong-zhuhai-macao

 

 

 

Método Bernold de ejecución de túneles

Construcción con método Bernold. Túnel de Jeresa (Fotografía: M. Romana)
Construcción con método Bernold. Túnel de Jeresa (Fotografía: M. Romana)

El método ideal de perforación de un túnel sería aquel que permitiese excavar el perfil y hormigonar la bóveda de un túnel simultáneamente. El método Bernold de ejecución de túneles consiste en la colocación, inmediatamente después de la excavación, de un sostenimiento rígido compuesto por cerchas sobre las que se monta una chapa troquelada denominada chapa Bernold, dejándose hasta la superficie de excavación una distancia igual al espesor del recubrimiento. Posteriormente se hormigona detrás de la chapa, sirviendo ésta como encofrado perdido y armadura. Esta es una opción válida para macizos de calidad mala o muy mala, aunque, según indica Romana (2001), su utilización ha decaído en España debido a la popularización del Nuevo Método Austríaco. Este sistema incorpora los siguientes elementos:

  • Chapas metálicas troqueladas, onduladas y curvadas, de 2 a 3 mm. de espesor y 1 m2 de superficie útil, solapadas y unidas entre sí por medio de pasadores también metálicos.
  • Cimbras de montaje o cerchas, formadas por perfiles de acero de ala ancha (HEB) con 3 o 4 articulaciones que facilitan el montaje de la chapa a la que sirven de soporte.
  • Tubos separadores metálicos, para arriostrar las cimbras y fijar su distancia. Las cerchas llevan unas chapas preparadas para encajar los separadores en ellas.

La aplicación del sistema Bernold es compatible con el control y gunitado del terreno y además proporciona un refuerzo adicional con el recubrimiento final del túnel realizado con los elementos anteriores, de la siguiente forma: Conforme se va realizando la excavación se van colocando las cimbras de montaje, arriostradas con los tubos separadores. La distancia entre cimbras es normalmente de 0,96 m. Partiendo de la base y a cada lado de la sección, se va montando la chapa Bernold, solapando y uniendo los sucesivos tramos con pasadores hasta llegar a la clave del túnel.

Chapa Bernold
Chapa Bernold

Colocada la chapa se hormigona el hueco que queda entre ella y la superficie del terreno, que debe tener un espesor mínimo de 1/15 a 1/20 del radio de la sección. Las ranuras de la chapa facilitan su adherencia y completa unión con el hormigón al refluir éste por ellas y por los huecos que quedan entre los solapes de los tramos contiguos; al mismo tiempo, estas ranuras facilitan la eliminación del agua sobrante durante el vibrado.

El hormigón que se emplea tiene una dosificación de cemento de 250-300 kg/m3, una relación a/c = 0,4-0,5 y un tamaño máximo de áridos de 30 mm. El tape frontal es perdido y se realiza normalmente con metal deplové o nervometal.

Como en cualquier método de excavación-entibación, el sistema Bernold puede combinarse con el bulonado, la inyección u otros medios de refuerzo complementario, aunque las cerchas y la chapa por su forma, ya constituyen un medio altamente resistente y capaz de absorber cargas disimétricas. Su empleo es muy recomendable en las zonas de boquillas y en el cruce de fallas o zonas tectonizadas.

Fuente: Tedesa, técnicas de entibación, s.a. http://www.dfdurofelguera.com/catalogo_tedesa/prod/prod_cat/chapa/Bernold/bernold.pdf
Fuente: Tedesa, técnicas de entibación, s.a. http://www.dfdurofelguera.com/catalogo_tedesa/prod/prod_cat/chapa/Bernold/bernold.pdf

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

ROMANA, M. (2001). Recomendaciones de excavación y sostenimiento para túneles. Revista de Obras Públicas, 148(3408):19-28. (link)

Cargadoras LHD para obras subterráneas

Cargadora LHD Scooptram ST1030LP

Las labores de extracción de material en obras subterráneas y túneles no es una tarea sencilla. Al poco espacio de maniobra hay que añadir los problemas derivados de la ventilación de espacios cerrados y problemas de seguridad y salud que afectan a los trabajadores.

Este tipo de cargadoras se desarrollan para las más duras aplicaciones subterráneas, con objetivos orientados a economizar la producción, incrementar la seguridad y fiabilidad.  Este equipo de cargador LHD (load haul dump) es especialmente adecuado para trabajar debajo de condiciones difíciles, como estrechos, de baja altura y lugares de trabajo con lodo.

En este sentido, las cargadoras LHD, de perfil bajo, empleadas en este tipo de obras adquieren características especiales. Su diseño es compacto, tanto en altura como en anchura. Su radio de giro es mínimo (articuladas), lo que le permite una gran maniobrabilidad en zonas estrechas. Son muy productivas en recorridos cortos o medios (hasta 1000 m). Pueden ser de accionamiento eléctrico o mediante motores diésel.

Para distancias inferiores a unos 500 m y túneles de pequeña y mediana sección, se utiliza una pala con un cazo de gran capacidad (3m³) que carga el escombro del frente y lo lleva hasta el exterior. La máquina no gira, sentándose el maquinista de forma lateral para conducir en ambas direcciones. Para distancias mayores se utilizan zonas de acopio intermedio de escombros.

Con marcos optimizados, una fuerza motriz muy potente, avanzada tecnología de transmisión, tracción, controles de dirección articulados y ergonómicos, son extremadamente resistentes, muy maniobrables y excepcionalmente productivas. Estas máquinas presentan una capacidad de 1 a 25 toneladas.

 

Un cargador SANDVIK LH517. Wikipedia

Os paso varios vídeos para que podáis ver su funcionamiento. Espero que os gusten.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València. 148 pp.

Raise Boring

Raise Boring constituye un procedimiento constructivo para la ejecución mecanizada de pozos o chimeneas entre dos niveles dentro de una mina o en un proyecto de ingeniería civil. Los niveles pueden ser subterráneos o, el superior, estar en la superficie. El procedimiento, desarrollado en la década de los 50 en Estados Unidos, consiste básicamente en perforar un barreno piloto y luego ensanchar la perforación hacia arriba mediante una cabeza escariadora. Se trata de un equipo de perforación que se instala por encima del terreno. Se taladra una perforación piloto, con un ángulo que puede ser de hasta 45º. Se perfora hasta llegar al túnel o caverna ya existente. Posteriormente se retira la broca piloto y se fija un escariador a la sarta de perforación, que amplía la perforación hacia arriba. Se han perforado con diámetros habituales entre 2 y 3 m, a unas profundidades de 100 a 200 m, aunque se han llegado a 6 m de diámetro y más de 2000 m de profundidad.

Entre las ventajas de este sistema se encuentra la alta seguridad y buenas condiciones de trabajo, la productividad más elevada que con explosivos (por ejemplo, método Jaula Jora),  el perfil liso de las paredes, la sobreexcavación inexistente y la posibilidad de realizar excavaciones inclinadas. En cuanto a los inconvenientes, la inversión elevada, el coste de excavación unitario elevado, la poca flexibilidad en dimensiones y cambios de dirección, las dificultades en rocas en malas condiciones y la necesidad de personal especializado.

Naples
http://miningandconstruction.com/construction/nice-ride-in-naples-2117/

Os dejo a continuación un vídeo de Atlas Copco donde podemos ver un Robbins en acción. Como anécdota, a veces se llama como Robbins a este tipo de máquinas aunque sean de otras marcas como Dresser, Indau, Rhino, etc.

En el vídeo que podemos ver a continuación, se puede ver la perforación de una chimenea de ventilación de 80 m de largo en la mina Condestable, en Mala-Lima-Perú.

Os dejo a continuación un vídeo de la empresa Herrenknecht donde podéis ver el procedimiento constructivo. Espero que os guste.

Por gentileza de Valen Fernández, del Departamento Técnico de Pedraplús, os dejo a continuación un documento que amplia la información sobre el sistema.

Descargar (PDF, 761KB)

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València. 

Piezas prefabricadas para túneles con camión como encofrado

Tunel con camión
Zipper truck system

¿Se puede construir rápidamente un túnel usando un camión como apoyo y usando piezas prefabricadas? Os voy a dejar este vídeo donde se puede ver la originalidad del proceso constructivo. Además, no hay mejor forma de ver cómo funcionan las piezas que conforman un arco. Espero que os guste.

En este otro vídeo se muestra cómo se puede construir un arco también con piezas prefabricadas a modo de dovelas.

 

Impermeabilización de túneles

El drenaje y la impermeabilización de los túneles tiene una gran importancia técnica y económica. Favorece la calidad y el “confort” de terminación y mejora las condiciones de mantenimiento del túnel. De este modo, la correcta elección de los materiales con respecto a las condiciones de un determinado momento y lugar es muy importante en la impermeabilización del túnel. Con ello se van a impedir filtraciones que pueden dañar el revestimiento estructural, evitando la disgregación del hormigón y la corrosión de las instalaciones. Es necesario analizar las condiciones físicas y químicas del agua para garantizar que no deterioran el sistema de impermeabilización.

 

 

Impermeabilización túneles

El sistema de impermeabilización dependerá directamente del caudal de agua infiltrado en el túnel. Estos caudales dependen de la geología, la climatología y la geomorfología. Los parámetros hidrogeológicos de más interés serán los siguientes: la porosidad, la permeabilidad, el gradiente hidráulico y la transmisividad. Se pueden distinguir tres tipos de impermeabilización, dependiendo del agua contenida en el macizo donde se excava:

  • Si el agua hace presencia en la franja capilar, se deberá impermeabilizar en toda la construcción subterránea, pues se deben cerrar los poros para evitar que la humedad llegue al interior por capilaridad. Se pueden usar pinturas impermeables y con menos frecuencia, membranas.
  • En el caso de zonas saturadas, de debe desviar el agua para que no genere presiones. Se recoge el agua en un drenaje longitudinal del túnel. Se usan morteros hidrófugos o bien membranas o láminas impermeables.
  • En aguas subterráneas se usa una impermeabilización flexible, cerrada y resistente a la presión de dicha agua. Se usan membranas o láminas impermeables y con menor asiduidad morteros hidrófugos.

El tipo de impermeabilización que usemos también dependerá del uso que vaya a tener el túnel, que determinará el grado de estanqueidad o la cantidad de filtraciones permitidas. La norma española UNE 104424 ofrece la siguiente tabla indicativa:

Impermeabilización

También os dejo varios enlaces de interés: http://www.ossaint.com/esp/impermeabilizacion.aspx?BtnSubMenu=43, y éste de Terratest: http://www.terratest.es/docs/impermeabilizacionydrenajedetunelesconfotos.pdf.

También os dejo varios vídeos. El primero es de la impermeabilización de los túneles de Pajares.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Tuneladora de doble escudo

Tuneladora de doble escudo

Los denominados dobles escudos son tuneladoras que presentan características tanto del topo como del escudo. Se trata de un escudo telescópico articulado en dos piezas pensado para sostener el terreno al avanzar en la excavación del túnel. Su principal característica es su doble sistema de propulsión independiente, el primero para el escudo y el segundo para el topo.

Se trata de una máquina muy versátil, pues permite excavar tanto la roca dura que los escudos propiamente dichos no podrían perforar, con rendimientos parecidos a los de los topos. Pero además, permite la excavación en terrenos inestables y heterogéneos que los topos no podrían realizar. Por tanto, es la mejor solución para macizos con tramos de tipología variable suelo-roca.

La máquina presenta dos escudos: el delantero y el trasero. El delantero soporta la cabeza de corte, contiene el rodamiento principal, la corona de accionamiento y los sellos interno y externo. El trasero, también llamado escudo de anclaje, incorpora las zapatas de los “grippers” operables a través de ventanas. En su parte posterior incorpora el erector de dovelas y los cilindros de empuje para la propulsión en modo escudo normal.

El movimiento de estas dos partes es independiente, situándose los “grippers” en un hueco abierto entre ambas, por lo que la cabeza puede excavar mientras que en la cola se van montando los anillos de dovelas. Así, los rendimientos alcanzados  son mayores que con un escudo simple. Al mismo tiempo que los cilindros de empuje principal impulsan hacia delante el escudo de cabeza y la rueda de corte realiza la excavación, en el escudo trasero se procede al montaje de un nuevo anillo de dovelas de sostenimiento al abrigo del mismo. Este sistema se aplica en aquellos terrenos capaces de resistir la presión que transmiten los “grippers”.

Cuando el terreno no es capaz de resistir la presión de los “grippers”, la tuneladora funciona como escudo simple, cerrandose el hueco de los “grippers”, apoyándose mediante unos cilindros auxiliares en el último anillo colocado, para así obtener la reacción necesaria para el empuje de la cabeza de corte. Por ello, trabajando en modo escudo, no es posible simultanear la excavación con el montaje del anillo de dovelas.

Para aclarar esta explicación, vamos a ver un vídeo de HERRENKNECHT, donde se muestra el funcionamiento de la maquina tuneladora de doble escudo (TBM) utilizada en la perforación del tunel de Guadarrama para el AVE. Espero que os guste.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Métodos y equipos de excavación en túnel. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.835. Valencia, 52 pp.

Método “cut and cover” de construcción de túneles

El túnel Gerrards Cross, en Inglaterra. Wikipedia

La técnica de falso túnel (cut and cover, que significaría “cortar y cubrir” en español) es un procedimiento de construcción para túneles superficiales donde se excava desde la superficie la totalidad o parte del hueco que ocupa el túnel, se construye el túnel dentro del espacio a cielo abierto y se cubre una vez terminado. Requiere un sistema de sostenimiento fuerte para soportar las cargas del material que cubre el túnel.

Este tipo de construcción de túneles resulta apropiado cuando existe un escaso recubrimiento de terreno sobre el túnel  y al mismo tiempo existe riesgo de que la construcción de una trinchera convencional pueda provocar desprendimientos. En otras ocasiones, la construcción de falsos túneles se justifica simplemente en la necesidad minimizar el impacto ambiental de la línea, especialmente cuando el trazado pasa cerca de zonas urbanas.

Existen dos formas de realizar este procedimiento constructivo:

  • Método ‘bottom up’: se excava a cielo abierto la totalidad del hueco ocupado por el túnel y se construye en el interior. El túnel puede ser de hormigón in situ, hormigón pretensado, arcos pretensados, arcos con acero corrugado y también con ladrillo, que se solía usar al principio.

Carro túnel

  • Método ‘top down’: este método se encuentra en auge para la construcción de túneles en el interior de las ciudades (túneles de la M-30Autopista Costanera NorteMetro de Málaga…). Requiere poca maquinaria especializada, apenas más de la utilizada en la construcción convencional de sótanos. En la superficie, desde la calle, se ejecutan las paredes del túnel cavando una zanja que se hormigona para formar muros pantalla o una hilera de pilotes. Cuando las paredes están terminadas se ejecuta la losa superior, que se apoya en las paredes, excavando sólo el hueco que ocupa la losa y apoyándola durante su construcción contra el terreno. Cuando la losa y las paredes están terminadas, puede reconstruirse la superficie mientras continúan los trabajos en el interior del túnel. La tierra del interior del túnel no se extrae hasta esta fase, en la que como los elementos portantes del túnel están ya construidos se puede excavar con retroexcavadoras. Cuando se ha excavado hasta el nivel adecuado se ejecuta la contrabóveda, losa generalmente de hormigón que hace de suelo del túnel. Se pueden crear losas intermedias para realizar túneles de varias plantas.

 

Falso túnel entre pantallas

En el siguiente vídeo realizado por Proin 3D, se puede ver el proceso constructivo del falso túnel de salida de la estación de Sants. Se trata del túnel de alta velocidad Barcelona Sants-La Sagrera, conocido también como túnel del Eixample.

En el siguiente vídeo podemos ver una técnica de la empresa TOMAS.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.